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Chapter 1

Introduction

1.1 Secure Quantum Network Code

Network coding is a coding method, addressed first by Ahlswede et al. [0],
that allows network nodes to manipulate the information packets before for-
warding. As a quantum analog, quantum network coding considers send-
ing quantum states through a network which consists of quantum channels
transmitting quantum states noiselessly and nodes performing quantum op-
erations. Since quantum network coding was first discussed by Hayashi et
al. [I0], many other papers [10, [T, 12} [14] 15, T3] have studied quantum
network codes.

In order to guarantee security in network communication, the security
analysis of network codes is inevitable. The paper [7] started to discuss the
secrecy of the classical network code and it was shown that the secrecy is
improved by network coding. On the other hand, Jaggi et al. [9] constructed
a classical network code with asymptotic error correctability. When trans-
mission rate mg of network and the maximum rate m; of malicious injection
satisfy m; < myg, the code in [9] achieves correctability with rate mg —m; by
asymptotic n uses of the network. Furthermore, Hayashi et al. [I8] extended
this result so that the secrecy is also guaranteed: when previously defined
mg, my and the information leakage rate msy satisfy mq + mo < myg, there
exists a classical network code of rate mg — my — mo which is asymptotically
secret and correctable by n uses of the network.

The security analysis of quantum network codes was initiated in [19] 20].
However, the protocol in [19, 20] only keeps secrecy from the malicious ad-
versary but the correctness of the state is not guaranteed if there is an attack.
Moreover, this protocol depends on the network structure and requires clas-
sical communication.
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Figure 1.1: Protocol with negligible rate secret shared randomness. S(H)
denotes the set of density matrices on a Hilbert space H.

In the co-work [I] with my advisor Hayashi, to resolve these problems
and as a natural quantum extension of the secure classical network codes
[9, (18], we present a quantum network code which is secret and correctable
[1]. Since we take a similar method to [J, [18], our code transmits a state
by n uses of the quantum network. When the network transmission rate is
mp and the maximum number m; of the attacked channels is restricted by
my < mg/2, our protocol correctly transmits quantum information of rate
mgo — 2my by asymptotic n uses of the network. Since the correctness of the
transmitted quantum state guarantees the secrecy of the quantum channel
[], the secrecy of our protocol is guaranteed.

There are notable properties in our protocol. First, our protocol can be
implemented without any classical communication. We generate the negligi-
ble rate secret shared randomness needed for our code by use of the quantum
network. Secondly, our protocol is secure from any malicious operation on
my channels as long as m; < mg/2 holds. That is, when m; < mg/2, our
protocol is safe from the strongest eavesdropper Eve who knows the network
structure and the network operations, keeps classical information extracted
from the wiretapped states, and applies quantum operations on the attack-
ing channels adaptively by her wiretapped information. Thirdly, our protocol
transmits a quantum state without the knowledge of the quantum network
structure.

However, unlike [19, 20] and like [9, [I§], we place a constraint on our
network that every node operation is the application of an invertible matrix
to bit basis states which is a fixed basis of the quantum system. We call the
restricted quantum operations the quantum invertible linear operations.

Our protocol can be thought of as a generalization of the honest-dealer



verifiable quantum secret sharing (VQSS) [8] because the honest-dealer VQSS
corresponds to a special case of our protocol where the network consists of
myg parallel quantum channels.

1.2 Multiple-Unicast Quantum Network Code

The proposed secure quantum network code in Section is designed for
the unicast network where the entire network is used by a sender and a
receiver. However, since a network is used by several users in general, it is
needed to treat the network model with multiple users instead of the unicast
network. For this purpose, the multiple-unicast network has been researched,
in which disjoint r sender-receiver pairs (Si,71), ..., (S, T,) communicate
over a network. The paper [20] studied a quantum network code for multiple-
unicast network. The code in [20] transmits a state successfully for each use of
the network. However, [20] has a limitation that the code should manipulate
the node operations in the network and therefore the code depends on the
network structure. In addition, the code in [20] requires the free use of
classical communication.

In the co-work [2] with my advisor Hayashi, we propose a quantum net-
work code for the multiple-unicast network which is a generalization of the
unicast quantum network code in Section and overcomes the shortcom-
ings of the multiple-unicast quantum network code in [20]. In the same way
as the code in Section [I.1] the given node operations are quantum invertible
linear operations, our code requires the asymptotic n-use of the network for
the correct transmission of the state, and the encoding and decoding opera-
tions are performed on the input and output quantum systems of the n-use of
the network, respectively. On the other hand, differently from [20], our code
can be implemented without any manipulation of the network operations and
any classical communication. Moreover, our code makes no information leak-
age asymptotically from a sender S; to the receivers other than T; because
the correctness of the transmitted state guarantees no information leakage
[].

To discuss the achievable rate by our code, we consider the situation that
the input states of all senders are the bit basis states. Then, our network
can be considered as a classical network, called bit classical network, because
a bit basis state is transformed to another bit basis state by our quantum
node operations. In the bit classical network, we assume that when the
inputs of the senders other than S; are zero, the transmission rate from S;
to T; is m;, which is the same as the number of outgoing edges of S; and
incoming edges of T;. Also, when we define the interference rate by the
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Figure 1.2: Toy example of a multiple-unicast network. In quantum network
(a), |-)p denote bit basis states and L£(A;) is the network operation. The
network (b) and (c) is the bit and phase classical networks of the quantum
network (a).

rate of the transmitted information to 7; from the senders other than .S;,
we assume that the interference rate to 7T; is at most g; in the bit classical
network. In the same way, in case that the input states of all senders are set
to the phase basis states (defined in Section , we call the network a phase
classical network. In the phase classical network, we also assume that the
transmission rate from .S; to T; is m; when the inputs of the senders other
than S; are zero. Also, the interference rate to 7; is at most a; in the phase
classical network. Under these constraints, if a; + a; < m;, our code achieves
the rate m; — a; — a; quantum communication from S; to 7; asymptotically.

To help the understanding of the rates described above, we explain the
achievable transmission rate from S; to 77 in the network in Fig. (1.2 The
bit and the phase classical networks (Fig. and Fig. are determined
from the quantum network (Fig. [L.2a]) (see Section [3.1). When X{ = X} =
Y] =Y, = 0, the transmission rates from S; to 77 are 2 for both networks,
i.e., m; = 2, which is also the number of outgoing edges of S; and incoming
edges of Tj. Also, the interference rates from Sy to T} are 1 and 0 for the
bit and the phase classical networks, respectively. On this network, if our
code from Sy to T} with the rates (my,ay,a}) = (2,1,0) is constructed, the
conditions a; > 1, a} > 0 and a; + a} < m; are satisfied, and therefore our
code implements the rate m; — a; — a} = 1 quantum transmission from S}
to T} asymptotically.

In a practical sense, our code can cope with node malfunctions in the
following case: on the multiple-unicast network with quantum invertible lin-
ear operations, the network operations are well-determined so that there is
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no interference between all sender-receiver pairs, but three broken nodes ap-
ply quantum invertible linear operations different from the determined ones.
Moreover, let the transmission rate m; without interferences from S; to T}
be 100 and the number of outgoing edges of the three broken nodes be 4.
In this case, 3 x 4 = 12 outgoing edges of the three broken nodes transmit
unexpected information which implies the bit (phase) interference rate is at
most 12. Therefore, by our code with m; = 100 and aq,a} > 12, the sender
S1 can transmit quantum states to the receiver T correctly with the rate
100 — a; — a} < 76 by asymptotically many uses of the network.

1.3 Outline

The remainder of this thesis is organized as follows. Based on existing re-
sults, in Chapter [2| we give the mathematical basis of quantum information
theory. Four postulates of quantum information theory are introduced in
Sections [2.1], 2.2 and 2.4 To prove the correctness and the security of
quantum network codes, it is needed to define measures for the difference of
two states and measures for leaked information. Section 2.5 defines measures
for difference of two quantum states and propose several properties of these
measures. Section 2.6 defines several informations measures which is related
to the measure of leaked information.

In Chapter [3, the secure quantum network code introduced in Section
1.1} is constructed. Section [3.1] gives the network structure and Section [3.2
formally states two main theorems of this chapter. Based on the preliminar-
ies in Section 3.3 our code is constructed in Section [3.4 In Section 3.5 we



suggest the transmission protocol with our code and show that the entangle-
ment fidelity is upper bounded by the sum of the bit error probability and
the phase error probability. In Section [3.6, we derive the bit error probabil-
ity and the phase error probability. In Section [3.7] by attaching the secure
classical network code presented in [16] to our quantum network protocol, we
show that the secure quantum network code without classical communication
can be implemented. Section [3.8| explains how correctness implies secrecy in
our protocol.

In Chapter ] the quantum network code for multiple-unicast network
introduced in Section [I.2 is constructed. Section 1] introduces the formal
description of the quantum multiple-unicast network with quantum invertible
linear operations. Section 4.2 gives the main theorem of this chapter. Section
[4.4] concretely constructs our code with the free use of negligible rate shared
randomness. The encoder and decoder of our code is given in this section.
The performance of our code is analyzed in Section [4.5]

Chapter [5| is the conclusion of this thesis.



Chapter 2

Quantum Information Theory

Quantum information theory is a theoretical framework to treat physical
quantum systems and it is mathematically defined from four postulates of
quantum systems, quantum states, quantum operation and measurement.

2.1 Quantum System and Quantum State

A quantum system is defined as a finite-dimensional Hilbert space H, which
is a complex vector space with standard inner product (-,-) : H x H — C.

Postulate 1 (Quantum system). Any quantum system is described by a
finite-dimensional Hilbert space.

We will use the bra-ket notation to describe vectors in H and vectors
in the dual space H*. From one-to-one correspondence between H and H”*,
for any vector |z) := (x1,...,24)" in H, there is a unique vector (z| € H*
defined by

d
(zly) == Zfi% VyeH.

i=1
For any |z) = (%1,...,29)" € H, |Z) == (Z1,...,%q4)". Throughout this
thesis, we will use the term a basis to denote a orthonormal basis, M(H)
denotes the set of square matrices on H. Moreover, d denotes the dimension
of the quantum system H if it is not specified.

For a square matrix X on H, the adjoint matrix is defined by X* := X T

A matrix X on H is called a Hermitian matriz if X = X*. A Hermitian
matrix X is called positive definite if

(x| X|z) >0, for any |x) € H,

10



and it is denoted by X > 0. Similarly, a Hermitian matrix X is called positive
semidefinite if

(x| X|x) >0, for any |z) € H,

and it is denoted by X > 0.
Quantum states are defined by desity matrices.

Definition 2.1.1 (Density matrix on H). A matriz p € M(H) is called a
density matriz on the quantum system H if

Trp=1 and p>0.

Postulate 2 (Quantum state). Any quantum state on a quantum system H
1s described by a density matriz on H.

The set of states on a quantum system # is denoted as S(H) for the
following.

A state that can be represented by a probabilistic mixture of other states
is called a mized state and a state which is not a mixed state is called a pure
state. Any state p is pure state if and only if p is a rank-one matrix. Since
the set of states of a quantum system is a convex set, it can also be regarded
that pure states are the extremal points of this set and the mixed states are
the inner points.

2.2 Composite System

Consider the case where we treat several quantum systems simultaneously.
A composite system of quantum systems is given as a tensor product of the
quantum systems, e.g. H ® Hp is the composite system of H, and Hpg.

Throughout this thesis, we use single lettered subscripts to differentiate
quantum systems, e.g. Ha, Hp,... and multi-lettered subscript to denote
composite systems, e.g. Hap := H4 ® Hp. Furthermore, we use the notation
|{L‘A,ZL’B> = |1‘A> X |ZL'B> €EHARQHEB.

States on a composite system are defined in the same way as states on
a single system. Note that the states are not necessarily the tensor product
of those in each subsystems. States which are written as tensor products of
states on subsystems are called seperable states: a state p is separable if

P:ZPinA@PiBa Zpi:l’ pi =1,

11



where p'; and p% are states on H and Hp, respectively. States which are
not seperable are called entangled states.

For any state p in H 4, the states p4 := Trg p and pp := Tr, p are states
on H, and Hp, called reduced states, where the partial trace Trg (Try) is
defined as follows.

Definition 2.2.1 (Partial trace). Let {|eZ)} be a basis of the system Hp.
For any X € M(Hap),

TrX =) (@)X @),

or alternatively, Trg : Hap — Ha 1S a linear operator such that

TrX®Y ZXTrY, VX e M(Ha),Y € M(Hp).
Given any p € S(Ha), a state p € S(Har) is called an extension of p if
TRrp =p.

Especially, if an extension p of p is a pure state, the state p is called a
purification of p.

Maximally entangled states and completely mixed states are the most
important states in quantum information theory. Given a quantum system
H spanned by a basis {e; : i = 1,...,d}, the maximally entangled state is
defined by |®) == 37 |es, ei)(e;, e5] € S(H®H) and the completely mixed
state is pmix = I = S0 |e;){(e;] € S(H). The maximally entangled state
|®) is a purification of the completely mixed state pnix and conversely, the
latter is a reduced state of the former.

2.3 Quantum Operation

Quantum operations describe the dynamics between two quantum systems.
First, we will give several conditions that quantum operations between two
systems should satisfy and define quantum operations by trace preserving
completely positve (TP-CP) maps.

Quantum operations are maps k from S(Ha) to S(Hp) satisfying the
following conditions.

Condition 1 Quantum operations are affine maps.

A map f is called an affine map if

flpzr + (1 = p)az) = pf (1) + (1 = p)f(z2), pe(0,1).
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Since the mixed states are no other than the probabilistic mixture of
other states, the quantum operation should act in the same way on
the states composing the mixed states. Therefore, when p; and p, are
states on H 4, the following condition for affine maps should hold:

K(ppr + (1 = p)p2) = pr(p1) + (1 = p)r(p2), p€(0,1).

Condition 1’ Quantum operations are linear maps.

Condition 17 is the generalization from the affinity to the linearity.

Condition 2 Quantum operations are positive maps.

A positive map is a map that maps a positive semidefinite matrix to a
positive semidefinite matrix. Considering quantum states are positive
semidefinite matrices, the quantum operations should be positive maps.

Condition 2’ Quantum operations are completely positive maps.

Even in the case that the quantum opration x from H 4 is considered
as an operation from the larger system H4 ®C" by applying identity
operator to C", the quantum operation s should still be a positive map,
i.e. kK ® tcn should be positive for any n where (cn is the identity map
on C". When k ® (cn is a positive map, the operation x is called n-
positive map. When x is n-positive for any dimension n, the operation
k is called a completely positive map. Therefore quantum operations
should be completely positive maps.

Condition 3 Quantum operations are trace-preserving maps.

The resultant state x(p) should be traced to 1.

To summarize, quantum operations should satisfy the above Condition 1’,
Condition 2’; and Condition 3. The maps satisfying these three conditions
are called trace-preserving completely positive (TP-CP) maps.

Quantum information theory postulates that the set of TP-CP maps is
the same as the set of quantum operations.

Postulate 3. Any quantum operations are described by trace-preserving com-
pletely positive (TP-CP) maps.

One of the most important result for describing quantum operations is
that we have two detailed representations for TP-CP maps. To see this result,
we introduce the following theorem which characterizes the TP-CP maps.
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Theorem 2.3.1 (Equivalent conditions on TP-CP maps). Given a quantum
operation r : S(Ha) — S(Hp), the followings are equivalent. The dimen-
sions of Ha and Hp are denoted by d4o and dp, respectively.

1. kK 1s a TP-CP map.
2. Kk is a TP (min{da, dg})-positive map.

3. (Stinespring representation) For Ho ~ Hp, there exist a pure state
po € Hpe and unitary matric U on Ha @ Hp @ He such that

r(p) = TeU(p @ po)U™.

4. (Choi-Kraus representation) There exists a set {F;}41% of linear maps

from Ha to Hp satisfying Y, F,F; = 14 such that

k(o) = Y Fipk;.

Stinespring representation shows that quantum operations are nothing
other than multiplying a unitary matrix and its adjoint on both sides of the
states and focusing on the subsystem.

2.4 Measurement

In this section, we discuss measurements to quantum systems. Measurement
to a quantum system is an essential tool to extract classical information
from the quantum stateE] If a measurement is performed, the measurement
outcome is obtained probabilistically and it also disturbs the state of the
system. Therefore, to model the measurement, it needs to describe both of
the probability distribution and the change of the state.

Given a set ) of measurement outcomes, consider describing a measure-
ment by a set of maps kg := {k,, : w € Q} such that the probability to obtain
w € Qis Trk,(p) and the resultant state is (1/Tr ky,(p))ke(p). Similarly to
the conditions for quantum operations, the maps {x,, : w € Q} should satisfy
the following conditions.

Condition 1 k,, are linear maps.

Condition 2 &, are completely positive (CP) maps.

IExtracting classical information is important because all the information recognizable
by humans is not quantum states but classical information.
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Condition 3 ) _,Trk,(p) = 1.

we

The set of maps «,, that satisfies the Condition 1, Condition 2, Condition
3 are defined as an instrument.

Definition 2.4.1 (Instrument kq). A set kg = {kw : w € Q} of linear
CP-maps is called an instrument if >k, is TP-CP map.

The last postulate of quantum information theory is given as follows.

Postulate 4 (Measurement). Any measurement is described by an instru-
ment kq := {k, : w € Q}. When a measurement kq is applied, the probability
to obtain w € Q is Tr k,(p) and the resultant state is (1/ Tr Ky (p))kw(p).

If our interest is only the probabilistic distribution of the measurement
outcome, it is enough to treat positive operator-valued measurement (POVM).

Definition 2.4.2 (Positive Operator-Valued Measurement (POVM) Mj).
A set of matrices Mg == {M, € M(H) : w € Q} is called a POVM on the
quantum system H if

ZTrprzl and M, >0 for any M, € Mq.

Given a state p and a POVM M = {M,, : w € Q} on H, the probability
for obtaining w is Tr pM,,.

2.5 Measures of Difference of Two States

In this section, we introduce two measures for difference of two states, fidelity
and entanglement fidelity.

2.5.1 Fidelity
Fidelity is defined as follows: for any two states p; and py on H,

F(pr, p2) = [[Vorv/ealli = Te [y/p1/pa]
Theorem 2.5.1 ([3]). For any two states p1 and py on H,

F(p1, pa) = max{|{ui|uz)| : |u1), |us) are purification of p1, p2}-

Corollary 2.5.1. Let p; and py be states on Ha. Given a purification |z)
of p1, there exists a purification |y) of ps such that

F(pr, p2) = [{zly)| = (zly).
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From the above corollary, several useful properties of fidelity are derived.
Corollary 2.5.2 (Properties of fidelity). 1. (Symmetricity) F(p,o) = F(o,p).

2. (Range of fidelity) F(p,o) € [0, 1]

3. (Mazimum condition) F(p,o) =1 if and only if p = o.

4. (Monotonicity) F(p1,p2) < F(k(p1), k(p2)) for any TP-CP map k.

2.5.2 Entanglement Fidelity

In many contexts of quantum information theory, it is important to measure
the difference of the states before and after applying quantum operation k.
For this reason, the measure F. is defined as follows as a measure of the most
destructive operation including k.

Folp. k) i= min F (e @ k), (5 @ k)5

PRR

= mjnF(ﬁ, (k® [/R)ﬁ>
o

= F(\:c)(a;\, (k@ LR)<|w><xl>)

where p is an extension of p and |z)(z| is a purification of the state p. From
this reasoning, entanglement fidelity is defined as follows.

Definition 2.5.1 (Entanglement fidelity). Given a CP-map k: Ha — Ha,
for any purification x of p, the following is uniquely defined and called en-
tanglement fidelity:

Folp. k) 2 F(la)al, 5 @ (o) @)))
= V/{alw ® (@) (el

= /Z|TrEjp\2. (2.1)

where {E;} is Choi-Kraus representation of k.
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Proof of (2.1).
(z]r @ er(lz)(z])|z) =Tr £ @ ep(lz)(])|z)(z]
ZZTF(Ez' ® Ig)|x)(z|(E] ® Ir)|z) (x|

— Z(Tr(E;‘ ® Ig)|x)(x|)(Tr(E; @ Ig)|z)(z|)
- Z 1} Efp Er E:p
= Z(El" Eip)* rgr Eip

:Z@r&pﬁ

The square of entanglement fidelity is convex with respect to states.

Theorem 2.5.2 (Convexity of squared entanglement fidelity with respect to
states). F2 is convex with respect to states:

F2(\p+ (1= No, k) < A2 (p, k) + (1 — \)F2(0, k).

Proof. Note on FZ(p, k) = .| Tr Ejp|>. Since 2 and || are convex and
trace operator is linear, F2(p, k) is convex with respect to p. ]

Convexity of squared entanglement fidelity implies Corollary [2.5.3|

Corollary 2.5.3. Let p be any state on H. There exists \g > 0 and o € S(H)
such that

1= F(pmix, ) = o(1 = FZ(p, ) + (1 = Xo)(1 = FZ (0, K)). (2.2)
Proof. Let p is diagonalized as p = ). p;|u;)(u;|. The values A\g < 1/(d -
max; p;) and o = >, q;|w;)(u;| for ¢; == —Xo/(1 — Xo)pi + 1/(d(1 — Ao))
satisfy the inequality (2.2)). O

Corollary implies that if 1 — F2(puix, k) is close to 0, 1 — F2(p, k) is
also close to 0 for any state p. Therefore, the invariance of arbitrary states
by k can be evaluated by that of the completely mixed state pyi. This fact
is important in the error analysis of quantum network codes in Chapters
and [l

Moreover, squared entanglement fidelity can be evaluated with the special
bases called mutually unbiased bases.
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Definition 2.5.2 (Mutually unbiased basis). Two orthonormal bases {|e;) }
and {|u;)} of Hilbert space H are called mutually unbiased if and only if

1
[(eilui)| = ﬁ

Given mutually unbiased bases By = {|e;)} and By = {|u;)} of H, consider
two maximally entangled states on H ® H.

L, o
@) = Z E‘@Hei)? |®y) = Z C—Z’Uiaui%

and projections

P = Z lei, €)ei, &, P = Z i, W) (i, Us|

3 K3

By a change of basis matrix F := _, |u;)(e;|, we have the relations |®,) =
(F @ F)[®1) and Py = (F © F)|®1)(D:|(F @ F)*.

Theorem 2.5.3. The following properties hold for the above maximally en-
tangled states and projections.

1. &1 = ®y. Thus, define ¢ := ¢ = .

2. PPy = |D)(P|.

3. H(I-P)+(I-P)<I-PPB<(I-P)+{-P).
Proof. 1. (®1]|®y) = 1.

2. Simple calculation.

3. (right inequality) (I — P;)(I — P,) > 0.

(left inequality) Since P, and P, are orthogonal projections, P, — P, is
Hermitian and diagonalizable. Therefore, (P, — P»)? > 0 holds and it
proves the left inequality.

m

The above proposition implies the following theorem for bounds of en-
tanglement fidelity.

Theorem 2.5.4. For ¢ = 1,2, define the error probability with respect to
the i-th basis by & := 1 — Tr P,k @ 1(|®)(P|). Then, the above proposition
implies

1
5(51 +52) S 1-— Fg(pmix,li) S (51 + 52)

18



Proof. From F?(puix, ©) = Tr|®)(®|x @ 1(|]P)(®|), we have the theorem by
applying the above proposition. O

Corollary 2.5.4. & + & — 0 if and only if 1 — F2(pmix, &) — 0.

2.6 Quantum Information Measures

Definition 2.6.1 (von Neumann entropy). For a state p on H 4,
H(p) = Tr plog p.
Definition 2.6.2 (Quantum mutual entropy). For a state p on Hapg,
L,(A; B) = H(pa) + H(ps) — H(p).
Definition 2.6.3 (Quantum entropy exchange).
H.(p, k) = H(k ® o(|z)(z])).
Theorem 2.6.1 (Quantum Fano’s inequality). Given p € S(H)
He(p7 ’i) < h(Ff(pv K)) + (1 - Fe2<lo7 ’{)) 10g(d2 - 1)
where d = dimH.

2.6.1 Leaked Information

Suppose a set of input states W := {p,} is generated with the probabilistic
distribution p = {p,}. In this case, the composite state of quantum states
and classical probabilistic distribution can be written as

P=> Dupa @) (| € S(Har).

If a quantum operation « is applied to the state p, the leaked information
about x by the quantum state p, is measured by mutual information I(p, W):

I(p.W) = 1,(A: ) = (KE(prpz)) > et ()

Since H.(p, k) = H(kg(D_, pep.)) in our choice of p, we have the inqualities
1(p, W) < Ha(p,) < B(F2(p, 5)) + (1 — F2(p, ) log(d® — 1),

where d is the dimension of the input system of x and the second inequality
follows from quantum Fano’s inequality.
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Chapter 3

Secure Quantum Network Code
on Unicast Network

In this chapter, we construct a secure quantum network code.

3.1 Quantum Network and Attack Model

We give the formal description of our quantum network which is defined
as a natural quantum extension of a classical network. The information
rates related to network transmission and malicious attack are summarized

in Table B.11

3.1.1 Network Structure and Transmission

We consider the network described by a directed acyclic graph Gy = (V, E)
where V' is the set of nodes (vertices) and E is the set of channels (edges). The
network GG has one source node vy which has mg outgoing channels and one
sink node v.;; which has m( incoming channels. The nodes, which are not
source or sink, are called intermediate nodes and denoted as vy, vq, ..., .
where ¢ := |V| — 2 according to the order of the information conversion.
An intermediate node v; has the same number k; of incoming and outgoing
channels where 1 < k; < mg. For convenience, we define kg = k.1 := my.
The transmission on the network Gy is described as follows. Each chan-
nel transmits information noiselessly unless the channel is attacked, and each
node applies information conversion noiselessly at any time. At time 0, the
source node transmits the input information along mg outgoing channels.
At time t where 1 < t < ¢, the node v; applies information conversion to
the information from k; incoming channels, and outputs conversion outcome
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Table 3.1: Definitions and notations

mo Network transmission rate

my (< mo/2) Maximum number of attacked channels
me (< my) The number of the attacked channels
H Unit quantum system

q Dimension of H (prime power)

n Block-length

H Extended unit quantum system

o Dimension of extension

q Dimension of H’

n' Block-length with respect to H'
HE:ZZle Code space with block-length n

(™) Code protocol with block-length n
|z)y, (x € F, (Fy)) | Bit basis element of H (H')

12), (2 € F, (F,)) | Phase basis element of H (H')

along k; outgoing channels. After time ¢, the sink node receives the output
information from the mg incoming channels. The details of the transmit-
ted information and information conversion are described in the following
subsections.

The my outgoing channels of the source node are numbered to 1,...,myg
and after the conversion in the node vy, the assigned numbers are moved from
k; incoming channels to k; outgoing channels.

3.1.2 Classical Network

To explain our model of the quantum network, we consider the classical case.
When we use the channel only once, each channel transmits one symbol of the
finite field F,. Hence, the information at each time is described by the vector
space ;0. We assume that the information conversion at each intermediate
node is an invertible and linear operation. That is, the information conversion
at intermediate node v; is written as an invertible k; x k; matrix A; acting
only on the k; components of the vector space Fy*. Therefore, combining all
the conversions, the relation between the input information z € Fy* and the
output information y € F" can be characterized by an invertible mg x mq
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HE

Figure 3.1: Transmission and operation at the intermediate node v; in quan-
tum network by using the network n times. Both p and L(A;)pL(A;)" are
density matrices on H&k X",

matrix K as
y= Ku.

We extend the above discussion to the case of n uses of the network, i.e.,
each channel trasmits n symbols of F,. We assume that every intermediate
node v; applies the matrix A; n times. When the input and output infor-
mations are written as mgy X n matrices X and Y, respectively, we have the
relation

Y =KX, (3.1)

Next, we discuss the case where Eve attacks m, (< my) channels. Since
all the node operations are linear, there is a linear relation between the
information on each channel and output information. That is, there are m,
vectors wy, . .., Wy, in Fj' satisfying the following condition: when Eve adds
the noise z1,. .., 2y, € F} on the m, attacked channels, the relation is
changed to

Y =KX+ wpz =KX+WZ, (3.2)
=1
where W = [wy, ..., wy,,]and Z = [21,..., 2,,] . Here, the vectors wy, ..., wy,,

are determined by the network topology and a linear operation on each node.
For the detail, see [20, Section 2.2]. Even when Eve chooses the noise depen-
dently of the input information, the output Y is always written in the form
while Z might depend on X. That is, the noise is given by the subspace
We @ By, where We is defined as the subspace spanned by columns of .

3.1.3 Quantum Network

We consider a natural quantum extension of the above classical network.
Each single use of quantum channel transmits a quantum system H of dime-
nension ¢ spanned by {|7)}.er,. In n uses of the network, the whole system
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to be transmitted is written as H®"0*" spanned {|X);} y gmoxn. To describe
q

the node operations, we introduce the following unitary operations called

quantum tnvertible linear operations

Definition 3.1.1 (Quantum Invertible Linear Operation). For an invertible
m X m matrix A and an invertible n X n matriz B, two unitaries L(A) and

R(B) are defined as
L(A)X)y=|AX)p, R(B)|X)o=|XB)y, for anyXeF ™"

Node v; converts the information on the subsystem H®¥*" by applying
the unitary £(A;). When there is no attack, the operation of the whole
network is the application of the unitary £(K).

Next, consider the malicious attack when the maximum number of the
attacked channel is m; over n uses of the network. To describe the network
transmission where Eve attacks m, (< mj) quantum channels in n uses of
the network, we introduce the following assumption and notations. Assume
that Eve possesses a large quantum system #,y,. Denote the set of attacked
channels as E4 = {eq1,...,€am,} C E. The quantum systems possessed
by €415 - - - s €qm, are spanned by {|zT>b}z€Fg and denoted by Ha 1, - - Hamas
respectively. Define a function 7 : {1,...,m,} — {0,..., ¢} so that the input
nodes of the edges €41, ..., €am, AT€ Vr(1), - .., Vr(m,), respectively. Moreover,
define O; == {i € {1,...,my} | 7(i) = t} for t = 0,...,c. Then, Hp, :=
®ico, Ha,i denotes the quantum system of channels attacked at time ¢ by the
discussion below.

The transmission on our quantum network with m, channel attacks is
described by the iteration of the following process from time ¢t = 0 to t = c.
At time ¢, after node v; applies the node operation £(A;) on the quantum
system H®% <" of k; incoming channels (no operation if ¢ = 0), the quantum
system H®**" is sent through outgoing k; channels. Among the k; outgoing
channels, the channels e,; with ¢ € O, are corrupted by Eve’s arbitrary
operations on Hp, ® Hyy, and then the corrupted quantum systems arrive at
the next nodes. Eve’s operations can be any trace preserving and completely
positive (TP-CP) maps, measurements or both. It can also be adaptive on the
previous measurement outcomes and Eve is assumed to know the topology of
the network and the node operations in the network. After all of k; systems
arrive at the next nodes, the process at time ¢ ends.

3.2 Main Results

Our code is a pair of an encoder and a decoder and it is constructed without
any knowledge of the network: the node operations £(A;), network operation
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L(K) nor the topology of the network. In the following, we use the given
quantum network n times, i.e., the block-length is n.

Main Idea in Our Code:  Our quantum code is designed based on the
classical network codes in [9] [I§] which correct malicious injection by finding
the subspace of injection from the received message and then recovering the
original message from the information not in the injected subspace. In the
analysis of our code, we reduce the correctness of our code to that of two
classical codes with respect to bit basis and phase basis. In that reduction,
our quantum code is sophisticatedly defined so that the two classical codes
are similar to the codes in [9, [18]. A difficult point in this reduction to the
classical codes is that the accessible information from the network output
state is restricted since measurement disturbs the quantum states, whereas
the classical codes [9, [I8] have access to all information of the network output.
Our code circumvents this difficulty by attaching to the codeword the ancilla
whose measurement outcome contains sufficient information for finding the
subspace of injection.

Main Results:  First, we present the coding theorem with use of the secret
shared randomness of negligible rate. The shared randomness between the
encoder and the decoder plays a crucial role in our code. The results are
stated with respect to the entanglement fidelity for the quantum protocol
k™, a purification |z) of the state p and the identity operator ¢z on the
reference system. Here, the quantum protocol ™ is the combination of
the encoding, network tranmission with attack and the decoding, and it is
formally defined in Section [3.5. The completely mixed state is denoted as
Prmix-

Theorem 3.2.1 (Quantum Network Code with Negligible Rate Secret Shared
Randomness). Suppose that the operation of the whole network is the applica-
tion of the unitary L(K) of an invertible matriz K € Fy*™° and at most m,
channels are attacked over the entire uses of the network. When my < mg/2
holds and the sender and the receiver can share the secret randomness with
a negligible rate in comparison with the block-length n, independently of the
wnvertible matrix K, there exists a sequence of quantum network codes which
implements the quantum transmission TP-CP map ™ from ’HEZZIG to itself
where lim,, ,o,(1/n) - log, dim ’ngée = mg — 2my holds and the entanglement
fidelity F2(pumix, &™) satisfies lim, oo n(1 — F2(pmix, £™)) = 0. O

Notice that this code depends only on the rates my and m;, and does not
depend on the detailed structure of the network. Section [3.4] gives the code
realizing the performance mentioned in Theorem [3.2.1} In Sections 3.5 and
[3.6] it is proved that the code given in Section satisfies the performance
mentioned in Theorem [3.2.11
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Indeed, it is known that there exists a classical network code to transmit
classical information securely when the number of attacked channels is less
than a half of the transmission rate from the sender to the receiver [16].
Although Theorem [3.2.1| requires secure transmission of classical information
with negligible rate, the result [I6] mentioned that such secure transmission
can be realized by using our quantum network in bit basis states with the
negligible number of times. Hence, as shown in Section [3.7], the combination
of the result [16] and Theorem yields the following theorem.

Theorem 3.2.2 (Quantum Network Code without Classical Communica-
tion). Suppose that the operation of the whole network is the application of the
unitary L(K) of an invertible matriz K € F;**™ and at most my channels
are attacked over the entire uses of the network. When my < mg/2, indepen-
dently of the invertible matrixz K, there exists a sequence of quantum network
codes which implements the quantum transmission TP-CP map ™ from
H o itself where lim,, o (1/7) - log, dim H = mg — 2my holds and the

code code
entanglement fidelity F2(pumix, &™) satisfies lim, oo n(1 — F2(pmix, 6™)) =
0. 0J
Connection to Code in [8] :  The quantum error-correcting code in [§]

asymptotically corrects arbitrary errors when the number of errors is less than
a half of the code length. Therefore, if the network consists of parallel mg
channels (i.e., £(K) is the identity operator), the code in [§] can be applied
to our network. However, if £(K) is not the identity, the code in [§] cannot
be applied because even one network channel attack might corrupt all my
network outputs by error propagation. In this sense, our code generalizes the
result in [§], but instead, we employ the secret shared randomness between
the encoder and the decoder. As mentioned above, however, we can share
the secret randomness necessary for our code without losing any asympototic
rate by attaching the protocol in [16].

3.3 Preliminaries

3.3.1 Phase Basis

We discuss the operation on the phase basis {|2),}.cr, defined as [17, Section
8.1.2]

1
Z> — w—tr(xz)|x b,
| p \/a Z >

z€lFg
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where w := exp (27i/p) and try := Tr M, (y € F,) with the multiplication
map M, : v — yx identifying the finite field F, with the vector space IF;.
The following Lemma shows the application of the unitaries £(A) and
R(A) to the phase basis states, and is proved in Appendix A.

Lemma 3.3.1. When A € F;"™™ and B € Fp*" are invertible matrices, any
M € F"™" satisfies

LA)M), =|(A1)M),, R(B)|M), = [M(B')™),.

We use notation [C], := (C~1)" = (CT)7! for an invertible matriz C.

3.3.2 Extended Quantum System in Our Code

In our code, the extended quantum system #H’, described below, is con-
sidered as a unit quantum system of encoding and decoding operations.
Dependently of the block-length n, we choose an integer o such that o
and the power ¢’ := ¢* of ¢ satisfy the conditions lim,,_,., a/n = 0 and
limy, oo - (n/)™0/(q')™0 ™™ =0 (e.g. @ = [(1+(2+m1)/(mo—m1))log, n])
where n = n’a. We identify the system H' := H®* with the system spanned
by {|z)s}zer,. Then, n uses of our quantum network can be regarded as
n’ uses of quantum network over the quantum system H’. Similarly to the
system H, for invertible matrices A € F;*™ and B € F", two unitaries
L'(A) and R'(B) are defined as

ﬁl(A)|X>b=|AX>b7 R/(B)|X>b:’XB>b, for any X GFZ}X”.

Lemma is also satisfied for £'(A) and R'(B).

3.3.3 Notations for Quantum Systems

By n uses of the network, the quantum system H®™0X™ = (H/)&moxn’ jg
transmitted. We denote

(Hl)®’m0><’n’:7_[i4 ® H;g ® Héj — (Hl)®mo><m0 ® (Hl)®m0Xm0 ® (Hl)®m0><(n/—2mo) )

Moreover, for X € {A,B,C} and (my, mg, me) := (mg, mg,n’ — 2my), we
define

H;{ _ {)(1 ® HIXQ ® H;{g — (Hl)®m1><mX ® (H/)®(m0—2m1)><mx ® (Hl)®m1><m;<.
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The tensor product state on H% of |¢) € H'yy, [t) € Hlyo, and |p) € Hys is
denoted as

)
1) | = 10) @) @ [p) € Hiy.
)

The bit or phase basis state of block matrix is denoted by

X | XD X XD
Y >:: Y | Y > = [Y)p |,

Z |Z>b Z |Z>p

where (X, Y, Z) c F;nlxmx > F((Imo—2m1)><mx x IF;nlme,
On the other hand, 0y, denotes the & x I zero matrix in F;*! and [i, j) :=
1) @ 15)-

3.3.4 CSS code in our quantum network code

In our code, we employ CSS code described in this subsection. Define classical
codes C,Cy C FZ}OX(n —2mo) by

Om1 n'—2mg , , /
Cl — X, c FZ,LO X (n'—2my) X2 c F((]fnonml )x (n'—2mg) : X3 c FZ/“ X (n'—2my) :
X3

X4
02 ::{ X2 GFZ/LOX(n_sz) Xl EFZ,LIX(”_2mO), XzeFl(;no—%nl)X(n —2m0)}.

_0m1 ,n'—2mg |

Classical codes Cy and Cy satisfy C; D Cs-. For any coset [M;] € Cy/Cy
containing M € Ff;nofzml)x(" ™) define a quantum state |[M;]), € HL by

0m1 n'—2mg |0m1 ,n’72m0> b
M, +Y ) = | Mi)s
b

1
M)y =
e =i &

YEC; Om17n/_2m0 |0m1,n’—2m0>p
With the above definitions, the code space is given as 'H((:Zée = Heoy =
(H)@lmo=2m)x(n'2mo) and a state |¢) € H'") is encoded as
|Om1,n’—2m0>b
|6) € He.

|0m1,n’—2mo>p
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3.4 Code Construction with Negligible Rate
Secret Shared Randomness

Now, we describe the quantum network code with the secret shared random-
ness of negligible rate. In our code, the encoder and decoder are determined
by secret random variables SR = (Ry, V) and Ry. These random variables
are chosen uniformly and independently satisfying the following conditions:
the random variable Ry = (Rayp, Ra,) € Fé?lo*ml)xmo X F;?lofml)xmo consists
of two random matrices Ry, Ry, of rank my — my, the random variable
V = (Vi,..., Vam,) consists of 4mg random variables Vi, ..., Vi, € F,, and
the random variable Ry € Fgfoxmo is an mg X mg invertible matrix. Before the
encoding, the random variable SR is shared between encoder and decoder,
and Ry is owned by encoder. Note that the size of the shared secret random
variable SR is negligible with respect to n.

Depending on the secret random variables SR and Ry, the encoder £5F-fo

is defined as an isometry quantum channel from "Hiz)de to

H@moxn — (H’)@)moxn/ = H./A &® H;; ® Héj

Depending on the secret shared random variable SR, the decoder D% is
defined as a TP-CP map from H®™*" to H™ | We give the details of the

code”
encoder £9%%0 and the decoder D% in the following subsections.

3.4.1 Encoder &5
(n)

code*

We give the encoding operation when the input state is a state |¢) € H

Encode 1 (Check Bit Embedding) Encode the input state |¢) by

an isometry map Ui : H") — H', @ H'y @ M), defined as

R 0m1,m0 RQ |0m1,n’—2mo>b
o)=Ue = . Vel Vel o |
2,b 0

b mi1,mo | Oy ,n’72m0>p

p

Encode 2 (Vertical Mixing) Encode |¢;) with the unitary map
L(Ry) = S gt [RoX)(X] s

|62) 1= L (Ro)|¢1) € Hy @ Hp @ He.

Encode 3 (Horizontal Mixing) From the shared randomness V', de-
fine matrices Ql;i,j = (‘/])l, QQ;i,j = (Vm0+j>i for 1 <1 < n’—2m0,
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1 <j < mo, and Qs = (Vamg+s)'s Quiij 1= (Vamo+y)' for 1 <i <mg and
1 < j < mgy. With these matrices, define the random matrix R} € Fo X
as

Imo Omo,mo Om0 ,n'—2mg
Vo ._ T
Rl = Q3 Q4 ]mo Omo,n’—Qmo
On’—Qmo,mo On’—?mg,mo In’—Zmo
Imo Omo,mo Omo ,n'—2mg
T
Ommmo I mo QZ
_On’—QmO,mo On’—ZmU,mo [n’—2m0
I mo Omo MO Omo ,n'—2mg
’ Omo,mo Imo Omo n'—2mo |

| Ql On’72m0,mo In’meo

where I; is the d-dimensional identity matrix.
Encode |¢;) with the unitary map R/(R}) := Y | XRY)(X] as

[63) == "R'(RY)|¢2) € Hi ® Hpg @ He.

Therefore, the encoder £57:70 is the isometry map written as

B0 oy s RI(RVVL (Ro)UT2|¢) € H @ Hp@H.

3.4.2 Decoder D

We give the decoding operation when the input state is a state [¢p) € H™*" =
"W Hy @ He.

Decode 1 (Decoding of Encode 3)  Construct (R)~! from the

shared randomness V = (Vi,..., Vin,) as
]mo Omo,mo Omo,n’—Qm
Vy—-1._
(R1> T Omomm Imo Omovn’—Qm(
_Ql On’—2m0,m0 [n’—2m0
Imo Omo,mo Omo,n’—Zm
T
Omo,mo [mo _QQ
_071’72m0,m0 On’72m0,m0 In’meo |
[mo Omo,mo Omom’—?mo
T
Y3 Q4 [mo Omo,n/me .
n 1_9 n /_9. T /_9.
7 0,110 1T —z10, 11ty =2y ]
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The unitary map R'(R})" = Y | X (RY)=1)(X]| is the decoder for

the encoder R'(RY). By applying R'(RY)T, the state |¢) is decoded as
[r) == RI(RY)0) € iy @ Hy @ He.

Decode 2 (Error Correction) Perform the bit and the phase basis
measurements on the systems H’, and Hjp, respectively. The measure-
ment outcomes are denoted as Oy, O, € ]Fmoxmo With these measurement

outcomes, find the invertible matrices DgRi’Ob DR2’O” c IFZ}OX’"O as the so-
lutions to satisfy
A0 = | ). (3.3
R2,0, Ry,
Py, [D32"],0, = {0 2 ] : (3.4)
mi,mo

where Py, and Py, are projections to the subspaces W, W, C FZ,LO whose
1-st, ..., (my)-th elements are 0 and (mo—m+1)-st, ..., (mp)-th elements
are 0, respectively.

If the invertible matrix Df i’ob or DRQ’ ? does not exist, decoder ap-

plies no operation. Otherwise, apply the unitary maps L (Df Z’O”) and
£/(D O”) to the system H{ (if the solution Dfi’o” of (3.3) or DR2 O of
(3.4) is not unique, decide DRZ’Ob or DRQ’ P determmlstlcally depending on
Ry, 04, 0,). After applying E’ (D:}f v O”) and L'(D RZ’OP) Decode 2 outputs
the reduced state on Hp, = H)

code”
The above process 1n Decode 2 is summarized as a TP-CP map D, from

H, @ iy @ He to H

code

Ro, Xp, X Ro, Xp, Xp
Dy([hn) () = T, D D oy (D571,

Xb,XpeFZ}OmO

RZ:)@ D

where the matrix px, x,|¢,) and the unitary Dy are defined as

PxoXpltn) = T [W01) (1] (1K Do (K] ® [ X3 (K] ® L),

DI i (D) (D).
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Therefore, the decoder D% is a TP-CP map written as

DE([y) (1)) = Do (R (RY) ) (W|R/(RY)).

Since the size of the shared randomness SR is sublinear with respect to n,
our code is constructed with a shared randomness of negligible rate. More-

over, since the dimension of the code space H™) is (¢)(mo=2mu)(n'=2mo) —
q(mo 2m1)(n—2amop)

code
) and « is taken as to satlsfy lim,, oo a/n = 0 in Section

3.3.2 the code rate is mg — 2my, i.e., lim,_ oo = - log, dim ’Hcode =mg — 2m;.

3.5 Correctability of Our Code

For analysis of the correctability of our code, we consider the situation that
the authorized sender, Alice, sends quantum information to the authorized
receiver, Bob, through the quantum network with the existence of Eve who
attacks the network. To keep security from Eve’s attack, Alice and Bob
communicate using the secure quantum network code introduced in Section
3.4

Let I' be the TP-CP map of the given quantum network with malicious
attacks. If the encoder and the decoder are defined as a probabilistic mixture
by the uniformly chosen random variables SR and Ry, the entire protocol is
written as

§ |
s (p) = Y Dol o &5 (),
SR,Ro

where N is the size of the random variables written as N := (¢/)*™ +2-|{X €
]F((;nofml)xmo | rank X =mg — my }| + {Ro € F;°"™ | Ry is invertible}|.

The correctability of the transmission is evaluated by the entanglement fi-
delity Fo(pmix, /<a )) for the channel x™ with respect to the completely mixed

state ppix on H™ which is defined by

code7
F2(pmis, £) = (@[50 @ 15 (|®)(])|P),

where |®) := —,)m ZMGF’” |M, M), and m := (mg—2my) x (n'=2my). This

value is evaluated by

L= F2(pmix, 6) =1 — (@[ @ 1p(|) (@])| )

—Tr s © 1(|2) (@) (I — B,F) (3.5)
< T K@ (|8 (@) (I— P+ Tr 695 05(|D) (®]) (= P).
(3.6)
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where Py := 37/ com |M, M)y (M, M|, P, := 37 com | M, M),,(M, M|, and
| M), is complex conjugate of |[M), € H = (H)®™. Eq. 1} holds from

code
P,P, = |®)(®| proved in Lemma [A.2.2|
We show that the first term Tr ™ ® tz(|®)(®|)(I — P,) of (3.6)) is the bit
error probability which is defined as the average probability that the bit basis

state | M), € ngzie is sent but the bit measurement outcome on the protocol

output is not M. For a bit basis state |M), € #H™ | we have

code’
Tr( Py 0@ (| MM )y (MM |)) = o M || M )y M) | M ).

Since the entangled state |®) is a superposition of bit basis states |i, %)y, the
bit error probability is given as the first term Tr ™ @ 1z(|®)(®|)(I — P,) of

(3.6). Similarly, since the entangled state |®) is given as the superposition
H

of the phase basis state |i,4), (see Lemma 1), the second term Tr x™ ®
tr(|@)(P|)(I — P,) of is the phase error probability defined in the same
way as the bit error probability. Therefore, we can bound the entanglement
fidelity as

1 — F2(pmix, 5™) < (bit error prob.) 4 (phase error prob.).

As shown in the next section, the bit and the phase error probabilities are
upper bounded by O(max{ L ﬂ}) That is,

7 @y

1 (n)mo
1= F (o) < O(max{ 3 )
(p ) - q/ (q/)mo—ml

Since ¢ is taken to satisfy lim,, %

= 0 in Section |3.3.2| and this
implies lim,,_,o, /¢’ = 0, the protocol satisfies lim,, oo 7(1— F2(pmix, £™)) =
0. Hence, our proof of Theorem [3.2.1] is completed.

Remark 3.5.1. Since the bit and phase bases are mutually unbiased bases,
the evaluation in this section is a special case of Corollary[2.5.3 and Theorem
2.0, 9.

3.6 Bit and Phase Error Probabilities

In this section, we bound separately the bit error probability and the phase
error probability. Throughout in this section, we assume m, < m; < mg/2.
For notational convenience, for any integer k and any matrix X € F];,X” , We
denote
X — (X.A XB XC) c ]Fkao > IE‘kao % ]Fkx(n’—Qmo)
Y ) q/ q/ / .

q
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3.6.1 Application of the Protocol in Bit Basis

We first calculate the bit error probability. Assume that the input state is a

bit basis state [M), € H™).. When Alice sends E5-Ro (| M), (M|) over the

network, Bob receives the state preceive := I' 0 EFFE(|M)y(M|) on H/y ®
L& Hh,

Note that the bit basis measurement on H'y ® Hz ® H; commutes with
the decoding operation D%%. That is, applying the quantum decoder D%
and then performing the bit basis measurement on ’H((Zzgie is equivalent to
performing the bit basis measurement on H',@Hz®H,> and then applying the
classical decoding corresponding to the quantum decoder D5%. Therefore,
we adopt the latter method to calculate the bit error probability.

After preceive 1S received, perform the bit basis measurement on H'y ®

5 ® Hp and denote the measurement outcome as a matrix Y € IB‘Z?OX”,.

From ([3.2)), Y is written as
Y =KX+ W, (3.7)

where K € IE'Z?OX"LO and W € IFZ}OX”’ are matrices equivalent to K € [Fjox™o
and WZ € F;o*™ in (3.2)) by field extension, respectively, and X’ := Ry X R} €
]FZ}OX", for X € IFZ?OX"/ defined with some matrices F; € ]F;tno_ml)xmo,

By € F™ and By € Fip' "m0 by

Omhmo Ev Oml,n’—2m0
X=1 p g7 M : (3.8)

On the other hand, the decoder decodes Y to
Y= D PY(RY)™ = DEP(KRX + W(RY)™).

If the original message M € F is contained in Y, the decoding

succeeds. We calculate the probability that [M T, EJ]T € F g?lo*ml)x(nqmo)
in the rightmost block matrix of (3.8)) is recovered instead of M. Then, the
decoding success probability is lower bounded by this probability.

(mo—2m1) x (n'—2m)
q/

3.6.2 Existence of Recovery Map (bit error)

In this subsection, we show that there exists a recovery map to the original
message M if we assume

Im K Rolw, NTm W = {0,,,.1}. (3.9)
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If ( . ) is assumed, a map D, : Im K Rolw, & ImW — ]Fmo can be defined
which is an inverse map of K Ry for the vectors in Im K R0|Wb and a map
into W;- for the vectors in Im W. Then, for any = € W, and any r € IF

have PWbDb(KROx + Wr) = z. Therefore, for any M € Fétno le)x(n Qmo)

m1 X ( n’ —2myg)

and any Fs € F, , the map D, recovers the original message M as

(P, DoY (RY)™1)¢ =Pw, DyY ((Ry) )¢
N 0m1,n’—2m0 B
=Pw, Dy | KRy M + W ((RY)™H°
E;
Oml,n/meQ
= M . (3.10)
E3

On the other hand, Eq. (3.9)) holds with probability at least 1 — O(1/¢)
as follows. It is shown by the following Lemma applied with V = F°,
W =ImW, and R = ImKR0|Wb In this case, n; = rank W < my < My

from rank W < rar~1k WZ <rankW < m, < mq, and ny, = rank KR0|Wb =
mgo — my because K, Ry are invertible and dim W, = mg — m;. Therefore,

im W—m1— 1
Pr[B9)] =1 - 0((q')d W=m 1) >1-— 0(?) (3.11)
Lemma 3.6.1. For integers ng > ny + ng, we fix an ng-dimensional vector
space V over Fy and an n;-dimensional subspace W C V, and randomly
choose an no-dimensional subspace R C V with the uniform distribition.
Then, we have

PrWNR = {0}] = 1 — O(gn+m=—mo=1),

Proof. The probability Pr))V N R = {0}] is the same as the probability to
choose ny linearly independent vectors so that they do not intersect with R.
Therefore, we have

PR = {0y = [T 0] [Co ] [

qno no __ ql no __ qn2—1
-1 O(qn1+n2_n0_1).
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3.6.3 Discoverability of Recovery Map (bit error)

In thls subsection, we calculate the probability that the Solutlon DR2 O of
is a recovery map. Throughout this subsection, we assume holds
i.e., a recovery map exists.

Since the bit measurement outcome Oy in Decode 2 is (Y(RY) )4 =
Y((RY) )4, Eq. is written as

RO [ 10 0 1,mo T vy—1yA4 ) _ [Onimo
e e R S B L R O
If it holds that
rank(f(R [O'Emo]—i-W((Rv) ))—rankRg,b—i-rankVT/, (3.13)
2,b

the columns of f(Ro[OnTHmO, Ry, + W((RY) A span Im f(Rde @ ImW.
Therefore, if Eq. (3.13)) holds, the solution DRz % of satisfies (3.10))

with Dy = D?i Ob, i.e., the bit error is corrected. That is, the bit decoding
success probability is bounded as

(bit success prob.) = 1 — (bit error prob.) > Pr[(3.9)] - Pr[(3.13)|(3.9)].
(3.14)

In the following, we bound the probability when is satisfied,
by two steps.
Step 1:  First, we give one necessary condition for and calculate the
probability that the condition is satisfied. Since it holds that

rank <[~(R0 {0%127:0} + W((RY)A)A> < rank Ry + rank W ((R}))™1)A
| < rank Ry + rank W, (3.15)

the following condition is a necessary condition for :
rank W ((RY) A = rank W (3.16)

The condition (3.16) holds if and only if "W ((R})™)* # 0y, holds for
any r € IFZ,‘O satisfying 2" W # 0y,,. By applying the following Lemma [3.6.2
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to all (¢)™™ W vectors in {a W # 0y |z € F7°}, we have

= (n'—2mo\ """
PETDIET) 21 - () (2
e (T —2mg\ "™
>1—(q) 1( 7 0)
"\\mo
Sy )™
(¢')mo=m

Lemma 3.6.2. For n' > 3m,,
(n’—2m0>m0

max Pr[a" (R})™)* =04, < ,
q

0y v #2EFT

(3.17)

The proof of Lemma is in Appendiz[A.3

Step 2:  In this step, we calculate the probability that (3.13]) holds under the
assumptions (3.9) and (3.16). We introduce notations with column vectors
uy, vp € FJ°(k=1,...,mg) as

T Omhmo
[U,l, e ,umo] = KR[) |: R27b :| 5
[Ul’ s >Umo] = W((R}/)_I)A7
my := rank Ry, + rank W,
and define an injective index function i : {1,...,mo} — {1,...,mo} so that
rank(vi(l), ..., Vi(my)) = rank W. Note that the condition (3-13 holds if ma
vectors (1) +vi1))s - - - » (Ui(ma) + Vi(ms)) are linearly independent. Moreover,

the condition (3.9) guarantees that my vectors (u;1y + vi1)), - - -, (Uimg) +
Vitms)) are linearly independent if the following condition holds:

SINnS; ={0,,.}, (3.18)

where

u

sti={vem:

[Uz’(l), s ,Uz’(mz)]$ = Omo,l}a
st ={zemy:

[vi(l)a e ,Ui(mQ)]ZL’ = Omo,l}-

Then, we calculate the probability (3.18) holds. It follows from the defi-
nitions of w1, ..., Uy, V1, ..., Un, and the index function ¢ that

dim S} > my — rank[uiy, - - . , Uigmy)] > rank W,

dim SvL = My — rank[vi(1), . . ., Vi(m,)] = rank Rop.
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This implies dimS, + dimS," > my and therefore (3.18) holds only if
dim 8 = rank W. We calculate the probability (3.18)) holds by the following

relation:

Pr[([3.18)|(3-9) N B-16)] = Pr[(3.18)| dim S =rank W N B.9) N (3.16))]
- Pr[dim S =rank W N (3.9) N (3.16)].

Applying Lemma with (ng, W, R) := (mg, S}, St),

. 1
Pr[(3.18)| dim S; =rank W N (3.9) N B.16)] = 1 — 0(5).

Moreover, the following inequality is proved in Appendix [A.4}

~ 1
Pr[dim S;- =rank WN(3.9) N (3.16)] > 1—0(—/). (3.19)
q
Therefore,
1
Pr[(3.18)](3.9) N (3.16)] > 1 — O(?) (3.20)

To summarize, from the two probabilities derived above two steps, we
have

Pr{(E13)|E9)] = Pr|EI3) N G-10)| E9)
— Pr[B13)| B-16) N (B9)) - Pr{(E-16)|B-I)]
> Pr[(319)| (B-10) N (B9)) - Pr([(B-10)|B-9))

N\mo
(1 N (1
(q")mo=m q
1 N\mo
=1- O(max{—,, L})
q" (q)mo—m
Combining (3.11)), (3.14) and the inequality above, we have

(bit error prob.) <O (max { 1 M})

a’ (q/)mofml

3.6.4 Phase Error Probability

Since coding and node operations are considered as classical linear operations
even in the phase basis from Lemma [3.3.1] we can apply similar analysis to

the phase basis errors as bit basis errors in Subsections [3.6.1], [3.6.2] and [3.6.3]
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Consider the situation that a phase basis state |M), € Hgﬁée is encoded
and transmitted through the quantum network. As we analyzed for bit basis
states, we also perform the phase basis measurement first and then apply the
decoding process. When preceive is received, the phase measurement outcome

Y, on H'y ® Hy ® H{ is written similarly to (3.7)) as
Y, = [R]p[RO]po[RY]p + WI?
where W’ € IFZ,LOX”/ and

nl nlj
Xpi= |z || ] M € Frmoxn
2
Oml,mo 0m1,n’—2m0

for some matrices Ej € Fy"*™, Ej € Fgfno_ml)xmo, and B} € F?lx("/_zm()).
By the decoder, Y, is decoded to

v = (D5, (IR Ral, X, + WICRY) Y, ).

p 3,p
If we assume
Im[f(]p[RO]HWp NIm W' = {011}, (3.21)

there exists a recovery map from phase errors. In the same way as Subsection
we have Pr[(3.21)] > 1 —0O(1/¢).

For the map [D37;”’]p in 1) to be a recovery map, it needs to be satisfied
that

OmlymO

rank | [K],[Ro), + W/([RY];HA | =rank Ry, + rank W’ (3.22)

p

Applying the same discussion in Step 1 of Subsection to the phase basis,
we have

rank W’([RY];I)B = rank W', (3.23)

(n)

with probability at least 1 — (q,)m% by applying Lemma [3.6.3/to (¢/)™"* W
vectors in {z W’ # 0y |z € Foot.

Lemma 3.6.3. Forn' > 3my,

/_2 m,
max Pr[xT([RY];l)B:()LmO] < (w) g
on/71¢xewg,’

(3.24)



Proof. Proof is in Appendix O

Assuming (3.21)) and (3.23]), the condition (3.22)) holds with probability
at least 1 — O(1/¢’), in the similar way to Step 2 of Subsection [3.6.3]

From the probabilities derived above, in the same way as the bit success
probability, the phase decoding error probability is derived as

(phase error prob.)=1—Pr[(3.21))]-Pr[(3.23])|(3.21)]- Pr[(3.22)) | (3.21) N (3.23))]
()™ 1
<1 (1= g ) (1-0(3))
1 (nf)mo
:O<max {E, W})

3.7 Secure Quantum Network Code without
Classical Communication

In the secure quantum network code given in Theorem [3.2.1], we assumed that
the encoder and the decoder share the negligible rate randomness S R secretly.
The secret shared randomness can be realized by secure communication. The
paper [16] provided a secure classical communication protocol for the classical
network as Proposition [3.7.1]

Proposition 3.7.1 ([I6, Theorem 1]). Let q; be the size of the finite field
which is the information unit of the network channel. We assume the in-
equality c¢1 + co < c¢o for the classical network code where cq is transmission
rate from Alice to Bob, c; is the rate of noise injected by Eve, and cy is
the rate of information leakage to Eve. When qo := ¢{°, there exists a k-bit
transmission protocol of block-length ny == co(co — co + 1)k over Fy, such that

Py < k2 and I(M; E) =0,
q2

where P... is the error probability and I(M; E) is the mutual information
between the message M € F5 and the Eve’s information E. O

By attaching the protocol in Proposition as a quantum protocol, we
can share the negligible rate randomness secretly as the following proof of
Theorem [3.2.2]

Proof of Theorem[3.2.3, Since the protocol of Proposition[3.7.1]can be imple-
mented with the quantum network by sending bit basis states, the following
protocol implements the code satisfying the conditions of Theorem [3.2.2]

39



Given a block-length n, we choose the prime power ¢’ = ¢* such that o =
|3827 1§ o ¢/ /n® — 1. Hence, as the implementation of protocol in Theorem

lo
-gqvvlth the extension field of size ¢/, the sender and the receiver need to
share the secret randomness of 4mg + 2mg(my — my) elements of F,, Hence,
using the protocol given in Proposition with (co, c1,09) = (mg,my1, my),
the sender secretly sends the receiver k := [(4mo+2mg(mo—my)) log, ¢'] bits,
which is called the preparation protocol. To guarantee that the error of the
preparation protocol goes to zero, we choose the other prime power ¢, = ¢*2

such that ag = [%J i.e., ¢2/(logn)* — 1. Since k is evaluated as k =
[(4mo + 2mo(mo — my)) logy ¢'] = [ (4mg + 2mo(mg — my))[ 3222 | log, q] <

[3(4mo + 2mo(mo — my)) logy n], we have P.,.. < O( IOgQ") ) — 0. Also, the

preparation protocol requires the transmission of ny = mg(mg —my + 1)kas
elements of IF,. That is, ny is evaluated as

2log, log, n J

U Smo(mo —mq + 1) (3(4?77,0 + 2m0(m0 — ml)) ]0g2 n] . \\ log .
2

(3.25)

Then, we define ny := n — ny, which implies ny/n — 1. Finally, we apply
the protocol given in Theorem with n = ny, n’ ;== n;/a, and the above
chosen v and ¢/. Since the relation n;/n — 1 guarantees the condition

% — 0, this protocol realizes the required conditions. ]

3.8 Secrecy of our code

We mention that the condition n(1 — F?(puix, £™)) — 0 in Theorems
and guarantees the secrecy of the protocol. As explained in Section
the leaked information of a quantum protocol ™ is upper bounded
by entropy exchange H,(p,x™) := H(k™ @ tg(|z)(z])) = H(/ﬂg)(p)) as
follows, where |z) is a purification of the state p and /ﬁg) is the channel to the
environment. When the input state p, is generated subject to the distribution
Pz, the mutual 1nformat10n between the 1nput system and the environment is

given as H( (Z PaPz)) — D uDs ( " (ps)), which is upper bounded by
H (k™ > psz) By entanglement ﬁdehty7 the entropy exchange is upper

bounded as [4]
He(p, 6'™) < h(EZ(p, 6')) + (1 = EZ(p, 5'™)) log(d — 1)?

where h(p) is the binary entropy defined as h(p) := plogp+ (1 — ) log(1—p)
for 0 < p < 1 and d is the dimension of the input space of k™. Hence,
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when the mixture distribution is the completely mixed state pnic, because
d = dim Hézzle = O(q(mO_le)”) in our protocol, the condition

n(1 — F2(pmix, £™)) = 0

leads that the entropy exchange of the protocol is asymptotically 0, i.e.,
there is no leakage in the protocol. Thus, the asymptotic correctability
n(1 — F2(pmix, ™)) — 0 also guarantees the secrecy of the protocol in The-

orems [3.2.1] and B.2.2
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Chapter 4

Quantum Network Code for
Multiple-Unicast Network

In this chapter, we propose a multiple-unicast quantum network code which
implements resilient quantum communication.

4.1 Quantum Multiple-Unicast Network

Our code is designed as a quantum network which is a generalization of a
classical multiple-unicast network. In this section, we first introduce the
multiple-unicast network with classical invertible linear operations and gen-
eralize this network as a network with quantum invertible linear operations.
The node operations introduced in this section are identical to the operations
in Definition B.1.11

4.1.1 Classical Multiple-Unicast Network with Invert-
ible Linear Operations

First, we describe the multiple-unicast network with classical invertible linear
operations. The network topology is given as a directed graph G = (V, E).
The r senders and r receivers are given as r source nodes Si,...,.S, and
r terminal nodes T1,...,7T,. The sender S; has m; outgoing edges and the
receiver T; has m; incoming edges. Define m := mj; 4 - - - 4+ m,. The interme-
diate nodes are numbered from 1 to ¢ (= |V| — 2r) according to the order of
the transmission. The intermediate node numbered ¢ has the same number
k; of incoming and outgoing edges where 1 < k; < m.

Next, we describe the transmission and the operations on this network.
Each edge sends an element of the finite field F, where ¢ is a power of
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a prime number p. The ¢-th node operation is described as an invertible
linear operation A; from the information on k; incoming edges to that of
k; outgoing edges. Since node operations are invertible linear, the entire
network operation is written as K = A.---A; € F"™. For the network
operation K, we introduce the following notation:

Ky, Kip - K,
K2 1 K2 2 00 K2

K:=| 7 "7 T, Ky e Fmm
Kr,l Kr,? e Kr,r

Then, K ; is the network operation from S; to 7. We assume rank K, ; = m;
which means the information from 5; to T; is completely transmitted if there
is no interference.

When the network inputs by senders Sy,...,5, are ;1 € Fj", ... 2, €
Fy', the output y; € F* at the receiver T; (i = 1,...,r) is written as
T
Y; = Z Ki,jmj = Km.fl?z + Kiczi97 (41)
j=1
K;e ::[Ki,l . Ki,ifl Ki7i+1 Ki,r] c F;nix(mfmi)’
Zie i =[x] - x, 33'1'11 A L= F .

The second term Kjez;e of is called the interference to T}, and rank K.
is called the rate of the interference to T;.

Consider the n-use of the above network. When the inputs by senders
Sty Sy are Xy € F o0 X, € Fir™, the output Y; € Fj™ at the
receiver T; (i =1,...,7) is

Y, = Z Ki;jXj = Kii X; + KieZse,
j=1

Zie =[X{ - XL, Xl

T —m;
. Xr] EF(gm m)><n‘
4.1.2 Quantum Multiple-Unicast Network with Invert-
ible Linear Operations
We generalize the multiple-unicast network with classical invertible linear
operations to the network with quantum invertible linear operations. In

this quantum network, the network topology is the same graph G = (V, E).
Each edge transmits a quantum system H which is ¢-dimensional Hilbert
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Figure 4.1: Interference of information in network nodes.

space spanned by the bit basis {|)s}.cr,. In n-use of the network, we treat

the quantum system H®™*" spanned by the bit basis {|X )y} ygmi<n. The

sender S; sends a quantum system Hg, := HZ™*" and the receiver T} receives
a quantum system Hr, := H®™*"

The t-th node operation is given as £(A;) and it is called quantum invert-
ible linear operation. The entire network operation is written as the unitary
LK)=L(A.---Ay) = L(A,)---L(A;). When a state p on Hg, ® -+ Q@ Hg,
is transmitted by senders i, . .., .S,, the network output o7, at Hy, is written
as

or, = Tr L(K)pL(K)T,

1
Ty Ti—1,Tigaye T

where Trpy, 7, , 7., ,..7 is the partial trace on the system

15

HTl®-~®'HTZ-_1®'HT¢+1®~-®%TT~

When the input state on the network is |M), on Hg, ®@--- ® Hg,, this
quantum network can be considered as the classical network in Subsection
In the same way as the classical network, we assume rank K;; = m;
which means 5; transmits any bit basis states completely to T; if the input
states on source nodes S; (j # i) are zero bit basis states. Similarly, rank K.
is called the rate of the bit interference to 7.

We can discuss the interference similarly on the phase basis {|2)p}.cr,
defined in Section . When the input state is a phase basis state |M),
on Hg, ®--- ® Hg,, the network operation L£(K) is applied by L(K)|M), =
[[K],M),. In this case, this quantum network can also be considered as a

classical network with network operation [KJ, = [Ac], - - - [A1]p. Then, [K],, .
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Table 4.1: Definitions of Information Rates

Rate Meaning
m; = rank K;; = rank [K; ], Bit (phase) transmission rates
rank Kje Rate of interference to T;
rank [K;e], Rate of phase interference to 7;
a; Maximum rate of bit interference to 7;
a; Maximum rate of phase interference to 7;

is defined from [K], in the same way as K ;.

[Kialp [Kizlp [K1rlp
K2alp [Kaplp e Koy S
[K]p T : : ) [szj]p € ]Fq ’
[Kr,l]p [Kr,2]p T [Km“]p
(Kiclp =[[Kialp - [Kiialp [Kiialp -+ [Kirlyl-

Similarly to the condition rank K;; = m;, we also assume rank [K;;], = m;.
We also call rank [Kc], the rate of phase interference to 7;. The transmission
rates from S; to T; are summarized in Table

4.2 Main Results

In this section, we propose the two main theorems of this chapter. The
two theorems state the existence of our code with and without negligible
rate shared randomness, respectively. The codes stated in the theorems are
concretely constructed in Section [£.4] The theorems are stated with respect
to the completely mixed state pnix and the entanglement fidelity for the
quantum channel k and a purification |z) of the state p.

Theorem 4.2.1. Consider the transmission from the sender S; to the re-
cewer T; over a quantum multiple-unicast network with quantum invertible
linear operations given in Section[{.1. Let m; be the bit and phase transmis-
sion rates from S; to T; without interferences (m; = rank K;; = rank [K],, .),
and a;, a; be the upper bounds of the bit and phase interferences, respectivvely
(rank K;e < a;, rank [K;e], < a;). When the condition a; + a; < m; holds and
the sender S; and receiver T; can share a randommness whose rate is negligible
in comparison with the block-length n, there exists a quantum network code
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whose rate is m; — a; — a, and the entanglement fidelity Ff(,omix, Ki) satisfies
n(1 — F?(pmix, ki) — 0 where k; is the quantum code protocol from sender
S; to receiver Tj.

Section [£.4] constructs the code stated in Theorem £.2.1] and Section .5l
shows that this code has the performance in Theorem [4.2.1] Note that this
code does not depend on the detailed network structure, but depends only on
the information rates m;, a; and a,. By the same analysis as in Chapter , our
code has no information leakage from the condition n(1 — F2(pmix, #i)) — 0.

Although Theorem [4.2.1] assumed the free use of a negligible rate shared
randomness, it is possible to design a code of same performance without this
negligible rate shared randomness as follows. The paper [10] gives the secret
and correctable classical network communication protocol for a classical net-
work with malicious attacks, when the transmission rate is more than the
sum of the rate of attacks and the rate of information leakage. By applying
the protocol in [I6] to our quantum network with bit basis states, the neg-
ligible rate shared randomness can be generated. By this method, we have

the following Theorem [4.2.2

Theorem 4.2.2. Consider the transmission from the sender S; to the re-
cewer T; over a quantum multiple-unicast network with quantum invertible
linear operations given in Section[4.1. Let m; be the bit and phase transmis-
sion rates from S; to T; without interferences (m; = rank K;; = rank [K],, .),
and a;, a; be the upper bounds of the bit and phase interferences, respectivvely
(rank K;e < a;, rank [K;c|, < a;). When a; + a; < m;, there exists a quan-
tum network code whose rate is m; — a; — a; and the entanglement fidelity
F2(pmix, ki) satisfies n(1 — F2(pmix, ki) — 0 where k; is the quantum code
protocol from sender S; to receiver Tj.

4.3 Preliminaries for Code Construction

Before code construction, we prepare the extended quantum system, nota-
tions, and CSS code used in our code.

4.3.1 Extended Quantum System

Although the unit quantum system for the network transmission is H, our
code is constructed based on the extended quantum system H’ described
below.

First, depending on the block-length n, we choose a power ¢’ := ¢* to sat-
ISfy n_(n/>mi/(q/)mi7max{ai,a;} -0 (eg ql _ O(n1+(max{ai,a§}+2)/(mifmax{ai,a’i}))
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) where n’ := n/a. Let Fy be the a-dimensional field extension of F,. Sim-
ilarly, let H' := H®* be the quantum system spanned by {\x>b}x€]pq,. Then,
the n-use of the network over H can be considered as the n/-use of the net-
work over H'. The quantum invertible linear operations (Definition
can also be defined for invertible matrices A’ € F ;r,‘xm and B’ € IFZ,X” as

L'(A)|X)s = [AX)s, RI(B)[X)y = |XDB)s, forany X € Fy"".

4.3.2 Notations for Quantum Systems and States in
Our Code

We introduce notations used in our code. By the n-use of the network, the

sender S; transmits the system Hg, = HE™i > and the receiver T} receives

the system Hp, = HE™ ", which are identical to H'™*™ . We partition the

quantum system H'E™ " as H'y @ Hig @ Hip := H/E™XMi @ H/Emixmi g gy/@max (n'=2mi)
Furthermore, we partition the systems H'y, Hy, He by

7_[:4 — HfAl ®H142 ®H:43 = Hl@aixmi ®Hl®(mifaifa,’i)><mi ® /]_[/®a;><mi’

H%’ — H%l ®H/82 ® H;gs = Hl@aixmi ® Hl@(mifaifa;-)xmi ®Hl®a;><mi7

H/C _ Héjl ® HZZQ ® 7_[223 — H/@aix(n/—2mi) ® H/@(mi—ai—a;)x(n’—2mi) ® Hl@agx(n’—%ni) .

For states |¢) € H'yy, |¥) € H sy, and |p) € H'y5, the tensor product state
in H', is denoted as

|¢)
1w§ = [0) @ ) ® |p) € H)y. (4.2)
%

The bit or phase basis state of (X,Y,7) € Fgfxmi X Fg?lﬁai*ag)xmi X IFZ,;XW

is denoted as
X |X>b X |X>p
Y =), Y = |Y), |- (4.3)

z)1/, L2y z1/, |2y,

We also introduce notations for the states in Hj and H; in the same way as
(4.2) and (4.3). In the following, we denote the k x [ zero matrix as Oy.

4.3.3 CSS Code in Our Code

In our code construction, we use the CSS code defined in this subsection
which is defined similarly to Section|3.3.4. Define two classical codes C'y, Cy C
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]qu- x (n'—2my)

J which satisfy C; D Cy as

(04, . —2m, | / o .

Cr={| Xy | e mmo| X, g Rl mim) o o imot,
L X3 -
% | | -

Co=X | Xo | €Fp ol x, e () x, el el
| Oaf n/—2mo |

For any [M;] € C;/C5 where M, € Fétni_ai_a;)x(n/_m(’), define the quantum
state |[Mi])y € He by

Oai,n’meo |0ai,n’72mo>b
|[M]), /_C’L Z My +Y ) = | M)
| YGCJ' Oa;,n’meo b |0a;,n’72mo>p
With the above definitions, the code space is given as H. 4, = Hpy =

H/Omimaima)x('=2mo) and a pure state |¢) € Hloue
position of the states |[M;]), in this CSS code by

is encoded as a super-

|0ai,n/72mo >b
|9) € He.

’0a;,n’72mo>p

4.4 Code Construction with Negligible Rate
Shared Randomness

In this section, we construct our code that allows a sender S; to transmit a
state p; on Mg, = H/EM )X =2m) oprectly to a receiver T by n-use of
the network when the encoder and decoder share the negligible rate random
variable SR; := (R;,V;).

The encoder and decoder are defined depending on the private random-
ness U;; owned by encoder and the randomness SR; shared between the
encoder and decoder. These random variables are uniformly chosen from the
values or matrices satisfying the following respective conditions: the variable
R; :== (Ri1, Ri2) € F;fni_ai)xmi X Iﬁ‘f;“_a;)xmi satisfies rank R;; = m; — a;
and rank R; 5 = m; — aj, the random variable V; := (V;1,..., V; 4m,) consists
of 4m; values V;1,...,Viam, € Fé,mi and the random variable U, € Fgfixmi
satisfies rank U; ; = m;.

Next, we construct the encoder &; Uit and decoder D% Depending on

SR; and U, 1, the encoder &; SHLUit of the sender S; is defined as an isometry
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channel from H. ,, to Hs, = H'®™*™. Depending on SR;, the decoder
Df R of the receiver T} is defined as a TP-CP map from Hy, = HE ™ to

H! Note that the randomness SR; is shared between the encoder and

code*
the decoder. Because SR; consists of am;(2m; — a; — a; +4) elements of F,
the size of the shared randomness SR; is sublinear with respect to n (i.e.,

negligible).

R, U; 1

4.4.1 Encoder SZ-S of the sender S;

The encoder SngRi’Ui’l consists of three steps. In the following, we describe

the encoding of the state |¢) in H/

code”

Step E1  The isometry map Ufo" encodes the state |¢) with the CSS
code defined in Subsection and the quantum systems H'y and Hj; as

Ik

p

loai,m»b
[
|Oa§,mi>P

Qag,m;

R,

0,2

> R'
®
Oa;,mi

b

|61) = U5 lo) = e, @M@ H, .

Step E2 By quantum invertible linear operation £'(U; ), the encoder
maps |¢1) to [¢2) == L (Ui1)|¢1).

Step E3  From random variable V; = (Vi 1,...,V;4m,), define matrices
Qinik = Vir), Qiojr = Vi) for 1 <j <n' —2my;, 1 <k <m,,
and Qs = Vizmisr), Qiajk = (Vigmar) for 1 < j k < m;. With
these matrices, define the matrix U}, € FZ,/X”/ as

I Omoﬂno Omom’*?mo [mo 0m0,m0 Omom/*?mo

mo
U-Vé = Q;F,:sQiA

1y

I,

On’meo ,mo On’meo ,mo

Omo,n’f2mo

In’meo

Imo Omo Mo Omom’—?mo
Omo,mo [mo Omo,n’72mo )
Qz’,l 0n’—2m0 ,mo In’—2m0

where [; is the identity matrix of size d. By quantum invertible linear
operation R’(UX;), the encoder maps |¢y) to R’(UZVQ)

OmO ,1MO

_On’72m0 ,mo On’72m0 ,mo

T
[mo 2,2

In’meo

$2).

By the above three steps, the encoder &;

map

SR;,U;
g. ,1

)
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is described as an isometry

@) = RIUSL (Uin) U 6) € H, -



4.4.2 Decoder DZ-SRZ' of the receiver T;

Decoder Df Ri consists of two steps. In the following, we describe the decoding
of the state 1)) € Hr,.

Step D1 Since (Ui‘z)*1 can be constructed from shared randomness V;

by
Imo Omo,mo Omo,n’f2m0 ]mo Omo,mo Omg,n’—Qmo
VyN—1__ T
(Uz‘,2) - Om(),mo Imo Omo,n’*Qmo ’ Omoﬂno Imo T2
_Qi,l On’—2m0,m0 ]n’—2m0 0n’—2m0,m0 On/—Qmo,mo In’—?mo
Imo Omo,mo Omo ,n'—2mg
T
_Qi73Qi,4 Im() Omo,n’—Zmo )
On’—Qmo ,mo On’—Zmo,mo ]n’—Zmo

the decoder applies the reverse operation R’(Ui‘g)T = R’((Ui‘g)*l) of Step
E3 as [¢1) := R'(U3) 4).

Step D2  Perform the bit and phase basis measurements on H’j and
Hy, respectively, and let 0;1,0;5 € Fgfixmi be the respective mea-

surement outcomes. By Gaussian elimination, find invertible matrices
R;1,0;1 Ri2,0;2 ms Xm; . .
D; 77, Dy ek, satisfying

04, m.
ai,M; Rz,Q

R;1,0; R;2,0;
PWmDml JOM = r e PWz‘,2Di,22 QOZ»,Q = (4.4)
1y

Oag,mi

where Py is the projection from IE‘Z,“ to the subspace W, the subspace
W1 consists of the vectors whose 1-st, ..., a;-th elements are zero and
the subspace W, o consists of the vectors whose (m; — a} + 1)-st, ..., m;-
th elements are zero. The case of non-existence of Df‘i’l’oﬂ nor Df;z’oi’z
means decoding failure, which implies that the decoder performs no more
operations. Also, when Dﬁ’l’oi’l and DiRif’O” are not determined uniquely,

the decoder chooses Dﬁ’“oi’l and Df‘;z’ow deterministically depending on
O, Ry and O; 2, R; o, respectively.

Based on Dﬁ’l’oi’l and Df‘?’oﬂ found by (4.4), the decoder applies
L (Dﬁ’l’oi’l) and L’ ([Dgz’oiz]p) consecutively to [i;), and the resultant

state on Hcoge 18 the output of Step D2. Then, Step D2 is written as
the following TP-CP map DlRi:

R;,0;1,0; R;,0;1,0;
wl><w1‘) ::CIIIES Z UDl " 1200¢,1,O¢2<UD1 . lg)Ta

; X
Oi,l,Oig EFZ}Z mo

Dy (
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i1,0i2

. R;O
where the matrices U, and 0q,,0,, are defined as

Up' % =L (D P)L (D),
00,02 = Tt [91) (1] (105166 (Oi1| @ |Oi2)pp(Oia| @ Ie),

with the identity operator Iz on He.

By above two steps, the decoder Df Ri s described as
Dy ([0) () == D (R'(U3) [0) (0 [R'(U%)).

Since the size of the shared randomness SR; is sublinear with respect to n,
our code is implemented with negligible rate shared randomness.

4.5 Correctness of Our Code

In this section, we confirm that our code correctly transmits the state from
the sender S; to the receiver T;. As is mentioned in Section [.2] we show the
condition n(1 — F2(pmiz, ki)) — 0 which implies the correctness of our code.

First, we describe the quantum code protocol k; from S; to T;, which is an
integration of the encoding, transmission, and decoding. The encoding and
decoding in k; is given by the probabilistic mixture of the code in Section [4.4]
depending on the uniformly chosen random variables SR; and U;;. Then,

the code protocol k; is written as, for the state p; on H. 4.,

1 U
Filpi) = Z NDZSRi (Tl,...,Ti—Tg—’i+l ..... Trﬁ(K) (SiSR“UZ’l(pi) @ pic>£(K)T>7
SR;,U; 1
where p;e is the state in Hg, ®--- @ Hg, , ®Hg,,, ®--- ® Hg, of senders
other than S;, and N := ¢'*™ + {Ui. € F?ixmﬂ rank U;; = m;}| + {Ri1 €
]Fér/ni_a")xmﬂ rank R; 1 = m; —a; |+ |{Ri2 € IFS?FQ;)XW rank R; 1 = m; —al}|.
As explained in Section [3.5, 1 — F2(pmiz, ki) is upper bounded by the
sum of the bit error probability and the phase error probability. The bit
error probability is the probability that a bit basis state | X), € H. 4, is sent
but the bit basis measurement outcome on the decoder output is not X. In
the similar way, the phase error probability is defined for the phase basis.
Similarly to Subsections [3.6.1] and [3.6.4] the bit and phase error proba-
bilities are upper bounded by

O(max{&, ((](T)L%}) and 0<max{§, %})

o1




respectively. Therefore, we have

n(1 — F2(pmiz, ki) < nO (max{ ! ()™ }) (4.5)

57 (q,)mi—max{ai,ag}

mi—max{ai,ai

Since ¢’ is taken in Section to satisfy % — 0, the RHS of ({4.5))
q

converges to 0 and therefore n(1 — F2(pmiz, ki) — 0. This completes the
proof of Theorem (4.2.1]
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Chapter 5

Conclusion and Outlook

We have constructed a secure quantum network code in Chapter |3 and a
multiple-unicast quantum network code in Chapter

In Chapter |3, we have presented an asymptotically secret and correctable
quantum network code as a quantum extension of the classical network codes
given in [9, [I§]. Under multiple uses of the network and a restriction on node
operations, our code acheives rate mg— 2m; asymptotically without any clas-
sical communication, where my is the transmission rate without attack and
my is the maximum number of the attacked channels. Our code needs se-
cret shared randomness and it is implemented by attaching a known classical
secret transmission protocol [16] in our quantum network code. In the anal-
ysis of the code, we only considered the correctability because the secrecy is
guaranteed by the correctness of the recovered state. The correctability is
derived analogously to the classical codes [9] 18] by evaluating bit and phase
error probabilities separately.

In Chapter [, we have proposed a quantum network code for a multiple-
unicast network with quantum invertible linear operations. As constraints
on information rates, we assumed that the bit and phase transmission rates
from S; to T; without interference are m; (m; = rank K;; = rank [K ]pm.), the
upper bounds of the bit and phase interferences are a; and a}, respectively
(rank e < a;, rank [K],.. < a;), and a; + a; < m; holds. Under these
constraints, our code achieves the rate m; — a; — a; quantum communication
by asymptotic n-use of the network. The negligible rate shared randomness
plays a crucial role in our code, and it is realized by attaching the protocol
in [16].

The codes in Chapters |3| and [4] can be integrated as a multiple-unicast
network with a malicious adversary. When the eavesdropper attacks at most
a; edges connected with the sender S; and the receiver T, if a;+a,+2a < m;
holds, our code implements the rate m; — a; — a; — 2a; quantum communi-
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cations asymptotically. This fact can be shown by integrating the methods
in Chapters [3 and [4
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Appendix A

Proofs in Chapter

A.1 Proof of Lemma

Proof of Lemma[3.3.1. For x = (xy, ...

inner product

(x,y) = Z tr

3.3.1

)Y = (Y1, s Ym) € FZ"‘, define an

T;y; = tr Z il (A.1)
i=1

Let T" be a m x m matrix ove F,. If z,y are considered as column vectors, it
holds that (Tz,y) = (z,T"y). On the other hand, if z,y are considered as
row vectors, it holds that (zT,y) = (z,yT").

First, we show L(A)|M), = |(A~

YT M), by considering [y as a column

vector space. For LW(A) := Y . [Az)y(z] and z € FI,

£O(A)]2), = %
_
Y

_ L
VT
= (47

Since L(A) := (E(l)(A))®n, we have

Z w™ @) Az),

z€FP

> W WA,

x' €F

> )

xRy

)Tz>p-

L(A)|M), = (A7) " M),

Next, consider [ as an n-dimensional row vector space over F,. For
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RU(B) := ZOCGFS‘ |z B)p(z| and z € Fy,

1 —\x,z
RO(B)l)y = —= D w7 aB)s
z€ly

1 np—1
§ : —(z""B ,z)| //>
= w T )y
v 4
z" eFy

]_ " —1\T
E : —(2",2(B™1) )’ "
= w T )y
v " €Fy

= |Z(B_1)T>p-

Since R(B) := (RO(B))*", we have R(B)|M), = |M(B~1)T),. O

A.2 Proof of (3.5)

In this section, we show Lemmas [A.2.1| and [A.2.2| which shows the relation-
ship between two maxially entangled states and projections P, P, defined by
the bit and the phase bases.

Define the following maxially entangled states with respect to the bit and
phase bases:

Dby \/% S Jiih, [B) = % S 152

iEIFg“ ZEIFZZ”

We use the inner product (+,-) defined in (A.1)) for the proofs.

Lemma A.2.1. |0?) = |Pb).

Proof.
1 w*(Z,j) w(z,l)
) = = (> (X i) @ (X i)

q z€Fm  jeFm 4 leFm q
1 wf(zvjfl)

=—= D> il
q ZJJEFQL q
1

= — > li.i (A.2)
q JEFP
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Eq. (A.2) holds because

Z w_(z’j_l) B 0 lf] 7é l,
qm 1 otherwise.

]

From the above lemma, we denote |®) := |®°) = |®P). Eq. (3.5) is proved
by the following lemma.

Lemma A.2.2. PP, = P,P, = |0)(D|.
Proof.
PPy = w{iilz, 2)li, i)z, 2|

1,2€F

wf(z,ifi) w(z,jfl)

=2 o X il
i,2€Fm q jleFm q
(szfl)
w .. .
= Z T|lal>bb<]7l|
1,5,L,2EFY" q
..., .
= Z q_m|l7z>bb<jaj|'
i,jEFg

A.3 Proofs of Lemmas |3.6.2| and |13.6.3

We prepare Lemma to prove Lemmas [3.6.2] and [3.6.3]

Lemma A.3.1 ([9]). Suppose independent m random variables V1, ..., V,, €
F, are uniformly chosen in F, and define the random matriz () € IFflxm as
Qi == (V;)'. For arbitrary row vectors x € Fi* and y € FI\{01,} (1 > m),
we have

Prle=yQ) < () (A3)
For arbitrary row vectors x € Fy\{0y,,},y € FL(1 > m),

Prly=2Q'] < (A4)

| =
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Proof. We only show because the inequality was shown in [9]
Claim 5].

For a = (ay,...,a,) and b = (by,...,b,), the Hadamard product and
dot product are defined as a o b := (ajb, ..., apnby) and a - b := >"" ab;,
respectively. Then, we have the following inclusion: for V' := (V4,...,V},) €
Fy,

(V]y=2Q"}={V|pp=2-V, p=2-(VoV),...,yy=z-(V")}
AV ip=x-V} (A.5)

where V! :=V oV o--- 0V, Since the hyperplane (A.5) is (m—1)-dimensional,

!
we have

Pl"[y:xQT] < Pr[y1=x . V] < _ 1

Now we prove Lemmas [3.6.2 and [3.6.3]

Proofs of Lemmas[3.6.9 and[3.6.3. Let v = (x4, 25,2%) € Foo x Fe ox
]FZ,/_%0 be a nonzero row vector. It holds from definition of R} that

2((RY)™)* = 2 —2PQ5 Qs — 2°Qy, (A.6)
x([RY];l)B =25+ LUAQIQ?) + (xAQlT + 2°)Qs. (A.7)
Lemma is proved as follows. The condition z((R}) 1) = 01,
holds only in the following three cases from (A.6)), and in each case, the
probability for x((R})™)* = 01, = 01, is calculated by Lemma as
follows.
1. If IB % Ol,mo and I‘c = 01,n’—2m07
Priat = Q5 Q. < (2)"
q

2. If IB = 017m0 and ZL'C 7é 01,n’—2m07

n — 2m0> mo

Priet = Qi) < (*

3. If IB 7é 017m0 and ZL'C 7é 01,n’—2m07
Priz? — 2°Q, = 2°Q; Q4] < (@) °
q
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Since n’ > 3myg, we obtain the inequality (3.17)) in Lemma |3.6.2|

In the same way, we show Lemma as follows. The condition z([RY],1)F =
01 m, holds only in the following two cases from (A.7)), and in each case, the
probabilitiy that this condition holds is calculated by Lemmal[A.3.T]as follows.

1. If 24Q] + 2¢ = 01,7 9m,, it should hold that 2% + 24Q Q3 = 01 .
The probability is derived as

Prla® = —27Q[ Qs N a® = —2Q]]

1 rmg\mo
:PI'[SCB = —,’L’AQIQ?)] . PI‘[Z’C = —LC'AQI] S E (q_’o) .

2. If xAQlT +2¢ # 01 1/—2m,, We have

Pr[z® + 24Q[ Qs = — (2% + 27Q] Q5] < (n’ _q/2m0> "

Since %(Z‘—?)mo < (m—,o)mo < (”L%)m0 from n’ > 3mg, we have the inequality

3.24)) in Lemma 3..3. ]
B53

A.4 Proof of (3.19

From dim S = my — rank[w;(1, - - ., Uitmy)], We have
Pr[dimS, = rankm =Pr{rank[u;(1y,. . .,Ui(my)] =TankRay|.

Since Rap = [Ui(1), - - -, Ui(m)] 15 @ random matrix with rank Ry, = mg — my,
this probability is equivalent to

Pr [rank[ui(l), -, Ui(mgy)] = rank Rlb}

=Pr [rank[m, . ;'Um2] = mo—m1’ rank[vl, . ,Umo] = my—mq, U} € ]FZ?O_ml} )

Therefore, it holds that

Pr [rank[u,-(l), -, Ui(my)] = rank RQ,bi|
> Prlrank(vy, ..., Up,] = mo — mq|vy, € ]FZ?O_ml}
> Prlrank(vi, . .., Ung-m,| =mo—m |, € IFZ?O_”“] (A.8)
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The probability (A.8]) is equivalent to the probability to choose my — my
independent vectors in F;°~"":

Pr [rank[vl, ey Umo—my ) = Mo — ml‘vk € F;?O*ml}
- qu;mm) ' ((q<)q'>mo-fn_lq ) '<(q ) <q'>;§i)n )
=1-0(1/q).

Therefore, (3.19)) holds with probability at least 1 — O(1/¢’).
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