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はじめに

ネットワーク符号

ネットワーク上で情報を送ることは, 通信の基本的なタスクの一つである. ネットワーク通信を効率的に行う方法の

一つとして, ネットワーク符号 (network coding) が提案された. ネットワーク符号とは, ネットワーク上の中間ノー

ドが情報を伝達するだけでなく, 情報処理も行うようにした通信方式である. その量子拡張として, 量子ネットワーク

符号は, 量子通信路や量子演算を行う中間ノードで構成されたネットワーク上で, 量子状態を送る通信方式である.*1

量子ネットワーク符号は, Hayashiら [10]によって提案された後, 多く研究されている [10, 11, 12, 14, 15, 13].

セキュア量子ネットワーク符号

ネットワーク符号を実際のネットワーク通信に用いるためには, ネットワーク符号のセキュリティーについて議論

する必要がある. 文献 [7] は, 古典ネットワーク符号の秘匿性について初めて研究し, ネットワーク符号を使うこと

によって秘匿性が向上することを示した. 一方, 文献 [9]は, ネットワークを漸近的*2に使うことによって, 誤りを訂

正するネットワーク符号を設計した. ネットワーク通信効率 m0 が誤りのある通信路の最大数 m1 より大きいとき

(m1 < m0), 文献 [9]のネットワーク符号は符号化率*3 m0 −m1 で漸近的に誤りを訂正する. さらに, 文献 [18]は文

献 [9]の結果を拡張し, 秘匿性も得られるようにした: 前に定義された m0,m1 と情報漏れのある通信路の最大数 m2

が m1 +m2 < m0 を満たすとき, 文献 [18]のネットワーク符号は, 符号化率 m0 −m1 −m2 で漸近的に誤りを訂正

し, 漸近的に秘匿性を保証する.

一方, 量子ネットワーク符号のセキュリティに関する議論は, 文献 [19, 20]で始まった. しかし, 文献 [19, 20]のネッ

トワーク符号は, 秘匿性だけを保証し, 訂正可能性を持たない. また, このネットワーク符号は, ネットワークの位相構

造に依存し, 古典通信を必要とする.

私は, 林正人教授との共同研究 [1]で, これらの問題を解決し, 古典ネットワーク符号 [9, 18]の量子拡張として, 秘

匿性と訂正可能性を持った量子ネットワーク符号を提案した. 文献 [9, 18]と類似した方法を使うため, 我々のネット

ワーク符号は, ネットワークを漸近的に使う. ネットワーク通信効率m0 と攻撃 (盗聴または改竄) されたチャンネル

の最大数m1 が 2m1 < m0 を満たすとき, 我々のネットワーク符号は, 符号化率m0 − 2m1 で漸近的に正しいネット

ワーク通信を行う. また, 量子通信の正しさは秘匿性も保証するため, 我々のネットワーク符号は秘匿性も持つ.

我々のネットワーク符号は, 量子ネットワーク符号 [19, 20]と比べて以下の３つの利点がある. (1) 古典通信を要し

ない. 我々のネットワーク符号は, 符号に必要な送受信者間の共通乱数まで, 量子ネットワーク通信を用いて生成する.

(2) m1 < m0 であれば, どのような攻撃に対しても秘匿性や訂正可能性を持つ. (3) ネットワークの位相構造に依存

せず, 送受信者間の情報のみで設計できる.

しかし, 文献 [19, 20]とは違い, 我々は, ネットワークノードの演算が量子線形可逆演算 (quantum invertible linear

operation) であると制限をおく. 量子線形可逆演算とは, bit basisと呼ばれる一つの基底に対しての可逆線形演算で

あり, Chapter 3で正確に定義される. この制限は, 古典ネットワーク符号 [9, 18]で, 中間ノード演算を可逆線形演算

に制限したことに対応する.

我々のネットワーク符号は, honest-dealer verifiable quantum secret sharing (VQSS)[8]の一般化として扱うこと

*1 量子通信路, 量子演算, 量子状態は, Chapter 2で定義される.
*2 ここで漸近的とは, n回のネットワーク通信で送られる情報を 1ブロックとして符号化と復号化し, nが十分大きいことを意味する.
*3 ネットワーク符号の符号化率は, ネットワーク一回利用あたりに伝送できる情報単位 (古典の場合は bit, 量子の場合は qubit)の数である.
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図 1: 多対多量子ネットワーク. 量子ネットワーク (a)で, |·⟩b は bit basis 量子状態, L(A1) は中間ノードの量子演

算を表す (Section 4.2 を参照). ネットワーク (b) と (c) は, (a) に対する bit classical network と phase classical

networkである.

ができる. 我々のネットワークをm0 個の平行な量子通信路に適用することは, honest-dealer VQSSに対応するから

である.

多対多量子ネットワーク符号

前節で提案されたセキュア量子ネットワーク符号 [1]は, 一組の送受信者がネットワークを使うときの符号である.

しかし, 実際のネットワークは複数のユーザによって使われることが多い. そのため, 複数のユーザがネットワークを

使う多対多ネットワーク符号が研究されている. 具体的には, 異なる r 組の送受信者 (S1, T1), . . . , (Sr, Tr) がそれぞ

れの通信を同時に行うネットワーク上でネットワーク符号が設計されている. 例えば, 前節で説明した秘匿性のみを

持つ量子ネットワーク符号 [20]は, 多対多量子ネットワーク符号である.

私は, 林正人教授との共同研究 [2]で, 文献 [1]の結果を多対多量子ネットワーク通信に拡張した. 我々の符号は, 前

節で述べた文献 [20]の問題点 (ネットワーク演算をネットワーク位相構造によって制御すること, 古典通信が必要で

あること) を解決した多対多量子ネットワーク符号である. 文献 [1]と同様に, 我々は中間ノード演算を量子可逆線形

演算と制限し, ネットワークを複数回利用して符号を構成する. また, 量子状態の訂正可能性は秘匿性も保証するため

[4], 我々の符号は秘匿性を持つ. 多対多のネットワークの場合, ネットワークの設計ミスにより, ネットワークの一部

で混線が起きる可能性があるが, 混線の範囲が一定のレベル以下であれば, 訂正可能であることも, このネットワーク

符号の利点である．

我々の符号の達成可能な符号化率について議論するために, すべての送信者の入力状態が bit basis stateである状

況を考える. すると, 我々のネットワークを古典ネットワークとして扱うことができる. 何故なら, ネットワークの中

間ノード演算が量子可逆線形演算に制限されたため, 任意の bit basis state が他の bit basis state に変わるからであ

る. このように構成された古典ネットワークを bit classical networkと呼ぶ. Bit classical networkで, 送信者 Si か

ら受信者 Ti への通信効率を mi, Si 以外の送信者から受信者 Ti への通信効率を ai とする. 同様に, 量子系の phase

basis が bit basis から定義され, phase basis に対しても古典ネットワーク phase classical network が定義される.

Phase classical networkで, 送信者 Si から受信者 Ti への通信効率は bit clssical networkと同じく mi になると仮

定し, Si 以外の送信者から受信者 Ti への通信効率を a′i と表す. すると, ai + a′i < mi のとき, 我々の符号は送信者 Si

から受信者 Ti までの量子通信を, 符号化率mi − ai − a′i で漸近的に行う.

符号化率の理解のために, 図 1の量子ネットワークを考える. Bit classical networkと phase classical networkは,

量子ネットワークによって決まる (Section 4.2を参照). X ′
1 = X ′

2 = Y ′
1 = Y ′

2 = 0のとき, 二つの classical network

の S1 から T1 までの通信効率は 2である. また, 二つの classical networkの S2 から T1 までの通信効率はそれぞれ 1

と 0である. よって, 我々の符号をパラメータ (m1, a1, a
′
1) = (2, 1, 0) で利用することで, 符号化率 m1 − a1 − a′1 = 1

の量子ネットワーク通信を漸近的に行うことができる.



本稿の構成

本稿は次のように構成される.

Chapter 1は, 英語の Introductionであり, 「はじめに」と同じ内容である.

Chapter 2では, 量子情報理論を数学的に定式化する. そのため, 量子系, 量子状態, 量子演算, 測定に関する四つの

量子情報理論の仮定を Sections 2.1, 2.2, 2.3, 2.4で導入する. また, 通信の正しさと秘匿性について議論するために,

二つの状態の差と漏れる情報の量を, それぞれ Sections 2.5, 2.6で定量化する.

Chapter 3では, セキュア量子ネットワークについて述べる. 林正人教授との共同研究 [1]の結果である. Section

3.1 ではネットワークモデルを定義し, Section 3.2 で主定理を述べる. Section 3.3 で Preliminary を述べた後,

Section 3.4では, 送受信者が共有乱数を持つときに, 具体的に符号を設計する. Section 3.5でネットワーク符号の誤

り率が, bit basis error proababilityと phase basis error probabilityの和より小さいことを示す. Section 3.6では,

bit basis error probabilityと phase basis error probabilityをそれぞれ求める. Section 3.7では, セキュア古典ネッ

トワーク符号 [16]を我々の量子ネットワーク符号に付け加えることで, 共有乱数なしでセキュア量子ネットワーク符

号が設計できることを示す. Section 3.8では, 我々の量子ネットワークが訂正可能性を持つことにより, 秘匿性も持

つことを示す.

Chapter 4では, 多対多量子ネットワークについて述べる. 林正人教授との共同研究 [2]の結果である. Chapter 4

は, Chapter 3と同様な構成で記述されている. Section 4.1では多対多ネットワークモデルを定義し, Section 4.2で

主定理を述べる. Section 4.4では, 多対多量子ネットワーク符号を設計する. Section 4.5で符号の性能を評価する.

Chapter 5で結論を述べる.
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Chapter 1

Introduction

1.1 Secure Quantum Network Code

Network coding is a coding method, addressed first by Ahlswede et al. [6],
that allows network nodes to manipulate the information packets before for-
warding. As a quantum analog, quantum network coding considers send-
ing quantum states through a network which consists of quantum channels
transmitting quantum states noiselessly and nodes performing quantum op-
erations. Since quantum network coding was first discussed by Hayashi et
al. [10], many other papers [10, 11, 12, 14, 15, 13] have studied quantum
network codes.

In order to guarantee security in network communication, the security
analysis of network codes is inevitable. The paper [7] started to discuss the
secrecy of the classical network code and it was shown that the secrecy is
improved by network coding. On the other hand, Jaggi et al. [9] constructed
a classical network code with asymptotic error correctability. When trans-
mission rate m0 of network and the maximum rate m1 of malicious injection
satisfy m1 < m0, the code in [9] achieves correctability with rate m0−m1 by
asymptotic n uses of the network. Furthermore, Hayashi et al. [18] extended
this result so that the secrecy is also guaranteed: when previously defined
m0, m1 and the information leakage rate m2 satisfy m1 + m2 < m0, there
exists a classical network code of rate m0−m1−m2 which is asymptotically
secret and correctable by n uses of the network.

The security analysis of quantum network codes was initiated in [19, 20].
However, the protocol in [19, 20] only keeps secrecy from the malicious ad-
versary but the correctness of the state is not guaranteed if there is an attack.
Moreover, this protocol depends on the network structure and requires clas-
sical communication.

4



Quantum Network with
Invertible Linear Operations

Encoder

(Private Randomness R0)

Decoderρ DSR(σ)

(Shared Randomness SR)

ESR,R0(ρ) σ

Eve
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Figure 1.1: Protocol with negligible rate secret shared randomness. S(H)
denotes the set of density matrices on a Hilbert space H.

In the co-work [1] with my advisor Hayashi, to resolve these problems
and as a natural quantum extension of the secure classical network codes
[9, 18], we present a quantum network code which is secret and correctable
[1]. Since we take a similar method to [9, 18], our code transmits a state
by n uses of the quantum network. When the network transmission rate is
m0 and the maximum number m1 of the attacked channels is restricted by
m1 < m0/2, our protocol correctly transmits quantum information of rate
m0 − 2m1 by asymptotic n uses of the network. Since the correctness of the
transmitted quantum state guarantees the secrecy of the quantum channel
[4], the secrecy of our protocol is guaranteed.

There are notable properties in our protocol. First, our protocol can be
implemented without any classical communication. We generate the negligi-
ble rate secret shared randomness needed for our code by use of the quantum
network. Secondly, our protocol is secure from any malicious operation on
m1 channels as long as m1 < m0/2 holds. That is, when m1 < m0/2, our
protocol is safe from the strongest eavesdropper Eve who knows the network
structure and the network operations, keeps classical information extracted
from the wiretapped states, and applies quantum operations on the attack-
ing channels adaptively by her wiretapped information. Thirdly, our protocol
transmits a quantum state without the knowledge of the quantum network
structure.

However, unlike [19, 20] and like [9, 18], we place a constraint on our
network that every node operation is the application of an invertible matrix
to bit basis states which is a fixed basis of the quantum system. We call the
restricted quantum operations the quantum invertible linear operations.

Our protocol can be thought of as a generalization of the honest-dealer

5



verifiable quantum secret sharing (VQSS) [8] because the honest-dealer VQSS
corresponds to a special case of our protocol where the network consists of
m0 parallel quantum channels.

1.2 Multiple-Unicast Quantum Network Code

The proposed secure quantum network code in Section 1.1 is designed for
the unicast network where the entire network is used by a sender and a
receiver. However, since a network is used by several users in general, it is
needed to treat the network model with multiple users instead of the unicast
network. For this purpose, the multiple-unicast network has been researched,
in which disjoint r sender-receiver pairs (S1, T1), . . . , (Sr, Tr) communicate
over a network. The paper [20] studied a quantum network code for multiple-
unicast network. The code in [20] transmits a state successfully for each use of
the network. However, [20] has a limitation that the code should manipulate
the node operations in the network and therefore the code depends on the
network structure. In addition, the code in [20] requires the free use of
classical communication.

In the co-work [2] with my advisor Hayashi, we propose a quantum net-
work code for the multiple-unicast network which is a generalization of the
unicast quantum network code in Section 1.1 and overcomes the shortcom-
ings of the multiple-unicast quantum network code in [20]. In the same way
as the code in Section 1.1, the given node operations are quantum invertible
linear operations, our code requires the asymptotic n-use of the network for
the correct transmission of the state, and the encoding and decoding opera-
tions are performed on the input and output quantum systems of the n-use of
the network, respectively. On the other hand, differently from [20], our code
can be implemented without any manipulation of the network operations and
any classical communication. Moreover, our code makes no information leak-
age asymptotically from a sender Si to the receivers other than Ti because
the correctness of the transmitted state guarantees no information leakage
[4].

To discuss the achievable rate by our code, we consider the situation that
the input states of all senders are the bit basis states. Then, our network
can be considered as a classical network, called bit classical network, because
a bit basis state is transformed to another bit basis state by our quantum
node operations. In the bit classical network, we assume that when the
inputs of the senders other than Si are zero, the transmission rate from Si
to Ti is mi, which is the same as the number of outgoing edges of Si and
incoming edges of Ti. Also, when we define the interference rate by the
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(b) Bit classical network

[A1]p

S1 S2

T1 T2

Y2

Y1

Y ′
1

Y ′
2

Y2

Y ′
1 − Y2

(c) Phase classical network

Figure 1.2: Toy example of a multiple-unicast network. In quantum network
(a), |·〉b denote bit basis states and L(A1) is the network operation. The
network (b) and (c) is the bit and phase classical networks of the quantum
network (a).

rate of the transmitted information to Ti from the senders other than Si,
we assume that the interference rate to Ti is at most ai in the bit classical
network. In the same way, in case that the input states of all senders are set
to the phase basis states (defined in Section 3.1), we call the network a phase
classical network. In the phase classical network, we also assume that the
transmission rate from Si to Ti is mi when the inputs of the senders other
than Si are zero. Also, the interference rate to Ti is at most a′i in the phase
classical network. Under these constraints, if ai + a′i < mi, our code achieves
the rate mi − ai − a′i quantum communication from Si to Ti asymptotically.

To help the understanding of the rates described above, we explain the
achievable transmission rate from S1 to T1 in the network in Fig. 1.2. The
bit and the phase classical networks (Fig. 1.2b and Fig. 1.2c) are determined
from the quantum network (Fig. 1.2a) (see Section 3.1). When X ′1 = X ′2 =
Y ′1 = Y ′2 = 0, the transmission rates from S1 to T1 are 2 for both networks,
i.e., m1 = 2, which is also the number of outgoing edges of S1 and incoming
edges of T1. Also, the interference rates from S2 to T1 are 1 and 0 for the
bit and the phase classical networks, respectively. On this network, if our
code from S1 to T1 with the rates (m1, a1, a

′
1) = (2, 1, 0) is constructed, the

conditions a1 ≥ 1, a′1 ≥ 0 and a1 + a′1 < m1 are satisfied, and therefore our
code implements the rate m1 − a1 − a′1 = 1 quantum transmission from S1

to T1 asymptotically.
In a practical sense, our code can cope with node malfunctions in the

following case: on the multiple-unicast network with quantum invertible lin-
ear operations, the network operations are well-determined so that there is
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(Private Randomness Ui,1)
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(Shared Randomness SRi)

ESRi,Ri

i (ρi) σTi

S1...
Si

...

Sr

T1...
Ti
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Tr

Figure 1.3: Overview of code protocol from a sender Si to a receiver Ti.
States ρi and DSRi

i (σTi) are in code space H′code.

no interference between all sender-receiver pairs, but three broken nodes ap-
ply quantum invertible linear operations different from the determined ones.
Moreover, let the transmission rate m1 without interferences from S1 to T1

be 100 and the number of outgoing edges of the three broken nodes be 4.
In this case, 3 × 4 = 12 outgoing edges of the three broken nodes transmit
unexpected information which implies the bit (phase) interference rate is at
most 12. Therefore, by our code with m1 = 100 and a1, a

′
1 > 12, the sender

S1 can transmit quantum states to the receiver T1 correctly with the rate
100− a1 − a′1 < 76 by asymptotically many uses of the network.

1.3 Outline

The remainder of this thesis is organized as follows. Based on existing re-
sults, in Chapter 2, we give the mathematical basis of quantum information
theory. Four postulates of quantum information theory are introduced in
Sections 2.1, 2.2, 2.3 and 2.4. To prove the correctness and the security of
quantum network codes, it is needed to define measures for the difference of
two states and measures for leaked information. Section 2.5 defines measures
for difference of two quantum states and propose several properties of these
measures. Section 2.6 defines several informations measures which is related
to the measure of leaked information.

In Chapter 3, the secure quantum network code introduced in Section
1.1 is constructed. Section 3.1 gives the network structure and Section 3.2
formally states two main theorems of this chapter. Based on the preliminar-
ies in Section 3.3, our code is constructed in Section 3.4. In Section 3.5, we
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suggest the transmission protocol with our code and show that the entangle-
ment fidelity is upper bounded by the sum of the bit error probability and
the phase error probability. In Section 3.6, we derive the bit error probabil-
ity and the phase error probability. In Section 3.7, by attaching the secure
classical network code presented in [16] to our quantum network protocol, we
show that the secure quantum network code without classical communication
can be implemented. Section 3.8 explains how correctness implies secrecy in
our protocol.

In Chapter 4, the quantum network code for multiple-unicast network
introduced in Section 1.2 is constructed. Section 4.1 introduces the formal
description of the quantum multiple-unicast network with quantum invertible
linear operations. Section 4.2 gives the main theorem of this chapter. Section
4.4 concretely constructs our code with the free use of negligible rate shared
randomness. The encoder and decoder of our code is given in this section.
The performance of our code is analyzed in Section 4.5.

Chapter 5 is the conclusion of this thesis.
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Chapter 2

Quantum Information Theory

Quantum information theory is a theoretical framework to treat physical
quantum systems and it is mathematically defined from four postulates of
quantum systems, quantum states, quantum operation and measurement.

2.1 Quantum System and Quantum State

A quantum system is defined as a finite-dimensional Hilbert space H, which
is a complex vector space with standard inner product 〈·, ·〉 : H×H → C.

Postulate 1 (Quantum system). Any quantum system is described by a
finite-dimensional Hilbert space.

We will use the bra-ket notation to describe vectors in H and vectors
in the dual space H∗. From one-to-one correspondence between H and H∗,
for any vector |x〉 := (x1, . . . , xd)

> in H, there is a unique vector 〈x| ∈ H∗
defined by

〈x|y〉 :=
d∑
i=1

x̄iyi, ∀y ∈ H .

For any |x〉 = (x1, . . . , xd)
> ∈ H, |x̄〉 := (x̄1, . . . , x̄d)

>. Throughout this
thesis, we will use the term a basis to denote a orthonormal basis, M(H)
denotes the set of square matrices on H. Moreover, d denotes the dimension
of the quantum system H if it is not specified.

For a square matrix X on H, the adjoint matrix is defined by X∗ := X̄>

A matrix X on H is called a Hermitian matrix if X = X∗. A Hermitian
matrix X is called positive definite if

〈x|X|x〉 > 0, for any |x〉 ∈ H,
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and it is denoted by X > 0. Similarly, a Hermitian matrix X is called positive
semidefinite if

〈x|X|x〉 ≥ 0, for any |x〉 ∈ H,

and it is denoted by X ≥ 0.
Quantum states are defined by desity matrices.

Definition 2.1.1 (Density matrix on H). A matrix ρ ∈ M(H) is called a
density matrix on the quantum system H if

Tr ρ = 1 and ρ ≥ 0.

Postulate 2 (Quantum state). Any quantum state on a quantum system H
is described by a density matrix on H.

The set of states on a quantum system H is denoted as S(H) for the
following.

A state that can be represented by a probabilistic mixture of other states
is called a mixed state and a state which is not a mixed state is called a pure
state. Any state ρ is pure state if and only if ρ is a rank-one matrix. Since
the set of states of a quantum system is a convex set, it can also be regarded
that pure states are the extremal points of this set and the mixed states are
the inner points.

2.2 Composite System

Consider the case where we treat several quantum systems simultaneously.
A composite system of quantum systems is given as a tensor product of the
quantum systems, e.g. HA⊗HB is the composite system of HA and HB.

Throughout this thesis, we use single lettered subscripts to differentiate
quantum systems, e.g. HA,HB, . . . and multi-lettered subscript to denote
composite systems, e.g. HAB := HA⊗HB. Furthermore, we use the notation
|xA, xB〉 := |xA〉 ⊗ |xB〉 ∈ HA⊗HB.

States on a composite system are defined in the same way as states on
a single system. Note that the states are not necessarily the tensor product
of those in each subsystems. States which are written as tensor products of
states on subsystems are called seperable states: a state ρ is separable if

ρ =
∑
i

piρ
i
A ⊗ ρiB,

∑
i

pi = 1, pi ≥ 1,
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where ρiA and ρiB are states on HA and HB, respectively. States which are
not seperable are called entangled states.

For any state ρ in HAB, the states ρA := TrB ρ and ρB := TrA ρ are states
on HA and HB, called reduced states, where the partial trace TrB (TrA) is
defined as follows.

Definition 2.2.1 (Partial trace). Let {|eBi 〉} be a basis of the system HB.
For any X ∈M(HAB),

Tr
B
X

def
=
∑
i

(I ⊗ 〈eBi |)X(I ⊗ |eBi 〉),

or alternatively, TrB : HAB → HA is a linear operator such that

Tr
B
X ⊗ Y def

= X TrY, ∀X ∈M(HA), Y ∈M(HB).

Given any ρ ∈ S(HA), a state ρ̃ ∈ S(HAR) is called an extension of ρ if

Tr
R
ρ̃ = ρ.

Especially, if an extension ρ̃ of ρ is a pure state, the state ρ̃ is called a
purification of ρ.

Maximally entangled states and completely mixed states are the most
important states in quantum information theory. Given a quantum system
H spanned by a basis {ei : i = 1, . . . , d}, the maximally entangled state is
defined by |Φ〉 :=

∑d
i=1 |ei, ei〉〈ei, ei| ∈ S(H⊗H) and the completely mixed

state is ρmix := I =
∑d

i=1 |ei〉〈ei| ∈ S(H). The maximally entangled state
|Φ〉 is a purification of the completely mixed state ρmix and conversely, the
latter is a reduced state of the former.

2.3 Quantum Operation

Quantum operations describe the dynamics between two quantum systems.
First, we will give several conditions that quantum operations between two
systems should satisfy and define quantum operations by trace preserving
completely positve (TP-CP) maps.

Quantum operations are maps κ from S(HA) to S(HB) satisfying the
following conditions.

Condition 1 Quantum operations are affine maps.

A map f is called an affine map if

f(px1 + (1− p)x2) = pf(x1) + (1− p)f(x2), p ∈ (0, 1).
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Since the mixed states are no other than the probabilistic mixture of
other states, the quantum operation should act in the same way on
the states composing the mixed states. Therefore, when ρ1 and ρ2 are
states on HA, the following condition for affine maps should hold:

κ(pρ1 + (1− p)ρ2) = pκ(ρ1) + (1− p)κ(ρ2), p ∈ (0, 1).

Condition 1’ Quantum operations are linear maps.

Condition 1’ is the generalization from the affinity to the linearity.

Condition 2 Quantum operations are positive maps.

A positive map is a map that maps a positive semidefinite matrix to a
positive semidefinite matrix. Considering quantum states are positive
semidefinite matrices, the quantum operations should be positive maps.

Condition 2’ Quantum operations are completely positive maps.

Even in the case that the quantum opration κ from HA is considered
as an operation from the larger system HA⊗Cn by applying identity
operator to Cn, the quantum operation κ should still be a positive map,
i.e. κ⊗ ιCn should be positive for any n where ιCn is the identity map
on Cn. When κ ⊗ ιCn is a positive map, the operation κ is called n-
positive map. When κ is n-positive for any dimension n, the operation
κ is called a completely positive map. Therefore quantum operations
should be completely positive maps.

Condition 3 Quantum operations are trace-preserving maps.

The resultant state κ(ρ) should be traced to 1.

To summarize, quantum operations should satisfy the above Condition 1’,
Condition 2’, and Condition 3. The maps satisfying these three conditions
are called trace-preserving completely positive (TP-CP) maps.

Quantum information theory postulates that the set of TP-CP maps is
the same as the set of quantum operations.

Postulate 3. Any quantum operations are described by trace-preserving com-
pletely positive (TP-CP) maps.

One of the most important result for describing quantum operations is
that we have two detailed representations for TP-CP maps. To see this result,
we introduce the following theorem which characterizes the TP-CP maps.
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Theorem 2.3.1 (Equivalent conditions on TP-CP maps). Given a quantum
operation κ : S(HA) → S(HB), the followings are equivalent. The dimen-
sions of HA and HB are denoted by dA and dB, respectively.

1. κ is a TP-CP map.

2. κ is a TP (min{dA, dB})-positive map.

3. (Stinespring representation) For HC ' HB, there exist a pure state
ρ0 ∈ HBC and unitary matrix U on HA⊗HB ⊗HC such that

κ(ρ) = Tr
AC
U(ρ⊗ ρ0)U∗.

4. (Choi-Kraus representation) There exists a set {Fi}dAdBi=1 of linear maps
from HA to HB satisfying

∑
i FiF

∗
i = IA such that

κ(ρ) =
∑
i

FiρF
∗
i .

Stinespring representation shows that quantum operations are nothing
other than multiplying a unitary matrix and its adjoint on both sides of the
states and focusing on the subsystem.

2.4 Measurement

In this section, we discuss measurements to quantum systems. Measurement
to a quantum system is an essential tool to extract classical information
from the quantum state.1 If a measurement is performed, the measurement
outcome is obtained probabilistically and it also disturbs the state of the
system. Therefore, to model the measurement, it needs to describe both of
the probability distribution and the change of the state.

Given a set Ω of measurement outcomes, consider describing a measure-
ment by a set of maps κΩ := {κω : ω ∈ Ω} such that the probability to obtain
ω ∈ Ω is Trκω(ρ) and the resultant state is (1/Trκω(ρ))κω(ρ). Similarly to
the conditions for quantum operations, the maps {κω : ω ∈ Ω} should satisfy
the following conditions.

Condition 1 κω are linear maps.

Condition 2 κω are completely positive (CP) maps.

1Extracting classical information is important because all the information recognizable
by humans is not quantum states but classical information.
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Condition 3
∑

ω∈Ω Trκω(ρ) = 1.

The set of maps κω that satisfies the Condition 1, Condition 2, Condition
3 are defined as an instrument.

Definition 2.4.1 (Instrument κΩ). A set κΩ = {κω : ω ∈ Ω} of linear
CP-maps is called an instrument if

∑
ω κω is TP-CP map.

The last postulate of quantum information theory is given as follows.

Postulate 4 (Measurement). Any measurement is described by an instru-
ment κΩ := {κω : ω ∈ Ω}. When a measurement κΩ is applied, the probability
to obtain ω ∈ Ω is Trκω(ρ) and the resultant state is (1/Trκω(ρ))κω(ρ).

If our interest is only the probabilistic distribution of the measurement
outcome, it is enough to treat positive operator-valued measurement (POVM).

Definition 2.4.2 (Positive Operator-Valued Measurement (POVM) MΩ).
A set of matrices MΩ := {Mω ∈ M(H) : ω ∈ Ω} is called a POVM on the
quantum system H if∑

ω

Tr ρMω = 1 and Mω ≥ 0 for any Mω ∈MΩ.

Given a state ρ and a POVM M = {Mω : ω ∈ Ω} on H, the probability
for obtaining ω is Tr ρMω.

2.5 Measures of Difference of Two States

In this section, we introduce two measures for difference of two states, fidelity
and entanglement fidelity.

2.5.1 Fidelity

Fidelity is defined as follows: for any two states ρ1 and ρ2 on H,

F (ρ1, ρ2)
def
= ||√ρ1

√
ρ2||1 = Tr |√ρ1

√
ρ2|

Theorem 2.5.1 ([3]). For any two states ρ1 and ρ2 on H,

F (ρ1, ρ2) = max{|〈u1|u2〉| : |u1〉, |u2〉 are purification of ρ1, ρ2}.

Corollary 2.5.1. Let ρ1 and ρ2 be states on HA. Given a purification |x〉
of ρ1, there exists a purification |y〉 of ρ2 such that

F (ρ1, ρ2) = |〈x|y〉| = 〈x|y〉.
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From the above corollary, several useful properties of fidelity are derived.

Corollary 2.5.2 (Properties of fidelity). 1. (Symmetricity) F (ρ, σ) = F (σ, ρ).

2. (Range of fidelity) F (ρ, σ) ∈ [0, 1]

3. (Maximum condition) F (ρ, σ) = 1 if and only if ρ = σ.

4. (Monotonicity) F (ρ1, ρ2) ≤ F (κ(ρ1), κ(ρ2)) for any TP-CP map κ.

2.5.2 Entanglement Fidelity

In many contexts of quantum information theory, it is important to measure
the difference of the states before and after applying quantum operation κ.
For this reason, the measure Fe is defined as follows as a measure of the most
destructive operation including κ.

Fe(ρ, κ) := min
ρ̃,κR

F
(

(ιA ⊗ κR)ρ̃, (κ⊗ κR)ρ̃
)

= min
ρ̃
F
(
ρ̃, (κ⊗ ιR)ρ̃

)
= F

(
|x〉〈x|, (κ⊗ ιR)(|x〉〈x|)

)
where ρ̃ is an extension of ρ and |x〉〈x| is a purification of the state ρ. From
this reasoning, entanglement fidelity is defined as follows.

Definition 2.5.1 (Entanglement fidelity). Given a CP-map κ : HA → HA,
for any purification x of ρ, the following is uniquely defined and called en-
tanglement fidelity:

Fe(ρ, κ)
def
= F

(
|x〉〈x|, κ⊗ ιR(|x〉〈x|)

)
=
√
〈x|κ⊗ ιR(|x〉〈x|)|x〉

=

√∑
j

|TrEjρ|2. (2.1)

where {Ej} is Choi-Kraus representation of κ.
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Proof of (2.1).

〈x|κ⊗ ιR(|x〉〈x|)|x〉 = Trκ⊗ ιR(|x〉〈x|)|x〉〈x|

=
∑
i

Tr(Ei ⊗ IR)|x〉〈x|(E∗i ⊗ IR)|x〉〈x|

=
∑
i

(Tr(E∗i ⊗ IR)|x〉〈x|)(Tr(Ei ⊗ IR)|x〉〈x|)

=
∑
i

Tr
A
E∗i ρTr

A
Eiρ

=
∑
i

(Tr
A
Eiρ)∗Tr

A
Eiρ

=
∑
i

|Tr
A
Eiρ|2

The square of entanglement fidelity is convex with respect to states.

Theorem 2.5.2 (Convexity of squared entanglement fidelity with respect to
states). F 2

e is convex with respect to states:

F 2
e (λρ+ (1− λ)σ, κ) ≤ λF 2

e (ρ, κ) + (1− λ)F 2
e (σ, κ).

Proof. Note on F 2
e (ρ, κ) =

∑
j |TrEjρ|2. Since x2 and |x| are convex and

trace operator is linear, F 2
e (ρ, κ) is convex with respect to ρ.

Convexity of squared entanglement fidelity implies Corollary 2.5.3.

Corollary 2.5.3. Let ρ be any state on H. There exists λ0 ≥ 0 and σ ∈ S(H)
such that

1− F 2
e (ρmix, κ) ≥ λ0(1− F 2

e (ρ, κ)) + (1− λ0)(1− F 2
e (σ, κ)). (2.2)

Proof. Let ρ is diagonalized as ρ =
∑

i pi|ui〉〈ui|. The values λ0 ≤ 1/(d ·
maxi pi) and σ :=

∑
i qi|ui〉〈ui| for qi := −λ0/(1 − λ0)pi + 1/(d(1 − λ0))

satisfy the inequality (2.2).

Corollary 2.5.3 implies that if 1−F 2
e (ρmix, κ) is close to 0, 1−F 2

e (ρ, κ) is
also close to 0 for any state ρ. Therefore, the invariance of arbitrary states
by κ can be evaluated by that of the completely mixed state ρmix. This fact
is important in the error analysis of quantum network codes in Chapters 3
and 4.

Moreover, squared entanglement fidelity can be evaluated with the special
bases called mutually unbiased bases.
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Definition 2.5.2 (Mutually unbiased basis). Two orthonormal bases {|ei〉}
and {|ui〉} of Hilbert space H are called mutually unbiased if and only if

|〈ei|ui〉| =
1√
d
.

Given mutually unbiased bases B1 = {|ei〉} and B2 = {|ui〉} ofH, consider
two maximally entangled states on H⊗H.

|Φ1〉 =
∑
i

1

d
|ei, ēi〉, |Φ2〉 =

∑
i

1

d
|ui, ūi〉,

and projections

P1 =
∑
i

|ei, ēi〉〈ei, ēi|, P2 =
∑
i

|ui, ūi〉〈ui, ūi|.

By a change of basis matrix F :=
∑

i |ui〉〈ei|, we have the relations |Φ2〉 =
(F ⊗ F̄)|Φ1〉 and P2 = (F ⊗ F̄)|Φ1〉〈Φ1|(F ⊗ F̄)∗.

Theorem 2.5.3. The following properties hold for the above maximally en-
tangled states and projections.

1. Φ1 = Φ2. Thus, define Φ := Φ1 = Φ2.

2. P1P2 = |Φ〉〈Φ|.

3. 1
2
((I − P1) + (I − P2)) ≤ I − P1P2 ≤ (I − P1) + (I − P2).

Proof. 1. 〈Φ1|Φ2〉 = 1.

2. Simple calculation.

3. (right inequality) (I − P1)(I − P2) ≥ 0.

(left inequality) Since P1 and P2 are orthogonal projections, P1−P2 is
Hermitian and diagonalizable. Therefore, (P1 − P2)2 ≥ 0 holds and it
proves the left inequality.

The above proposition implies the following theorem for bounds of en-
tanglement fidelity.

Theorem 2.5.4. For i = 1, 2, define the error probability with respect to
the i-th basis by Ei := 1 − TrPiκ ⊗ ι(|Φ〉〈Φ|). Then, the above proposition
implies

1

2
(E1 + E2) ≤ 1− F 2

e (ρmix, κ) ≤ (E1 + E2).
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Proof. From F 2
e (ρmix, κ) = Tr |Φ〉〈Φ|κ ⊗ ι(|Φ〉〈Φ|), we have the theorem by

applying the above proposition.

Corollary 2.5.4. E1 + E2 → 0 if and only if 1− F 2
e (ρmix, κ)→ 0.

2.6 Quantum Information Measures

Definition 2.6.1 (von Neumann entropy). For a state ρ on HA,

H(ρ)
def
= Tr ρ log ρ.

Definition 2.6.2 (Quantum mutual entropy). For a state ρ on HAB,

Iρ(A;B)
def
= H(ρA) +H(ρB)−H(ρ).

Definition 2.6.3 (Quantum entropy exchange).

He(ρ, κ)
def
= H(κ⊗ ι(|x〉〈x|)).

Theorem 2.6.1 (Quantum Fano’s inequality). Given ρ ∈ S(H)

He(ρ, κ) ≤ h(F 2
e (ρ, κ)) + (1− F 2

e (ρ, κ)) log(d2 − 1)

where d = dimH.

2.6.1 Leaked Information

Suppose a set of input states W := {ρx} is generated with the probabilistic
distribution p = {px}. In this case, the composite state of quantum states
and classical probabilistic distribution can be written as

ρ =
∑
x

pxρx ⊗ |x〉〈x| ∈ S(HAR).

If a quantum operation κ is applied to the state ρ, the leaked information
about x by the quantum state ρx is measured by mutual information I(p,W ):

I(p,W ) := Iρ(A;R) = H
(
κE

(∑
x

pxρx

))
−
∑
x

pxH(κE(ρx)).

Since He(ρ, κ) = H(κE(
∑

x pxρx)) in our choice of ρ, we have the inqualities

I(p,W ) ≤ He(ρ, κ) ≤ h(F 2
e (ρ, κ)) + (1− F 2

e (ρ, κ)) log(d2 − 1),

where d is the dimension of the input system of κ and the second inequality
follows from quantum Fano’s inequality.
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Chapter 3

Secure Quantum Network Code
on Unicast Network

In this chapter, we construct a secure quantum network code.

3.1 Quantum Network and Attack Model

We give the formal description of our quantum network which is defined
as a natural quantum extension of a classical network. The information
rates related to network transmission and malicious attack are summarized
in Table 3.1.

3.1.1 Network Structure and Transmission

We consider the network described by a directed acyclic graph GN = (V,E)
where V is the set of nodes (vertices) and E is the set of channels (edges). The
network GN has one source node v0 which has m0 outgoing channels and one
sink node vc+1 which has m0 incoming channels. The nodes, which are not
source or sink, are called intermediate nodes and denoted as v1, v2, . . . , vc
where c := |V | − 2 according to the order of the information conversion.
An intermediate node vt has the same number kt of incoming and outgoing
channels where 1 ≤ kt ≤ m0. For convenience, we define k0 = kc+1 := m0.

The transmission on the network GN is described as follows. Each chan-
nel transmits information noiselessly unless the channel is attacked, and each
node applies information conversion noiselessly at any time. At time 0, the
source node transmits the input information along m0 outgoing channels.
At time t where 1 ≤ t ≤ c, the node vt applies information conversion to
the information from kt incoming channels, and outputs conversion outcome
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Table 3.1: Definitions and notations

m0 Network transmission rate

m1 (< m0/2) Maximum number of attacked channels

ma (≤ m1) The number of the attacked channels

H Unit quantum system

q Dimension of H (prime power)

n Block-length

H′ Extended unit quantum system

α Dimension of extension

q′ Dimension of H′

n′ Block-length with respect to H′

H(n)
code Code space with block-length n

κ(n) Code protocol with block-length n

|x〉b (x ∈ Fq (Fq′)) Bit basis element of H (H′)
|z〉p (z ∈ Fq (Fq′)) Phase basis element of H (H′)

along kt outgoing channels. After time c, the sink node receives the output
information from the m0 incoming channels. The details of the transmit-
ted information and information conversion are described in the following
subsections.

The m0 outgoing channels of the source node are numbered to 1, . . . ,m0

and after the conversion in the node vt, the assigned numbers are moved from
kt incoming channels to kt outgoing channels.

3.1.2 Classical Network

To explain our model of the quantum network, we consider the classical case.
When we use the channel only once, each channel transmits one symbol of the
finite field Fq. Hence, the information at each time is described by the vector
space Fm0

q . We assume that the information conversion at each intermediate
node is an invertible and linear operation. That is, the information conversion
at intermediate node vt is written as an invertible kt × kt matrix At acting
only on the kt components of the vector space Fm0

q . Therefore, combining all
the conversions, the relation between the input information x ∈ Fm0

q and the
output information y ∈ Fm0

q can be characterized by an invertible m0 ×m0
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ρ 7→ L(At)ρL(At)
†

[Node vt]

H⊗n

H⊗n

...

H⊗n

H⊗n

H⊗n

...

H⊗n

1
2

kt

1
2

kt

Figure 3.1: Transmission and operation at the intermediate node vt in quan-
tum network by using the network n times. Both ρ and L(At)ρL(At)

† are
density matrices on H⊗kt×n.

matrix K as

y = Kx.

We extend the above discussion to the case of n uses of the network, i.e.,
each channel trasmits n symbols of Fq. We assume that every intermediate
node vt applies the matrix At n times. When the input and output infor-
mations are written as m0 × n matrices X and Y , respectively, we have the
relation

Y = KX. (3.1)

Next, we discuss the case where Eve attacks ma (≤ m1) channels. Since
all the node operations are linear, there is a linear relation between the
information on each channel and output information. That is, there are ma

vectors w1, . . . , wma in Fm0
q satisfying the following condition: when Eve adds

the noise z1, . . . , zma ∈ Fnq on the ma attacked channels, the relation (3.1) is
changed to

Y = KX +
ma∑
j=1

wjz
>
j = KX +WZ, (3.2)

whereW = [w1, . . . , wma ] and Z = [z1, . . . , zma ]>. Here, the vectors w1, . . . , wma

are determined by the network topology and a linear operation on each node.
For the detail, see [20, Section 2.2]. Even when Eve chooses the noise depen-
dently of the input information, the output Y is always written in the form
(3.2) while Z might depend on X. That is, the noise is given by the subspace
WC ⊗ Fnq , where WC is defined as the subspace spanned by columns of W .

3.1.3 Quantum Network

We consider a natural quantum extension of the above classical network.
Each single use of quantum channel transmits a quantum system H of dime-
nension q spanned by {|x〉b}x∈Fq . In n uses of the network, the whole system
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to be transmitted is written as H⊗m0×n spanned {|X〉b}X∈Fm0×n
q

. To describe

the node operations, we introduce the following unitary operations called
quantum invertible linear operations

Definition 3.1.1 (Quantum Invertible Linear Operation). For an invertible
m×m matrix A and an invertible n× n matrix B, two unitaries L(A) and
R(B) are defined as

L(A)|X〉b= |AX〉b, R(B)|X〉b= |XB〉b, for anyX∈Fm×nq .

Node vt converts the information on the subsystem H⊗kt×n by applying
the unitary L(At). When there is no attack, the operation of the whole
network is the application of the unitary L(K).

Next, consider the malicious attack when the maximum number of the
attacked channel is m1 over n uses of the network. To describe the network
transmission where Eve attacks ma (≤ m1) quantum channels in n uses of
the network, we introduce the following assumption and notations. Assume
that Eve possesses a large quantum system HW . Denote the set of attacked
channels as EA := {ea,1, . . . , ea,ma} ⊂ E. The quantum systems possessed
by ea,1, . . . , ea,ma are spanned by {|z>〉b}z∈Fn

q
and denoted by Ha,1, . . . ,Ha,ma ,

respectively. Define a function τ : {1, . . . ,ma} → {0, . . . , c} so that the input
nodes of the edges ea,1, . . . , ea,ma are vτ(1), . . . , vτ(ma), respectively. Moreover,
define Ot := {i ∈ {1, . . . ,ma} | τ(i) = t} for t = 0, . . . , c. Then, HOt :=
⊗i∈OtHa,i denotes the quantum system of channels attacked at time t by the
discussion below.

The transmission on our quantum network with ma channel attacks is
described by the iteration of the following process from time t = 0 to t = c.
At time t, after node vt applies the node operation L(At) on the quantum
system H⊗kt×n of kt incoming channels (no operation if t = 0), the quantum
system H⊗kt×n is sent through outgoing kt channels. Among the kt outgoing
channels, the channels ea,i with i ∈ Ot are corrupted by Eve’s arbitrary
operations on HOt ⊗HW , and then the corrupted quantum systems arrive at
the next nodes. Eve’s operations can be any trace preserving and completely
positive (TP-CP) maps, measurements or both. It can also be adaptive on the
previous measurement outcomes and Eve is assumed to know the topology of
the network and the node operations in the network. After all of kt systems
arrive at the next nodes, the process at time t ends.

3.2 Main Results

Our code is a pair of an encoder and a decoder and it is constructed without
any knowledge of the network: the node operations L(At), network operation

23



L(K) nor the topology of the network. In the following, we use the given
quantum network n times, i.e., the block-length is n.
Main Idea in Our Code: Our quantum code is designed based on the
classical network codes in [9, 18] which correct malicious injection by finding
the subspace of injection from the received message and then recovering the
original message from the information not in the injected subspace. In the
analysis of our code, we reduce the correctness of our code to that of two
classical codes with respect to bit basis and phase basis. In that reduction,
our quantum code is sophisticatedly defined so that the two classical codes
are similar to the codes in [9, 18]. A difficult point in this reduction to the
classical codes is that the accessible information from the network output
state is restricted since measurement disturbs the quantum states, whereas
the classical codes [9, 18] have access to all information of the network output.
Our code circumvents this difficulty by attaching to the codeword the ancilla
whose measurement outcome contains sufficient information for finding the
subspace of injection.
Main Results: First, we present the coding theorem with use of the secret
shared randomness of negligible rate. The shared randomness between the
encoder and the decoder plays a crucial role in our code. The results are
stated with respect to the entanglement fidelity for the quantum protocol
κ(n), a purification |x〉 of the state ρ and the identity operator ιR on the
reference system. Here, the quantum protocol κ(n) is the combination of
the encoding, network tranmission with attack and the decoding, and it is
formally defined in Section 3.5. The completely mixed state is denoted as
ρmix.

Theorem 3.2.1 (Quantum Network Code with Negligible Rate Secret Shared
Randomness). Suppose that the operation of the whole network is the applica-
tion of the unitary L(K) of an invertible matrix K ∈ Fm0×m0

q and at most m1

channels are attacked over the entire uses of the network. When m1 < m0/2
holds and the sender and the receiver can share the secret randomness with
a negligible rate in comparison with the block-length n, independently of the
invertible matrix K, there exists a sequence of quantum network codes which
implements the quantum transmission TP-CP map κ(n) from H(n)

code to itself

where limn→∞(1/n) · logq dimH(n)
code = m0 − 2m1 holds and the entanglement

fidelity F 2
e (ρmix, κ

(n)) satisfies limn→∞ n(1− F 2
e (ρmix, κ

(n))) = 0. �

Notice that this code depends only on the rates m0 and m1, and does not
depend on the detailed structure of the network. Section 3.4 gives the code
realizing the performance mentioned in Theorem 3.2.1. In Sections 3.5 and
3.6 it is proved that the code given in Section 3.4 satisfies the performance
mentioned in Theorem 3.2.1.
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Indeed, it is known that there exists a classical network code to transmit
classical information securely when the number of attacked channels is less
than a half of the transmission rate from the sender to the receiver [16].
Although Theorem 3.2.1 requires secure transmission of classical information
with negligible rate, the result [16] mentioned that such secure transmission
can be realized by using our quantum network in bit basis states with the
negligible number of times. Hence, as shown in Section 3.7, the combination
of the result [16] and Theorem 3.2.1 yields the following theorem.

Theorem 3.2.2 (Quantum Network Code without Classical Communica-
tion). Suppose that the operation of the whole network is the application of the
unitary L(K) of an invertible matrix K ∈ Fm0×m0

q and at most m1 channels
are attacked over the entire uses of the network. When m1 < m0/2, indepen-
dently of the invertible matrix K, there exists a sequence of quantum network
codes which implements the quantum transmission TP-CP map κ(n) from
H(n)

code to itself where limn→∞(1/n) · logq dimH(n)
code = m0 − 2m1 holds and the

entanglement fidelity F 2
e (ρmix, κ

(n)) satisfies limn→∞ n(1 − F 2
e (ρmix, κ

(n))) =
0. �

Connection to Code in [8] : The quantum error-correcting code in [8]
asymptotically corrects arbitrary errors when the number of errors is less than
a half of the code length. Therefore, if the network consists of parallel m0

channels (i.e., L(K) is the identity operator), the code in [8] can be applied
to our network. However, if L(K) is not the identity, the code in [8] cannot
be applied because even one network channel attack might corrupt all m0

network outputs by error propagation. In this sense, our code generalizes the
result in [8], but instead, we employ the secret shared randomness between
the encoder and the decoder. As mentioned above, however, we can share
the secret randomness necessary for our code without losing any asympototic
rate by attaching the protocol in [16].

3.3 Preliminaries

3.3.1 Phase Basis

We discuss the operation on the phase basis {|z〉p}z∈Fq defined as [17, Section
8.1.2]

|z〉p :=
1
√
q

∑
x∈Fq

ω− tr(xz)|x〉b,
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where ω := exp (2πi/p) and tr y := TrMy (y ∈ Fq) with the multiplication
map My : x 7→ yx identifying the finite field Fq with the vector space Ftp.
The following Lemma 3.3.1 shows the application of the unitaries L(A) and
R(A) to the phase basis states, and is proved in Appendix A.

Lemma 3.3.1. When A ∈ Fm×mq and B ∈ Fn×nq are invertible matrices, any
M ∈ Fm×nq satisfies

L(A)|M〉p = |(A>)−1M〉p, R(B)|M〉p = |M(B>)−1〉p.

We use notation [C]p := (C−1)> = (C>)−1 for an invertible matrix C.

3.3.2 Extended Quantum System in Our Code

In our code, the extended quantum system H′, described below, is con-
sidered as a unit quantum system of encoding and decoding operations.
Dependently of the block-length n, we choose an integer α such that α
and the power q′ := qα of q satisfy the conditions limn→∞ α/n = 0 and
limn→∞ n · (n′)m0/(q′)m0−m1 = 0 (e.g. α = d(1 + (2 +m1)/(m0−m1)) logq ne)
where n = n′α. We identify the system H′ := H⊗α with the system spanned
by {|x〉b}x∈Fq′

. Then, n uses of our quantum network can be regarded as
n′ uses of quantum network over the quantum system H′. Similarly to the
system H, for invertible matrices A ∈ Fm×mq′ and B ∈ Fn×nq′ , two unitaries
L′(A) and R′(B) are defined as

L′(A)|X〉b=|AX〉b, R′(B)|X〉b=|XB〉b, for anyX∈Fm×nq′ .

Lemma 3.3.1 is also satisfied for L′(A) and R′(B).

3.3.3 Notations for Quantum Systems

By n uses of the network, the quantum system H⊗m0×n = (H′)⊗m0×n′ is
transmitted. We denote

(H′)⊗m0×n′=H′A ⊗H′B ⊗H′C := (H′)⊗m0×m0⊗(H′)⊗m0×m0⊗(H′)⊗m0×(n′−2m0).

Moreover, for X ∈ {A,B, C} and (mA,mB,mC) := (m0,m0, n
′ − 2m0), we

define

H′X =H′X1 ⊗H′X2 ⊗H′X3 := (H′)⊗m1×mX ⊗ (H′)⊗(m0−2m1)×mX ⊗ (H′)⊗m1×mX .
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The tensor product state on H′X of |φ〉 ∈ H′X1, |ψ〉 ∈ H′X2, and |ϕ〉 ∈ H′X3 is
denoted as  |φ〉|ψ〉

|ϕ〉

 := |φ〉 ⊗ |ψ〉 ⊗ |ϕ〉 ∈ H′X .

The bit or phase basis state of block matrix is denoted by∣∣∣∣∣
XY
Z

〉
b

:=

|X〉b|Y 〉b
|Z〉b

 , ∣∣∣∣∣
XY
Z

〉
p

:=

 |X〉p|Y 〉p
|Z〉p

 ,
where (X, Y, Z) ∈ Fm1×mX

q × F(m0−2m1)×mX
q × Fm1×mX

q .
On the other hand, 0k,l denotes the k× l zero matrix in Fk×lq and |i, j〉 :=

|i〉 ⊗ |j〉.

3.3.4 CSS code in our quantum network code

In our code, we employ CSS code described in this subsection. Define classical

codes C1, C2 ⊂ Fm0×(n′−2m0)
q′ by

C1 :=

{0m1,n′−2m0

X2

X3

∈Fm0×(n′−2m0)
q′

∣∣∣∣X2∈F(m0−2m1)×(n′−2m0)
q′ , X3∈Fm1×(n′−2m0)

q′

}
,

C2 :=

{ X1

X2

0m1,n′−2m0

∈Fm0×(n′−2m0)
q′

∣∣∣∣X1∈Fm1×(n′−2m0)
q′ , X2∈F(m0−2m1)×(n′−2m0)

q′

}
.

Classical codes C1 and C2 satisfy C1 ⊃ C⊥2 . For any coset [M1] ∈ C1/C
⊥
2

containing M1 ∈ F(m0−2m1)×(n′−2m0)
q′ , define a quantum state |[M1]〉b ∈ H′C by

|[M1]〉b :=
1√
|C⊥2 |

∑
Y ∈C⊥2

∣∣∣∣∣
 0m1,n′−2m0

M1

0m1,n′−2m0

+ Y

〉
b

=

 |0m1,n′−2m0〉b
|M1〉b

|0m1,n′−2m0〉p

 .
With the above definitions, the code space is given as H(n)

code := H′C2 =

(H′)⊗(m0−2m1)×(n′−2m0), and a state |φ〉 ∈ H(n)
code is encoded as |0m1,n′−2m0〉b

|φ〉
|0m1,n′−2m0〉p

 ∈ H′C.
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3.4 Code Construction with Negligible Rate

Secret Shared Randomness

Now, we describe the quantum network code with the secret shared random-
ness of negligible rate. In our code, the encoder and decoder are determined
by secret random variables SR = (R2, V ) and R0. These random variables
are chosen uniformly and independently satisfying the following conditions:
the random variable R2 = (R2,b, R2,p) ∈ F(m0−m1)×m0

q′ × F(m0−m1)×m0

q′ consists
of two random matrices R2,b, R2,p of rank m0 − m1, the random variable
V = (V1, . . . , V4m0) consists of 4m0 random variables V1, . . . , V4m0 ∈ Fq′ , and
the random variable R0 ∈ Fm0×m0

q′ is an m0×m0 invertible matrix. Before the
encoding, the random variable SR is shared between encoder and decoder,
and R0 is owned by encoder. Note that the size of the shared secret random
variable SR is negligible with respect to n.

Depending on the secret random variables SR and R0, the encoder ESR,R0

is defined as an isometry quantum channel from H(n)
code to

H⊗m0×n = (H′)⊗m0×n′ = H′A ⊗H′B ⊗H′C.

Depending on the secret shared random variable SR, the decoder DSR is
defined as a TP-CP map from H⊗m0×n to H(n)

code. We give the details of the
encoder ESR,R0 and the decoder DSR in the following subsections.

3.4.1 Encoder ESR,R0

We give the encoding operation when the input state is a state |φ〉 ∈ H(n)
code.

Encode 1 (Check Bit Embedding) Encode the input state |φ〉 by

an isometry map UR2
1 : H(n)

code → H′A ⊗H′B ⊗H′C defined as

|φ1〉 :=UR2
1 |φ〉 =

∣∣∣∣∣∣
0m1,m0

R2,b

〉
b

⊗

∣∣∣∣∣∣
 R2,p

0m1,m0

〉
p

⊗

|0m1,n′−2m0〉b
|φ〉

|0m1,n′−2m0〉p

.
Encode 2 (Vertical Mixing) Encode |φ1〉 with the unitary map
L′(R0) :=

∑
X∈Fm0×n′

q′
|R0X〉〈X| as

|φ2〉 := L′(R0)|φ1〉 ∈ H′A ⊗H′B ⊗H′C.

Encode 3 (Horizontal Mixing) From the shared randomness V , de-
fine matrices Q1;i,j := (Vj)

i, Q2;i,j := (Vm0+j)
i for 1 ≤ i ≤ n′− 2m0,
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1 ≤ j ≤ m0, and Q3;i,j := (V2m0+j)
i, Q4;i,j := (V3m0+j)

i for 1 ≤ i ≤ m0 and
1 ≤ j ≤ m0. With these matrices, define the random matrix RV

1 ∈ Fn′×n′q′

as

RV
1 :=

 Im0 0m0,m0 0m0,n′−2m0

Q>3 Q4 Im0 0m0,n′−2m0

0n′−2m0,m0 0n′−2m0,m0 In′−2m0


·

 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 Q>2
0n′−2m0,m0 0n′−2m0,m0 In′−2m0


·

 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 0m0,n′−2m0

Q1 0n′−2m0,m0 In′−2m0

 ,
where Id is the d-dimensional identity matrix.

Encode |φ2〉 with the unitary map R′(RV
1 ) :=

∑
X∈Fm0×n′

q′
|XRV

1 〉〈X| as

|φ3〉 := R′(RV
1 )|φ2〉 ∈ H′A ⊗H′B ⊗H′C.

Therefore, the encoder ESR,R0 is the isometry map written as

ESR,R0 : |φ〉 7→ R′(RV
1 )L′(R0)UR2

1 |φ〉 ∈ H′A⊗H′B⊗H′C.

3.4.2 Decoder DSR

We give the decoding operation when the input state is a state |ψ〉 ∈ Hm0×n =
H′A ⊗H′B ⊗H′C.

Decode 1 (Decoding of Encode 3) Construct (RV
1 )−1 from the

shared randomness V = (V1, . . . , V4m0) as

(RV
1 )−1 :=

 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 0m0,n′−2m0

−Q1 0n′−2m0,m0 In′−2m0


·

 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 −Q>2
0n′−2m0,m0 0n′−2m0,m0 In′−2m0


·

 Im0 0m0,m0 0m0,n′−2m0

−Q>3 Q4 Im0 0m0,n′−2m0

0n′−2m0,m0 0n′−2m0,m0 In′−2m0

.
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The unitary map R′(RV
1 )† =

∑
X∈Fm0×n′

q′
|X(RV

1 )−1〉〈X| is the decoder for

the encoder R′(RV
1 ). By applying R′(RV

1 )†, the state |ψ〉 is decoded as

|ψ1〉 := R′(RV
1 )†|ψ〉 ∈ H′A ⊗H′B ⊗H′C.

Decode 2 (Error Correction) Perform the bit and the phase basis
measurements on the systems H′A and H′B, respectively. The measure-
ment outcomes are denoted as Ob, Op ∈ Fm0×m0

q′ . With these measurement

outcomes, find the invertible matrices DR2,Ob

3,b , D
R2,Op

3,p ∈ Fm0×m0

q′ as the so-
lutions to satisfy

PWb
DR2,Ob

3,b Ob =

[
0m1,m0

R2,b

]
, (3.3)

PWp [D
R2,Op

3,p ]pOp =

[
R2,p

0m1,m0

]
, (3.4)

where PWb
and PWp are projections to the subspaces Wb,Wp ⊂ Fm0

q′ whose
1-st, . . . , (m1)-th elements are 0 and (m0−m1+1)-st, . . . , (m0)-th elements
are 0, respectively.

If the invertible matrix DR2,Ob

3,b or D
R2,Op

3,p does not exist, decoder ap-

plies no operation. Otherwise, apply the unitary maps L′(DR2,Ob

3,b ) and

L′(DR2,Op

3,p ) to the system H′C (if the solution DR2,Ob

3,b of (3.3) or D
R2,Op

3,p of

(3.4) is not unique, decide DR2,Ob

3,b or D
R2,Op

3,p deterministically depending on

R2, Ob, Op). After applying L′(DR2,Ob

3,b ) and L′(DR2,Op

3,p ), Decode 2 outputs

the reduced state on H′C2 = H(n)
code.

The above process in Decode 2 is summarized as a TP-CP map D2 from
H′A ⊗H′B ⊗H′C to H(n)

code by

D2(|ψ1〉〈ψ1|) := Tr
C1,C3

∑
Xb,Xp∈F

m0×m0
q′

D
R2,Xb,Xp

3 ρXb,Xp,|ψ1〉(D
R2,Xb,Xp

3 )†,

where the matrix ρXb,Xp,|ψ1〉 and the unitary D
R2,Xb,Xp

3 are defined as

ρXb,Xp,|ψ1〉 := Tr
A,B
|ψ1〉〈ψ1|(|Xb〉bb〈Xb| ⊗ |Xp〉pp〈Xp| ⊗ IC),

D
R2,Xb,Xp

3 := L′(DR2,Xp

3,p )L′(DR2,Xb

3,b ).
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Therefore, the decoder DSR is a TP-CP map written as

DSR(|ψ〉〈ψ|) = D2

(
R′(RV

1 )†|ψ〉〈ψ|R′(RV
1 )
)
.

Since the size of the shared randomness SR is sublinear with respect to n,
our code is constructed with a shared randomness of negligible rate. More-
over, since the dimension of the code space H(n)

code is (q′)(m0−2m1)(n′−2m0) =
q(m0−2m1)(n−2αm0) and α is taken as to satisfy limn→∞ α/n = 0 in Section

3.3.2, the code rate is m0 − 2m1, i.e., limn→∞
1
n

logq dimH(n)
code = m0 − 2m1.

3.5 Correctability of Our Code

For analysis of the correctability of our code, we consider the situation that
the authorized sender, Alice, sends quantum information to the authorized
receiver, Bob, through the quantum network with the existence of Eve who
attacks the network. To keep security from Eve’s attack, Alice and Bob
communicate using the secure quantum network code introduced in Section
3.4.

Let Γ be the TP-CP map of the given quantum network with malicious
attacks. If the encoder and the decoder are defined as a probabilistic mixture
by the uniformly chosen random variables SR and R0, the entire protocol is
written as

κ(n)(ρ) =
∑
SR,R0

1

N
DSR ◦ Γ ◦ ESR,R0(ρ),

where N is the size of the random variables written as N := (q′)4m0 +2·|{X ∈
F(m0−m1)×m0

q′ | rankX=m0 −m1}|+ |{R0 ∈ Fm0×m0

q′ | R0 is invertible}|.
The correctability of the transmission is evaluated by the entanglement fi-

delity Fe(ρmix, κ
(n)) for the channel κ(n) with respect to the completely mixed

state ρmix on H(n)
code, which is defined by

F 2
e (ρmix, κ

(n)) = 〈Φ|κ(n) ⊗ ιR(|Φ〉〈Φ|)|Φ〉,

where |Φ〉 := 1√
(q′)m

∑
M∈Fm

q′
|M,M〉b and m := (m0−2m1)× (n′−2m0). This

value is evaluated by

1− F 2
e (ρmix, κ

(n)) =1− 〈Φ|κ(n) ⊗ ιR(|Φ〉〈Φ|)|Φ〉
= Trκ(n) ⊗ ιR(|Φ〉〈Φ|)(I − PbPp) (3.5)

≤Trκ(n)⊗ιR(|Φ〉〈Φ|)(I−Pb)+Trκ(n)⊗ιR(|Φ〉〈Φ|)(I−Pp).
(3.6)
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where Pb :=
∑

M∈Fm
q′
|M,M〉bb〈M,M |, Pp :=

∑
M∈Fm

q′
|M, M̄〉pp〈M, M̄ |, and

|M̄〉p is complex conjugate of |M〉p ∈ H(n)
code = (H′)⊗m. Eq. (3.5) holds from

PbPp = |Φ〉〈Φ| proved in Lemma A.2.2.
We show that the first term Trκ(n)⊗ ιR(|Φ〉〈Φ|)(I −Pb) of (3.6) is the bit

error probability which is defined as the average probability that the bit basis
state |M〉b ∈ H(n)

code is sent but the bit measurement outcome on the protocol

output is not M . For a bit basis state |M〉b ∈ H(n)
code, we have

Tr(Pb ·κ(n)⊗ιR(|M,M〉bb〈M,M |))= b〈M |κ(n)(|M〉bb〈M |)|M〉b.

Since the entangled state |Φ〉 is a superposition of bit basis states |i, i〉b, the
bit error probability is given as the first term Trκ(n) ⊗ ιR(|Φ〉〈Φ|)(I − Pb) of
(3.6). Similarly, since the entangled state |Φ〉 is given as the superposition
of the phase basis state |i, ī〉p (see Lemma A.2.1), the second term Trκ(n) ⊗
ιR(|Φ〉〈Φ|)(I − Pp) of (3.6) is the phase error probability defined in the same
way as the bit error probability. Therefore, we can bound the entanglement
fidelity as

1− F 2
e (ρmix, κ

(n)) ≤ (bit error prob.) + (phase error prob.).

As shown in the next section, the bit and the phase error probabilities are

upper bounded by O
(

max
{

1
q′
, (n′)m0

(q′)m0−m1

})
. That is,

1− F 2
e (ρmix, κ

(n)) ≤ O

(
max

{
1

q′
,

(n′)m0

(q′)m0−m1

})
.

Since q′ is taken to satisfy limn→∞
n·(n′)m0

(q′)m0−m1
= 0 in Section 3.3.2 and this

implies limn→∞ n/q
′ = 0, the protocol satisfies limn→∞ n(1−F 2

e (ρmix, κ
(n))) =

0. Hence, our proof of Theorem 3.2.1 is completed.

Remark 3.5.1. Since the bit and phase bases are mutually unbiased bases,
the evaluation in this section is a special case of Corollary 2.5.3 and Theorem
2.5.3.

3.6 Bit and Phase Error Probabilities

In this section, we bound separately the bit error probability and the phase
error probability. Throughout in this section, we assume ma ≤ m1 < m0/2.
For notational convenience, for any integer k and any matrix X ∈ Fk×n′q′ , we
denote

X = (XA, XB, XC) ∈ Fk×m0

q′ × Fk×m0

q′ × Fk×(n′−2m0)
q′ .
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3.6.1 Application of the Protocol in Bit Basis

We first calculate the bit error probability. Assume that the input state is a
bit basis state |M〉b ∈ H(n)

code. When Alice sends ESR,R0(|M〉bb〈M |) over the
network, Bob receives the state ρreceive := Γ ◦ ESR,R0(|M〉bb〈M |) on H′A ⊗
H′B ⊗H′C.

Note that the bit basis measurement on H′A ⊗H′B ⊗H′C commutes with
the decoding operation DSR. That is, applying the quantum decoder DSR
and then performing the bit basis measurement on H(n)

code is equivalent to
performing the bit basis measurement onH′A⊗H′B⊗H′C and then applying the
classical decoding corresponding to the quantum decoder DSR. Therefore,
we adopt the latter method to calculate the bit error probability.

After ρreceive is received, perform the bit basis measurement on H′A ⊗
H′B ⊗ H′C and denote the measurement outcome as a matrix Y ∈ Fm0×n′

q′ .
From (3.2), Y is written as

Y := K̃X ′ + W̃ , (3.7)

where K̃ ∈ Fm0×m0

q′ and W̃ ∈ Fm0×n′
q′ are matrices equivalent to K ∈ Fm0×m0

q

andWZ ∈ Fm0×n
q in (3.2) by field extension, respectively, andX ′ := R0XR

V
1 ∈

Fm0×n′
q′ for X ∈ Fm0×n′

q′ defined with some matrices Ē1 ∈ F(m0−m1)×m0

q′ ,

Ē2 ∈ Fm1×m0

q′ , and Ē3 ∈ Fm1×(n′−2m0)
q′ by

X :=

 0m1,m0

R2,b

 ,
 Ē1

Ē2

 ,
0m1,n′−2m0

M
Ē3

 . (3.8)

On the other hand, the decoder decodes Y to

Y ′ := DR2,Ob

3,b Y (RV
1 )−1 = DR2,Ob

3,b (K̃R0X + W̃ (RV
1 )−1).

If the original messageM ∈ F(m0−2m1)×(n′−2m0)
q′ is contained in Y ′, the decoding

succeeds. We calculate the probability that [M>, Ē>3 ]> ∈ F(m0−m1)×(n′−2m0)
q′

in the rightmost block matrix of (3.8) is recovered instead of M . Then, the
decoding success probability is lower bounded by this probability.

3.6.2 Existence of Recovery Map (bit error)

In this subsection, we show that there exists a recovery map to the original
message M if we assume

Im K̃R0|Wb
∩ Im W̃ = {0m0,1}. (3.9)
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If (3.9) is assumed, a map Db : Im K̃R0|Wb
⊕ Im W̃ → Fm0

q′ can be defined

which is an inverse map of K̃R0 for the vectors in Im K̃R0|Wb
and a map

into W⊥b for the vectors in Im W̃ . Then, for any x ∈ Wb and any r ∈ Fn′q′ , we

have PWb
Db(K̃R0x + W̃ r) = x. Therefore, for any M ∈ F(m0−2m1)×(n′−2m0)

q′

and any Ē3 ∈ Fm1×(n′−2m0)
q′ , the map Db recovers the original message M as

(PWb
DbY (RV

1 )−1)C =PWb
DbY ((RV

1 )−1)C

=PWb
Db

K̃R0

0m1,n′−2m0

M
Ē3

+ W̃ ((RV
1 )−1)C


=

0m1,n′−2m0

M
Ē3

 . (3.10)

On the other hand, Eq. (3.9) holds with probability at least 1−O(1/q′)
as follows. It is shown by the following Lemma 3.6.1 applied with V = Fm0

q′ ,

W = Im W̃ , and R = Im K̃R0|Wb
. In this case, n1 = rank W̃ ≤ ma ≤ m1

from rank W̃ ≤ rankWZ ≤ rankW ≤ ma ≤ m1, and n2 = rank K̃R0|Wb
=

m0 −m1 because K̃, R0 are invertible and dimWb = m0 −m1. Therefore,

Pr[(3.9)] = 1−O
(

(q′)dim W̃−m1−1
)
≥ 1−O

(
1

q′

)
. (3.11)

Lemma 3.6.1. For integers n0 ≥ n1 + n2, we fix an n0-dimensional vector
space V over Fq and an n1-dimensional subspace W ⊂ V, and randomly
choose an n2-dimensional subspace R ⊂ V with the uniform distribition.
Then, we have

Pr[W ∩R = {0}] = 1−O(qn1+n2−n0−1).

Proof. The probability Pr[W ∩ R = {0}] is the same as the probability to
choose n2 linearly independent vectors so that they do not intersect with R.
Therefore, we have

Pr[W ∩R = {0}] =
[qn0 − qn1

qn0

]
·
[qn0 − qn1+1

qn0 − q1

]
· · · · ·

[qn0 − qn1+n2−1

qn0 − qn2−1

]
= 1−O(qn1+n2−n0−1).
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3.6.3 Discoverability of Recovery Map (bit error)

In this subsection, we calculate the probability that the solution DR2,Ob

3,b of
(3.3) is a recovery map. Throughout this subsection, we assume (3.9) holds,
i.e., a recovery map exists.

Since the bit measurement outcome Ob in Decode 2 is (Y (RV
1 )−1)A =

Y ((RV
1 )−1)A, Eq. (3.3) is written as

PWb
DR2,Ob

3,b

(
K̃R0

[
0m1,m0

R2,b

]
+W̃ ((RV

1 )−1)A
)

=

[
0m1,m0

R2,b

]
. (3.12)

If it holds that

rank

(
K̃R0

[
0m1,m0

R2,b

]
+W̃((RV

1 )−1)A
)

=rankR2,b+rankW̃, (3.13)

the columns of K̃R0[0>m1,m0
, R>2,b]

> + W̃ ((RV
1 )−1)A span Im K̃R0|Wb

⊕ Im W̃ .

Therefore, if Eq. (3.13) holds, the solution DR2,Ob

3,b of (3.12) satisfies (3.10)

with Db := DR2,Ob

3,b , i.e., the bit error is corrected. That is, the bit decoding
success probability is bounded as

(bit success prob.) = 1− (bit error prob.) ≥ Pr[(3.9)] · Pr[(3.13)|(3.9)].
(3.14)

In the following, we bound the probability (3.13) when (3.9) is satisfied,
by two steps.
Step 1: First, we give one necessary condition for (3.13) and calculate the
probability that the condition is satisfied. Since it holds that

rank
(
K̃R0

[
0m1,m0

R2,b

]
+ W̃ ((RV

1 )−1)A
)
≤ rankR2,b + rank W̃ ((RV

1 )−1)A

≤ rankR2,b + rank W̃ , (3.15)

the following condition is a necessary condition for (3.13):

rank W̃ ((RV
1 )−1)A = rank W̃ . (3.16)

The condition (3.16) holds if and only if x>W̃ ((RV
1 )−1)A 6= 01,m0 holds for

any x ∈ Fm0

q′ satisfying x>W̃ 6= 01,n′ . By applying the following Lemma 3.6.2
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to all (q′)rank W̃ vectors in {x>W̃ 6= 01,n′ |x ∈ Fm0

q′ }, we have

Pr[(3.16)|(3.9)] ≥1− (q′)rank W̃

(
n′−2m0

q′

)m0

≥1− (q′)m1

(
n′−2m0

q′

)m0

≥1− (n′)m0

(q′)m0−m1
.

Lemma 3.6.2. For n′ > 3m0,

max
01,n′ 6=x∈Fn′

q′

Pr
[
x>((RV

1 )−1)A=01,m0

]
≤
(n′−2m0

q′

)m0

. (3.17)

The proof of Lemma 3.6.2 is in Appendix A.3.

Step 2: In this step, we calculate the probability that (3.13) holds under the
assumptions (3.9) and (3.16). We introduce notations with column vectors
uk, vk ∈ Fm0

q′ (k = 1, . . . ,m0) as

[u1, . . . , um0 ] := K̃R0

[
0m1,m0

R2,b

]
,

[v1, . . . , vm0 ] := W̃ ((RV
1 )−1)A,

m2 := rankR2,b + rank W̃ ,

and define an injective index function i : {1, ...,m0} → {1, ...,m0} so that
rank(vi(1), . . . , vi(m2)) = rank W̃ . Note that the condition (3.13) holds if m2

vectors (ui(1) +vi(1)), . . . , (ui(m2) +vi(m2)) are linearly independent. Moreover,
the condition (3.9) guarantees that m2 vectors (ui(1) + vi(1)), . . . , (ui(m2) +
vi(m2)) are linearly independent if the following condition holds:

S⊥u ∩ S⊥v ={0m2,1}, (3.18)

where

S⊥u :=
{
x ∈ Fm2

q′

∣∣∣[ui(1), . . . , ui(m2)]x = 0m0,1

}
,

S⊥v :=
{
x ∈ Fm2

q′

∣∣∣[vi(1), . . . , vi(m2)]x = 0m0,1

}
.

Then, we calculate the probability (3.18) holds. It follows from the defi-
nitions of u1, . . . , um0 , v1, . . . , vm0 and the index function i that

dimS⊥u ≥ m2 − rank[ui(1), . . . , ui(m2)] ≥ rank W̃ ,

dimS⊥v = m2 − rank[vi(1), . . . , vi(m2)] = rankR2,b.
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This implies dimS⊥u + dimS⊥v ≥ m2 and therefore (3.18) holds only if
dimS⊥u = rank W̃ . We calculate the probability (3.18) holds by the following
relation:

Pr[(3.18)|(3.9) ∩ (3.16)] = Pr[(3.18)| dimS⊥u =rank W̃ ∩ (3.9) ∩ (3.16)]

· Pr[dimS⊥u =rank W̃ ∩ (3.9) ∩ (3.16)].

Applying Lemma 3.6.1 with (n0,W ,R) := (m2,S⊥v ,S⊥u ),

Pr[(3.18)| dimS⊥u =rank W̃ ∩ (3.9) ∩ (3.16)] = 1−O
(

1

q′

)
.

Moreover, the following inequality is proved in Appendix A.4:

Pr[dimS⊥u =rank W̃∩(3.9)∩(3.16)]≥1−O
(

1

q′

)
. (3.19)

Therefore,

Pr[(3.18)|(3.9) ∩ (3.16)] ≥ 1−O
(

1

q′

)
. (3.20)

To summarize, from the two probabilities derived above two steps, we
have

Pr[(3.13)|(3.9)] = Pr[(3.13) ∩ (3.16)|(3.9)]

= Pr[(3.13)|(3.16) ∩ (3.9)] · Pr[(3.16)|(3.9)]

≥Pr[(3.18)|(3.16) ∩ (3.9)] · Pr[(3.16)|(3.9)]

≥
(

1− (n′)m0

(q′)m0−m1

)(
1−O

(
1

q′

))
=1−O

(
max

{ 1

q′
,

(n′)m0

(q′)m0−m1

})
.

Combining (3.11), (3.14) and the inequality above, we have

(bit error prob.)≤O
(

max
{ 1

q′
,

(n′)m0

(q′)m0−m1

})
.

3.6.4 Phase Error Probability

Since coding and node operations are considered as classical linear operations
even in the phase basis from Lemma 3.3.1, we can apply similar analysis to
the phase basis errors as bit basis errors in Subsections 3.6.1, 3.6.2 and 3.6.3.
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Consider the situation that a phase basis state |M〉p ∈ H(n)
code is encoded

and transmitted through the quantum network. As we analyzed for bit basis
states, we also perform the phase basis measurement first and then apply the
decoding process. When ρreceive is received, the phase measurement outcome
Yp on H′A ⊗H′B ⊗H′C is written similarly to (3.7) as

Yp := [K̃]p[R0]pXp[R
V
1 ]p + W̃ ′,

where W̃ ′ ∈ Fm0×n′
q′ and

Xp :=

Ē ′1
Ē ′2

 ,
 R2,p

0m1,m0

 ,
 Ē ′3

M
0m1,n′−2m0

 ∈ Fm0×n′
q′

for some matrices Ē ′1 ∈ Fm1×m0

q′ , Ē ′2 ∈ F(m0−m1)×m0

q′ , and Ē ′3 ∈ Fm1×(n′−2m0)
q′ .

By the decoder, Yp is decoded to

Y ′p := [D
R2,Op

3,p ]p

(
[K̃]p[R0]pXp + W̃ ′[(RV

1 )−1]p

)
.

If we assume

Im[K̃]p[R0]p|Wp ∩ Im W̃ ′ = {0m0,1}, (3.21)

there exists a recovery map from phase errors. In the same way as Subsection
3.6.2, we have Pr[(3.21)] ≥ 1−O(1/q′).

For the map [D
R2,Op

3,p ]p in (3.4) to be a recovery map, it needs to be satisfied
that

rank

[K̃]p[R0]p

0m1,m0

R2,p

+ W̃ ′([RV
1 ]−1
p )A

 = rankR2,p + rank W̃ ′. (3.22)

Applying the same discussion in Step 1 of Subsection 3.6.3 to the phase basis,
we have

rank W̃ ′([RV
1 ]−1
p )B = rank W̃ ′, (3.23)

with probability at least 1− (n′)m0

(q′)m0−m1
by applying Lemma 3.6.3 to (q′)rank W̃ ′

vectors in {x>W̃ ′ 6= 01,n′|x ∈ Fm0

q′ }.

Lemma 3.6.3. For n′ > 3m0,

max
0n′,1 6=x∈Fn′

q′

Pr[x>([RV
1 ]−1
p )B=01,m0 ] ≤

(n′−2m0

q′

)m0

. (3.24)
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Proof. Proof is in Appendix A.3

Assuming (3.21) and (3.23), the condition (3.22) holds with probability
at least 1−O(1/q′), in the similar way to Step 2 of Subsection 3.6.3.

From the probabilities derived above, in the same way as the bit success
probability, the phase decoding error probability is derived as

(phase error prob.)=1−Pr[(3.21)]·Pr[(3.23)|(3.21)]·Pr[(3.22)|(3.21)∩(3.23)]

≤1−
(

1− (n′)m0

(q′)m0−m1

)(
1−O

(
1

q′

))
=O

(
max

{ 1

q′
,

(n′)m0

(q′)m0−m1

})
.

3.7 Secure Quantum Network Code without

Classical Communication

In the secure quantum network code given in Theorem 3.2.1, we assumed that
the encoder and the decoder share the negligible rate randomness SR secretly.
The secret shared randomness can be realized by secure communication. The
paper [16] provided a secure classical communication protocol for the classical
network as Proposition 3.7.1.

Proposition 3.7.1 ([16, Theorem 1]). Let q1 be the size of the finite field
which is the information unit of the network channel. We assume the in-
equality c1 + c2 < c0 for the classical network code where c0 is transmission
rate from Alice to Bob, c1 is the rate of noise injected by Eve, and c2 is
the rate of information leakage to Eve. When q2 := qc01 , there exists a k-bit
transmission protocol of block-length n2 := c0(c0− c2 + 1)k over Fq2 such that

Perr ≤ k
c0

q2

and I(M ;E) = 0,

where Perr is the error probability and I(M ;E) is the mutual information
between the message M ∈ Fk2 and the Eve’s information E. �

By attaching the protocol in Proposition 3.7.1 as a quantum protocol, we
can share the negligible rate randomness secretly as the following proof of
Theorem 3.2.2.

Proof of Theorem 3.2.2. Since the protocol of Proposition 3.7.1 can be imple-
mented with the quantum network by sending bit basis states, the following
protocol implements the code satisfying the conditions of Theorem 3.2.2.
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Given a block-length n, we choose the prime power q′ = qα such that α =
b3 log2 n

log2 q
c i.e., q′/n3 → 1. Hence, as the implementation of protocol in Theorem

3.2.1 with the extension field of size q′, the sender and the receiver need to
share the secret randomness of 4m0 + 2m0(m0 −m1) elements of Fq′ Hence,
using the protocol given in Proposition 3.7.1 with (c0, c1, c2) := (m0,m1,m1),
the sender secretly sends the receiver k := d(4m0+2m0(m0−m1)) log2 q

′e bits,
which is called the preparation protocol. To guarantee that the error of the
preparation protocol goes to zero, we choose the other prime power q2 = qα2

such that α2 = b2 log2 log2 n
log2 q

c i.e., q2/(log n)2 → 1. Since k is evaluated as k =

d(4m0 + 2m0(m0 −m1)) log2 q
′e = d(4m0 + 2m0(m0 −m1))b3 log2 n

log2 q
c log2 qe ≤

d3(4m0 + 2m0(m0 −m1)) log2 ne, we have Perr ≤ O( log2 n
(log2 n)2

) → 0. Also, the

preparation protocol requires the transmission of n2 = m0(m0 −m1 + 1)kα2

elements of Fq. That is, n2 is evaluated as

n2 ≤m0(m0 −m1 + 1)d3(4m0 + 2m0(m0 −m1)) log2 ne ·
⌊2 log2 log2 n

log2 q

⌋
.

(3.25)

Then, we define n1 := n − n2, which implies n1/n → 1. Finally, we apply
the protocol given in Theorem 3.2.1 with n = n1, n′ := n1/α, and the above
chosen α and q′. Since the relation n1/n → 1 guarantees the condition
n1·(n1/α)m0

(q′)m0−m1
→ 0, this protocol realizes the required conditions.

3.8 Secrecy of our code

We mention that the condition n(1− F 2
e (ρmix, κ

(n)))→ 0 in Theorems 3.2.1
and 3.2.2 guarantees the secrecy of the protocol. As explained in Section
2.6, the leaked information of a quantum protocol κ(n) is upper bounded
by entropy exchange He(ρ, κ

(n)) := H(κ(n) ⊗ ιR(|x〉〈x|)) = H(κ
(n)
E (ρ)) as

follows, where |x〉 is a purification of the state ρ and κ
(n)
E is the channel to the

environment. When the input state ρx is generated subject to the distribution
px, the mutual information between the input system and the environment is
given as H(κ

(n)
E (
∑

x pxρx)) −
∑

x pxH(κ
(n)
E (ρx)), which is upper bounded by

He(κ
(n),
∑

x pxρx). By entanglement fidelity, the entropy exchange is upper
bounded as [4]

He(ρ, κ
(n)) ≤ h(F 2

e (ρ, κ(n))) + (1− F 2
e (ρ, κ(n))) log(d− 1)2

where h(p) is the binary entropy defined as h(p) := p log p+(1−p) log(1−p)
for 0 ≤ p ≤ 1 and d is the dimension of the input space of κ(n). Hence,
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when the mixture distribution is the completely mixed state ρmix, because
d = dimH(n)

code = O
(
q(m0−2m1)n

)
in our protocol, the condition

n(1− F 2
e (ρmix, κ

(n)))→ 0

leads that the entropy exchange of the protocol is asymptotically 0, i.e.,
there is no leakage in the protocol. Thus, the asymptotic correctability
n(1−F 2

e (ρmix, κ
(n)))→ 0 also guarantees the secrecy of the protocol in The-

orems 3.2.1 and 3.2.2.
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Chapter 4

Quantum Network Code for
Multiple-Unicast Network

In this chapter, we propose a multiple-unicast quantum network code which
implements resilient quantum communication.

4.1 Quantum Multiple-Unicast Network

Our code is designed as a quantum network which is a generalization of a
classical multiple-unicast network. In this section, we first introduce the
multiple-unicast network with classical invertible linear operations and gen-
eralize this network as a network with quantum invertible linear operations.
The node operations introduced in this section are identical to the operations
in Definition 3.1.1.

4.1.1 Classical Multiple-Unicast Network with Invert-
ible Linear Operations

First, we describe the multiple-unicast network with classical invertible linear
operations. The network topology is given as a directed graph G = (V,E).
The r senders and r receivers are given as r source nodes S1, . . . , Sr and
r terminal nodes T1, . . . , Tr. The sender Si has mi outgoing edges and the
receiver Ti has mi incoming edges. Define m := m1 + · · ·+mr. The interme-
diate nodes are numbered from 1 to c (= |V | − 2r) according to the order of
the transmission. The intermediate node numbered t has the same number
kt of incoming and outgoing edges where 1 ≤ kt ≤ m.

Next, we describe the transmission and the operations on this network.
Each edge sends an element of the finite field Fq where q is a power of
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a prime number p. The t-th node operation is described as an invertible
linear operation At from the information on kt incoming edges to that of
kt outgoing edges. Since node operations are invertible linear, the entire
network operation is written as K = Ac · · ·A1 ∈ Fm×mq . For the network
operation K, we introduce the following notation:

K :=


K1,1 K1,2 · · · K1,r

K2,1 K2,2 · · · K2,r
...

. . .
...

Kr,1 Kr,2 · · · Kr,r

 , Ki,j ∈ Fmi×mj
q .

Then, Ki,j is the network operation from Si to Tj. We assume rankKi,i = mi

which means the information from Si to Ti is completely transmitted if there
is no interference.

When the network inputs by senders S1, . . . , Sr are x1 ∈ Fm1
q , . . . , xr ∈

Fmr
q , the output yi ∈ Fmi

q at the receiver Ti (i = 1, . . . , r) is written as

yi =
r∑
j=1

Ki,jxj = Ki,ixi +Kiczic , (4.1)

Kic :=[Ki,1 · · · Ki,i−1 Ki,i+1 · · · Ki,r] ∈ Fmi×(m−mi)
q ,

zic :=[x>1 · · · x>i−1 x>i+1 · · · x>r ]> ∈ Fm−mi
q .

The second term Kiczic of (4.1) is called the interference to Ti, and rankKic

is called the rate of the interference to Ti.
Consider the n-use of the above network. When the inputs by senders

S1, ..., Sr are X1 ∈ Fm1×n
q , . . . , Xr ∈ Fmr×n

q , the output Yi ∈ Fmi×n
q at the

receiver Ti (i = 1, . . . , r) is

Yi =
r∑
j=1

Ki,jXj = Ki,iXi +KicZic ,

Zic :=[X>1 · · · X>i−1 X>i+1 · · · X>r ]> ∈ F(m−mi)×n
q .

4.1.2 Quantum Multiple-Unicast Network with Invert-
ible Linear Operations

We generalize the multiple-unicast network with classical invertible linear
operations to the network with quantum invertible linear operations. In
this quantum network, the network topology is the same graph G = (V,E).
Each edge transmits a quantum system H which is q-dimensional Hilbert

43



vt

Node operation
(quantum operation)

from S1

from S1

from S2

interfered

interfered

interfered

H
H

H

H

H
H

Figure 4.1: Interference of information in network nodes.

space spanned by the bit basis {|x〉b}x∈Fq . In n-use of the network, we treat
the quantum system H⊗mi×n spanned by the bit basis {|X〉b}X∈Fmi×n

q
. The

sender Si sends a quantum systemHSi
:= H⊗mi×n and the receiver Ti receives

a quantum system HTi := H⊗mi×n

The t-th node operation is given as L(At) and it is called quantum invert-
ible linear operation. The entire network operation is written as the unitary
L(K) = L(Ac · · ·A1) = L(Ac) · · · L(A1). When a state ρ on HS1 ⊗ · · · ⊗HSr

is transmitted by senders S1, . . . , Sr, the network output σTi at HTi is written
as

σTi := Tr
T1,...,Ti−1,Ti+1,...,Tr

L(K)ρL(K)†,

where TrT1,...,Ti−1,Ti+1,...,Tr is the partial trace on the system

HT1 ⊗ . . .⊗HTi−1
⊗HTi+1

⊗ . . .⊗HTr .

When the input state on the network is |M〉b on HS1 ⊗ · · · ⊗ HSr , this
quantum network can be considered as the classical network in Subsection
4.1.1. In the same way as the classical network, we assume rankKi,i = mi

which means Si transmits any bit basis states completely to Ti if the input
states on source nodes Sj (j 6= i) are zero bit basis states. Similarly, rankKic

is called the rate of the bit interference to Ti.
We can discuss the interference similarly on the phase basis {|z〉p}z∈Fq

defined in Section 3.3. When the input state is a phase basis state |M〉p
on HS1 ⊗ · · · ⊗ HSr , the network operation L(K) is applied by L(K)|M〉p =
|[K]pM〉p. In this case, this quantum network can also be considered as a
classical network with network operation [K]p = [Ac]p · · · [A1]p. Then, [K]pi,j
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Table 4.1: Definitions of Information Rates

Rate Meaning

mi = rankKi,i = rank [Ki,i]p Bit (phase) transmission rates
rankKic Rate of interference to Ti

rank [Kic ]p Rate of phase interference to Ti
ai Maximum rate of bit interference to Ti
a′i Maximum rate of phase interference to Ti

is defined from [K]p in the same way as Ki,j.

[K]p :=


[K1,1]p [K1,2]p · · · [K1,r]p
[K2,1]p [K2,2]p · · · [K2,r]p

...
. . .

...
[Kr,1]p [Kr,2]p · · · [Kr,r]p

 , [Ki,j]p ∈ Fmi×mj
q ,

[Kic ]p :=[[Ki,1]p · · · [Ki,i−1]p [Ki,i+1]p · · · [Ki,r]p].

Similarly to the condition rankKi,i = mi, we also assume rank [Ki,i]p = mi.
We also call rank [Kic ]p the rate of phase interference to Ti. The transmission
rates from Si to Ti are summarized in Table 4.1.

4.2 Main Results

In this section, we propose the two main theorems of this chapter. The
two theorems state the existence of our code with and without negligible
rate shared randomness, respectively. The codes stated in the theorems are
concretely constructed in Section 4.4. The theorems are stated with respect
to the completely mixed state ρmix and the entanglement fidelity for the
quantum channel κ and a purification |x〉 of the state ρ.

Theorem 4.2.1. Consider the transmission from the sender Si to the re-
ceiver Ti over a quantum multiple-unicast network with quantum invertible
linear operations given in Section 4.1. Let mi be the bit and phase transmis-
sion rates from Si to Ti without interferences (mi = rankKi,i = rank [K]pi,i),
and ai, a

′
i be the upper bounds of the bit and phase interferences, respectively

(rankKic ≤ ai, rank [Kic ]p ≤ a′i). When the condition ai +a′i < mi holds and
the sender Si and receiver Ti can share a randomness whose rate is negligible
in comparison with the block-length n, there exists a quantum network code
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whose rate is mi − ai − a′i and the entanglement fidelity F 2
e (ρmix, κi) satisfies

n(1 − F 2
e (ρmix, κi)) → 0 where κi is the quantum code protocol from sender

Si to receiver Ti.

Section 4.4 constructs the code stated in Theorem 4.2.1 and Section 4.5
shows that this code has the performance in Theorem 4.2.1. Note that this
code does not depend on the detailed network structure, but depends only on
the information rates mi, ai and a′i. By the same analysis as in Chapter 3, our
code has no information leakage from the condition n(1− F 2

e (ρmix, κi))→ 0.
Although Theorem 4.2.1 assumed the free use of a negligible rate shared

randomness, it is possible to design a code of same performance without this
negligible rate shared randomness as follows. The paper [16] gives the secret
and correctable classical network communication protocol for a classical net-
work with malicious attacks, when the transmission rate is more than the
sum of the rate of attacks and the rate of information leakage. By applying
the protocol in [16] to our quantum network with bit basis states, the neg-
ligible rate shared randomness can be generated. By this method, we have
the following Theorem 4.2.2.

Theorem 4.2.2. Consider the transmission from the sender Si to the re-
ceiver Ti over a quantum multiple-unicast network with quantum invertible
linear operations given in Section 4.1. Let mi be the bit and phase transmis-
sion rates from Si to Ti without interferences (mi = rankKi,i = rank [K]pi,i),
and ai, a

′
i be the upper bounds of the bit and phase interferences, respectively

(rankKic ≤ ai, rank [Kic ]p ≤ a′i). When ai + a′i < mi, there exists a quan-
tum network code whose rate is mi − ai − a′i and the entanglement fidelity
F 2
e (ρmix, κi) satisfies n(1 − F 2

e (ρmix, κi)) → 0 where κi is the quantum code
protocol from sender Si to receiver Ti.

4.3 Preliminaries for Code Construction

Before code construction, we prepare the extended quantum system, nota-
tions, and CSS code used in our code.

4.3.1 Extended Quantum System

Although the unit quantum system for the network transmission is H, our
code is constructed based on the extended quantum system H′ described
below.

First, depending on the block-length n, we choose a power q′ := qα to sat-
isfy n·(n′)mi/(q′)mi−max{ai,a′i} → 0 (e.g. q′ = O(n1+(max{ai,a′i}+2)/(mi−max{ai,a′i}))
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) where n′ := n/α. Let Fq′ be the α-dimensional field extension of Fq. Sim-
ilarly, let H′ := H⊗α be the quantum system spanned by {|x〉b}x∈Fq′

. Then,
the n-use of the network over H can be considered as the n′-use of the net-
work over H′. The quantum invertible linear operations (Definition 3.1.1)
can also be defined for invertible matrices A′ ∈ Fm×mq′ and B′ ∈ Fn×nq′ as

L′(A)|X〉b = |AX〉b, R′(B)|X〉b = |XB〉b, for any X ∈ Fm×nq′ .

4.3.2 Notations for Quantum Systems and States in
Our Code

We introduce notations used in our code. By the n-use of the network, the
sender Si transmits the system HSi

= H⊗mi×n and the receiver Ti receives
the system HTi = H⊗mi×n, which are identical to H′⊗mi×n′ . We partition the
quantum systemH′⊗mi×n′ asH′A⊗H′B⊗H′C := H′⊗mi×mi ⊗H′⊗mi×mi ⊗H′⊗mi×(n′−2mi).
Furthermore, we partition the systems H′A,H′B,H′C by

H′A = H′A1⊗H′A2⊗H′A3 := H′⊗ai×mi ⊗H′⊗(mi−ai−a′i)×mi ⊗H′⊗a′i×mi ,

H′B = H′B1⊗H′B2⊗H′B3 := H′⊗ai×mi ⊗H′⊗(mi−ai−a′i)×mi ⊗H′⊗a′i×mi ,

H′C = H′C1⊗H′C2⊗H′C3 := H′⊗ai×(n′−2mi)⊗H′⊗(mi−ai−a′i)×(n′−2mi)⊗H′⊗a′i×(n′−2mi) .

For states |φ〉 ∈ H′A1, |ψ〉 ∈ H′A2, and |ϕ〉 ∈ H′A3, the tensor product state
in H′A is denoted as  |φ〉|ψ〉

|ϕ〉

 := |φ〉 ⊗ |ψ〉 ⊗ |ϕ〉 ∈ H′A . (4.2)

The bit or phase basis state of (X, Y, Z) ∈ Fai×mi

q′ × F(mi−ai−a′i)×mi

q′ × Fa
′
i×mi

q′

is denoted as ∣∣∣∣∣∣
XY
Z

〉
b

:=

|X〉b|Y 〉b
|Z〉b

 ,
∣∣∣∣∣∣
XY
Z

〉
p

:=

|X〉p|Y 〉p
|Z〉p

 . (4.3)

We also introduce notations for the states in H′B and H′C in the same way as
(4.2) and (4.3). In the following, we denote the k × l zero matrix as 0k,l.

4.3.3 CSS Code in Our Code

In our code construction, we use the CSS code defined in this subsection
which is defined similarly to Section 3.3.4. Define two classical codes C1, C2 ⊂
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Fmi×(n′−2m0)
q′ which satisfy C1 ⊃ C⊥2 as

C1 :=


0ai,n′−2m0

X2

X3

∈Fmi×(n′−2m0)
q′

∣∣∣∣X2∈F
(mi−ai−a′i)×(n′−2m0)

q′ , X3∈F
a′i×(n′−2m0)

q′

,
C2 :=


 X1

X2

0a′i,n′−2m0

∈Fmi×(n′−2m0)
q′

∣∣∣∣X1∈Fai×(n′−2m0)
q′ , X2∈F

(mi−ai−a′i)×(n′−2m0)

q′

.
For any [M1] ∈ C1/C

⊥
2 where M1 ∈ F(mi−ai−a′i)×(n′−2m0)

q′ , define the quantum
state |[M1]〉b ∈ HC by

|[M1]〉b :=
1√
|C⊥2 |

∑
Y ∈C⊥2

∣∣∣∣∣∣
0ai,n′−2m0

M1

0a′i,n′−2m0

+ Y

〉
b

=

|0ai,n′−2m0〉b
|M1〉b

|0a′i,n′−2m0
〉p

 .
With the above definitions, the code space is given as H′code := H′C2 =
H′⊗(mi−ai−a′i)×(n′−2m0) and a pure state |φ〉 ∈ H′code is encoded as a super-
position of the states |[M1]〉b in this CSS code by|0ai,n′−2m0〉b

|φ〉
|0a′i,n′−2m0

〉p

 ∈ HC .
4.4 Code Construction with Negligible Rate

Shared Randomness

In this section, we construct our code that allows a sender Si to transmit a
state ρi onH′code = H′⊗(mi−ai−a′i)×(n′−2mi) correctly to a receiver Ti by n-use of
the network when the encoder and decoder share the negligible rate random
variable SRi := (Ri, Vi).

The encoder and decoder are defined depending on the private random-
ness Ui,1 owned by encoder and the randomness SRi shared between the
encoder and decoder. These random variables are uniformly chosen from the
values or matrices satisfying the following respective conditions: the variable

Ri := (Ri,1, Ri,2) ∈ F(mi−ai)×mi

q′ × F(mi−a′i)×mi

q′ satisfies rankRi,1 = mi − ai
and rankRi,2 = mi − a′i, the random variable Vi := (Vi,1, . . . , Vi,4mi

) consists
of 4mi values Vi,1, . . . , Vi,4mi

∈ F4mi

q′ and the random variable Ui,1 ∈ Fmi×mi

q′

satisfies rankUi,1 = mi.

Next, we construct the encoder ESRi,Ui,1

i and decoder DSRi
i . Depending on

SRi and Ui,1, the encoder ESRi,Ui,1

i of the sender Si is defined as an isometry
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channel from H′code to HSi
= H′⊗mi×n′ . Depending on SRi, the decoder

DSRi
i of the receiver Ti is defined as a TP-CP map from HTi = H′⊗mi×n′ to
H′code. Note that the randomness SRi is shared between the encoder and
the decoder. Because SRi consists of αmi(2mi − ai − a′i + 4) elements of Fq,
the size of the shared randomness SRi is sublinear with respect to n (i.e.,
negligible).

4.4.1 Encoder ESRi,Ui,1

i of the sender Si

The encoder ESRi,Ui,1

i consists of three steps. In the following, we describe
the encoding of the state |φ〉 in H′code.

Step E1 The isometry map URi
i,0 encodes the state |φ〉 with the CSS

code defined in Subsection 4.3.3 and the quantum systems H′A and H′B as

|φ1〉 := URi
i,0 |φ〉=

∣∣∣∣∣∣
0ai,mi

Ri,1

〉
b

⊗

∣∣∣∣∣∣
 Ri,2

0a′i,mi

〉
p

⊗

|0ai,mi
〉b

|φ〉
|0a′i,mi

〉p

 ∈ H′A⊗H′B⊗H′C .
Step E2 By quantum invertible linear operation L′(Ui,1), the encoder
maps |φ1〉 to |φ2〉 := L′(Ui,1)|φ1〉.
Step E3 From random variable Vi = (Vi,1, . . . , Vi,4mi

), define matrices
Qi,1;j,k := (Vi,k)

j, Qi,2;j,k := (Vi,mi+k)
j for 1 ≤ j ≤ n′ − 2mi, 1 ≤ k ≤ mi,

and Qi,3;j,k := (Vi,2mi+k)
j, Qi,4;j,k := (Vi,3mi+k)

j for 1 ≤ j, k ≤ mi. With
these matrices, define the matrix UV

i,2 ∈ Fn′×n′q′ as

UV
i,2 :=

 Im0 0m0,m0 0m0,n′−2m0

QT
i,3Qi,4 Im0 0m0,n′−2m0

0n′−2m0,m0 0n′−2m0,m0 In′−2m0

 ·
 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 QT
i,2

0n′−2m0,m0 0n′−2m0,m0 In′−2m0


·

 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 0m0,n′−2m0

Qi,1 0n′−2m0,m0 In′−2m0

 ,
where Id is the identity matrix of size d. By quantum invertible linear
operation R′(UVi

i,2), the encoder maps |φ2〉 to R′(UVi
i,2)|φ2〉.

By the above three steps, the encoder ESRi,Ui,1

i is described as an isometry
map

ESRi,Ui,1

i : |φ〉 7→ R′(UVi
i,2)L′(Ui,1)URi

i,0 |φ〉 ∈ HSi
.
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4.4.2 Decoder DSRi

i of the receiver Ti

DecoderDSRi
i consists of two steps. In the following, we describe the decoding

of the state |ψ〉 ∈ HTi .

Step D1 Since (UVi
i,2)−1 can be constructed from shared randomness Vi

by

(UV
i,2)−1 =

 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 0m0,n′−2m0

−Qi,1 0n′−2m0,m0 In′−2m0

 ·
 Im0 0m0,m0 0m0,n′−2m0

0m0,m0 Im0 −QT
i,2

0n′−2m0,m0 0n′−2m0,m0 In′−2m0


·

 Im0 0m0,m0 0m0,n′−2m0

−QT
i,3Qi,4 Im0 0m0,n′−2m0

0n′−2m0,m0 0n′−2m0,m0 In′−2m0

 ,
the decoder applies the reverse operation R′(UVi

i,2)† = R′((UVi
i,2)−1) of Step

E3 as |ψ1〉 := R′(UVi
i,2)†|ψ〉.

Step D2 Perform the bit and phase basis measurements on H′A and
H′B, respectively, and let Oi,1, Oi,2 ∈ Fmi×mi

q′ be the respective mea-
surement outcomes. By Gaussian elimination, find invertible matrices
D
Ri,1,Oi,1

i,1 , D
Ri,2,Oi,2

i,2 ∈ Fmi×mi

q′ satisfying

PWi,1
D
Ri,1,Oi,1

i,1 Oi,1 =

0ai,mi

Ri,1

 , PWi,2
D
Ri,2,Oi,2

i,2 Oi,2 =

 Ri,2

0a′i,mi

 . (4.4)

where PW is the projection from Fmi

q′ to the subspace W , the subspace
Wi,1 consists of the vectors whose 1-st, . . . , ai-th elements are zero and
the subspace Wi,2 consists of the vectors whose (mi − a′i + 1)-st, . . . , mi-

th elements are zero. The case of non-existence of D
Ri,1,Oi,1

i,1 nor D
Ri,2,Oi,2

i,2

means decoding failure, which implies that the decoder performs no more
operations. Also, when D

Ri,1,Oi,1

i,1 and D
Ri,2,Oi,2

i,2 are not determined uniquely,

the decoder chooses D
Ri,1,Oi,1

i,1 and D
Ri,2,Oi,2

i,2 deterministically depending on
Oi,1, Ri,1 and Oi,2, Ri,2, respectively.

Based on D
Ri,1,Oi,1

i,1 and D
Ri,2,Oi,2

i,2 found by (4.4), the decoder applies

L′(DRi,1,Oi,1

i,1 ) and L′([DRi,2,Oi,2

i,2 ]p) consecutively to |ψ1〉, and the resultant
state on Hcode is the output of Step D2. Then, Step D2 is written as
the following TP-CP map DRi

i :

DRi
i (|ψ1〉〈ψ1|) := Tr

C1,C3

∑
Oi,1,Oi,2∈F

mi×m0
q′

U
Ri,Oi,1,Oi,2

D σOi,1,Oi,2
(U

Ri,Oi,1,Oi,2

D )†,
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where the matrices U
Ri,Oi,1,Oi,2

D and σOi,1,Oi,2
are defined as

U
Ri,Oi,1,Oi,2

D :=L′([DRi,2,Oi,2

i,2 ]p)L′(D
Ri,1,Oi,1

i,1 ),

σOi,1,Oi,2
:= Tr
A,B
|ψ1〉〈ψ1|(|Oi,1〉bb〈Oi,1| ⊗ |Oi,2〉pp〈Oi,2| ⊗ IC),

with the identity operator IC on HC.

By above two steps, the decoder DSRi
i is described as

DSRi
i (|ψ〉〈ψ|) := DRi

i

(
R′(UVi

i,2)†|ψ〉〈ψ|R′(UVi
i,2)
)
.

Since the size of the shared randomness SRi is sublinear with respect to n,
our code is implemented with negligible rate shared randomness.

4.5 Correctness of Our Code

In this section, we confirm that our code correctly transmits the state from
the sender Si to the receiver Ti. As is mentioned in Section 4.2, we show the
condition n(1− F 2

e (ρmix, κi))→ 0 which implies the correctness of our code.
First, we describe the quantum code protocol κi from Si to Ti, which is an

integration of the encoding, transmission, and decoding. The encoding and
decoding in κi is given by the probabilistic mixture of the code in Section 4.4
depending on the uniformly chosen random variables SRi and Ui,1. Then,
the code protocol κi is written as, for the state ρi on H′code,

κi(ρi) :=
∑

SRi,Ui,1

1

N
DSRi
i

(
Tr

T1,...,Ti−1,Ti+1,...,Tr
L(K)

(
ESRi,Ui,1

i (ρi)⊗ ρic
)
L(K)†

)
,

where ρic is the state in HS1 ⊗ · · · ⊗ HSi−1
⊗HSi+1

⊗ · · · ⊗ HSr of senders

other than Si, and N := q′4mi + |{Ui,1 ∈ Fmi×mi

q′ | rankUi,1 = mi}| + |{Ri,1 ∈
F(mi−ai)×mi

q′ | rankRi,1 = mi−ai}|+ |{Ri,2 ∈ F(mi−a′i)×mi

q′ | rankRi,1 = mi−a′i}|.
As explained in Section 3.5, 1 − F 2

e (ρmix, κi) is upper bounded by the
sum of the bit error probability and the phase error probability. The bit
error probability is the probability that a bit basis state |X〉b ∈ H

′
code is sent

but the bit basis measurement outcome on the decoder output is not X. In
the similar way, the phase error probability is defined for the phase basis.

Similarly to Subsections 3.6.1 and 3.6.4, the bit and phase error proba-
bilities are upper bounded by

O

(
max

{ 1

q′
,

(n′)mi

(q′)mi−ai

})
and O

(
max

{ 1

q′
,

(n′)mi

(q′)mi−a′i

})
,
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respectively. Therefore, we have

n(1− F 2
e (ρmix, κi)) ≤ nO

(
max

{ 1

q′
,

(n′)mi

(q′)mi−max{ai,a′i}

})
. (4.5)

Since q′ is taken in Section 4.3 to satisfy n·(n′)mi

(q′)mi−max{ai,a′i}
→ 0, the RHS of (4.5)

converges to 0 and therefore n(1 − F 2
e (ρmix, κi)) → 0. This completes the

proof of Theorem 4.2.1.
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Chapter 5

Conclusion and Outlook

We have constructed a secure quantum network code in Chapter 3 and a
multiple-unicast quantum network code in Chapter 4.

In Chapter 3, we have presented an asymptotically secret and correctable
quantum network code as a quantum extension of the classical network codes
given in [9, 18]. Under multiple uses of the network and a restriction on node
operations, our code acheives rate m0−2m1 asymptotically without any clas-
sical communication, where m0 is the transmission rate without attack and
m1 is the maximum number of the attacked channels. Our code needs se-
cret shared randomness and it is implemented by attaching a known classical
secret transmission protocol [16] in our quantum network code. In the anal-
ysis of the code, we only considered the correctability because the secrecy is
guaranteed by the correctness of the recovered state. The correctability is
derived analogously to the classical codes [9, 18] by evaluating bit and phase
error probabilities separately.

In Chapter 4, we have proposed a quantum network code for a multiple-
unicast network with quantum invertible linear operations. As constraints
on information rates, we assumed that the bit and phase transmission rates
from Si to Ti without interference are mi (mi = rankKi,i = rank [K]pi,i), the
upper bounds of the bit and phase interferences are ai and a′i, respectively
(rankKic ≤ ai, rank [K]pic ≤ a′i), and ai + a′i < mi holds. Under these
constraints, our code achieves the rate mi− ai− a′i quantum communication
by asymptotic n-use of the network. The negligible rate shared randomness
plays a crucial role in our code, and it is realized by attaching the protocol
in [16].

The codes in Chapters 3 and 4 can be integrated as a multiple-unicast
network with a malicious adversary. When the eavesdropper attacks at most
a′′i edges connected with the sender Si and the receiver Ti, if ai+a

′
i+2a′′i < mi

holds, our code implements the rate mi − ai − a′i − 2a′′i quantum communi-
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cations asymptotically. This fact can be shown by integrating the methods
in Chapters 3 and 4.
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Appendix A

Proofs in Chapter 3

A.1 Proof of Lemma 3.3.1

Proof of Lemma 3.3.1. For x = (x1, ..., xm), y = (y1, ..., ym) ∈ Fmq , define an
inner product

(x, y) :=
m∑
i=1

trxiyi = tr
m∑
i=1

xiyi. (A.1)

Let T be a m×m matrix ove Fq. If x, y are considered as column vectors, it
holds that (Tx, y) = (x, T>y). On the other hand, if x, y are considered as
row vectors, it holds that (xT, y) = (x, yT>).

First, we show L(A)|M〉p = |(A−1)>M〉p by considering Fmq as a column

vector space. For L(1)(A) :=
∑

x∈Fm
q
|Ax〉bb〈x| and z ∈ Fmq ,

L(1)(A)|z〉p =
1√
qm

∑
x∈Fm

q

ω−(x,z)|Ax〉b

=
1√
qm

∑
x′∈Fm

q

ω−(A−1x′,z)|x′〉b

=
1√
qm

∑
x′∈Fm

q

ω−(x′,(A−1)>z)|x′〉b

= |(A−1)>z〉p.

Since L(A) :=
(
L(1)(A)

)⊗n
, we have L(A)|M〉p = |(A−1)>M〉p.

Next, consider Fnq as an n-dimensional row vector space over Fq. For
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R(1)(B) :=
∑

x∈Fn
q
|xB〉bb〈x| and z ∈ Fnq ,

R(1)(B)|z〉p =
1√
qn

∑
x∈Fn

q

ω−(x,z)|xB〉b

=
1√
qn

∑
x′′∈Fn

q

ω−(x′′B−1,z)|x′′〉b

=
1√
qn

∑
x′′∈Fn

q

ω−(x′′,z(B−1)>)|x′′〉b

= |z(B−1)>〉p.

Since R(B) :=
(
R(1)(B)

)⊗m
, we have R(B)|M〉p = |M(B−1)>〉p.

A.2 Proof of (3.5)

In this section, we show Lemmas A.2.1 and A.2.2 which shows the relation-
ship between two maxially entangled states and projections Pb, Pp defined by
the bit and the phase bases.

Define the following maxially entangled states with respect to the bit and
phase bases:

|Φb〉 :=
1√
qm

∑
i∈Fm

q

|i, i〉b, |Φp〉 :=
1√
qm

∑
z∈Fm

q

|z, z̄〉p.

We use the inner product (·, ·) defined in (A.1) for the proofs.

Lemma A.2.1. |Φp〉 = |Φb〉.

Proof.

|Φp〉 =
1√
qm

(∑
z∈Fm

q

(∑
j∈Fm

q

w−(z,j)

√
qm
|j〉b
)
⊗
(∑
l∈Fm

q

w(z,l)

√
qm
|l〉b
))

=
1√
qm

∑
z,j,l∈Fm

q

ω−(z,j−l)

qm
|j, l〉b

=
1√
qm

∑
j∈Fm

q

|j, j〉b. (A.2)
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Eq. (A.2) holds because

∑
z∈Fm

q

ω−(z,j−l)

qm
=

{
0 if j 6= l,

1 otherwise.

From the above lemma, we denote |Φ〉 := |Φb〉 = |Φp〉. Eq. (3.5) is proved
by the following lemma.

Lemma A.2.2. PbPp = PpPb = |Φ〉〈Φ|.

Proof.

PbPp =
∑
i,z∈Fm

q

b〈i, i|z, z̄〉p|i, i〉bp〈z, z̄|

=
∑
i,z∈Fm

q

ω−(z,i−i)

qm

∑
j,l∈Fm

q

ω(z,j−l)

qm
|i, i〉bb〈j, l|

=
∑

i,j,l,z∈Fm
q

ω(z,j−l)

q2d
|i, i〉bb〈j, l|

=
∑
i,j∈Fm

q

1

qm
|i, i〉bb〈j, j|.

A.3 Proofs of Lemmas 3.6.2 and 3.6.3

We prepare Lemma A.3.1 to prove Lemmas 3.6.2 and 3.6.3.

Lemma A.3.1 ([9]). Suppose independent m random variables V1, . . . , Vm ∈
Fq are uniformly chosen in Fq and define the random matrix Q ∈ Fl×mq as
Qi,j := (Vj)

i. For arbitrary row vectors x ∈ Fmq and y ∈ Flq\{01,l} (l ≥ m),
we have

Pr[x = yQ] ≤
( l
q

)m
. (A.3)

For arbitrary row vectors x ∈ Fmq \{01,m}, y ∈ Flq(l ≥ m),

Pr[y = xQ>] ≤ 1

q
. (A.4)
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Proof. We only show (A.4) because the inequality (A.3) was shown in [9,
Claim 5].

For a = (a1, . . . , am) and b = (b1, . . . , bm), the Hadamard product and
dot product are defined as a ◦ b := (a1b1, . . . , ambm) and a · b :=

∑m
i=1 aibi,

respectively. Then, we have the following inclusion: for V := (V1, . . . , Vm) ∈
Fmq ,

{V | y = xQ>} ={V | y1 = x · V, y2 = x · (V ◦ V ), . . . , yl = x · (V ◦l)}
⊂{V | y1 = x · V }, (A.5)

where V ◦l := V ◦ V ◦ · · · ◦ V︸ ︷︷ ︸
l

. Since the hyperplane (A.5) is (m−1)-dimensional,

we have

Pr[y=xQ>] ≤ Pr[y1 =x · V ] ≤ qm−1

qm
=

1

q
.

Now we prove Lemmas 3.6.2 and 3.6.3.

Proofs of Lemmas 3.6.2 and 3.6.3. Let x = (xA, xB, xC) ∈ Fm0

q′ × Fm0

q′ ×
Fn
′−2m0

q′ be a nonzero row vector. It holds from definition of RV
1 that

x((RV
1 )−1)A = xA − xBQ>3 Q4 − xCQ1, (A.6)

x([RV
1 ]−1
p )B = xB + xAQ>4 Q3 + (xAQ>1 + xC)Q2. (A.7)

Lemma 3.6.2 is proved as follows. The condition x((RV
1 )−1)A = 01,m0

holds only in the following three cases from (A.6), and in each case, the
probability for x((RV

1 )−1)A = 01,m0 = 01,m0 is calculated by Lemma A.3.1 as
follows.

1. If xB 6= 01,m0 and xC = 01,n′−2m0,

Pr[xA = xBQ>3 Q4] ≤
(m0

q′

)m0

.

2. If xB = 01,m0 and xC 6= 01,n′−2m0,

Pr[xA = xCQ1] ≤
(n′−2m0

q′

)m0

.

3. If xB 6= 01,m0 and xC 6= 01,n′−2m0,

Pr[xA − xCQ1 = xBQ>3 Q4] ≤
(m0

q′

)m0

.
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Since n′ > 3m0, we obtain the inequality (3.17) in Lemma 3.6.2.
In the same way, we show Lemma 3.6.3 as follows. The condition x([RV

1 ]−1
p )B =

01,m0 holds only in the following two cases from (A.7), and in each case, the
probabilitiy that this condition holds is calculated by Lemma A.3.1 as follows.

1. If xAQ>1 + xC = 01,n′−2m0, it should hold that xB + xAQ>4 Q3 = 01,m0 .
The probability is derived as

Pr[xB = −xAQ>4 Q3 ∩ xC = −xAQ>1 ]

= Pr[xB = −xAQ>4 Q3] · Pr[xC = −xAQ>1 ] ≤ 1

q′

(m0

q′

)m0

.

2. If xAQ>1 + xC 6= 01,n′−2m0, we have

Pr[xB + xAQ>4 Q3 = −(xC + xAQ>1 )Q2] ≤
(n′−2m0

q′

)m0

.

Since 1
q′

(
m0

q′

)m0 <
(
m0

q′

)m0 <
(
n′−2m0

q′

)m0 from n′ > 3m0, we have the inequality

(3.24) in Lemma 3.6.3.

A.4 Proof of (3.19)

From dimS⊥u = m2 − rank[ui(1), . . . , ui(m2)], we have

Pr
[
dimS⊥u =rankW̃

]
=Pr

[
rank[ui(1),. . .,ui(m2)]=rankR2,b

]
.

Since R2,b = [ui(1), . . . , ui(m0)] is a random matrix with rankR2,b = m0 −m1,
this probability is equivalent to

Pr
[
rank[ui(1), . . . , ui(m2)] = rankR2,b

]
= Pr

[
rank[v1, . . . , vm2 ] = m0−m1

∣∣ rank[v1, . . . , vm0 ] = m0−m1, vk ∈ Fm0−m1

q′

]
.

Therefore, it holds that

Pr
[
rank[ui(1), . . . , ui(m2)] = rankR2,b

]
≥ Pr

[
rank[v1, . . . , vm2 ] = m0 −m1

∣∣vk ∈ Fm0−m1

q′

]
≥ Pr

[
rank[v1, . . . , vm0−m1 ]=m0−m1

∣∣vk ∈ Fm0−m1

q′

]
. (A.8)
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The probability (A.8) is equivalent to the probability to choose m0 − m1

independent vectors in Fm0−m1

q′ :

Pr
[
rank[v1, . . . , vm0−m1 ] = m0 −m1

∣∣vk ∈ Fm0−m1

q′

]
=
((q′)m0−m1

(q′)m0−m1

)
·
((q′)m0−m1−q′

(q′)m0−m1

)
· · ·
((q′)m0−m1−(q′)m0−m1−1

(q′)m0−m1

)
= 1−O(1/q′).

Therefore, (3.19) holds with probability at least 1−O(1/q′).
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