Secure Quantum Network Code

321701139 Song Seunghoan

アドバイザー:林正人教授

修士論文発表会

- 2. Secure Quantum Network Code
 - 2.1 Quantum Network Code
 - 2.2 Two Main Results on QNC
 - 2.3 Secure Quantum Network Code

2. Secure Quantum Network Code

- 2.1 Quantum Network Code
- 2.2 Two Main Results on QNC
- 2.3 Secure Quantum Network Code

Quantum system ${\mathcal H}$

Quantum system ${\mathcal H}$

Quantum System and Quantum States

Postulate 1. Quantum system

Any quantum system is described by a finite-dimensional Hilbert space \mathcal{H} .

- Finite-dimensional Hilbert space: a complex vector space with the standard inner product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$.
- The composite system of quantum systems is given by tensor products of the quantum systems.

Postulate 2. Quantum state

Any quantum state on a quantum system ${\mathcal H}$ is described by a *density matrix* on ${\mathcal H}.$

• A matrix ρ on $\mathcal H$ is called a *density matrix* on $\mathcal H$ if

 $\text{Tr } \rho = 1 \quad \text{and} \quad \rho \geq 0.$

If a density matrix is a rank-one matrix $|x\rangle\langle x|$, it corresponds to the unit vector $|x\rangle \in \mathcal{H}_d$. \implies the quantum state is represented by a unit vector.

Quantum Operations and Quantum Measurements

Postulate 3. Quantum Operation

Any quantum operation is described by a trace-preserving completely positive (TP-CP) linear map.

- *Positive map* is a map from positive semidefinite matrices to positive semidefinite matrices.
- A map κ is a completely positive if $\kappa \otimes \iota_{\mathbb{C}_n}$ is a positive map for all $n \in \mathbb{N}$.
 - $\iota_{\mathbb{C}_n}$ is identity map on \mathbb{C}^n .

Postulate 4. Measurement

Any measurement on a quantum system \mathcal{H} is described by a positive operator-valued measurement (POVM).

• A set of matrices $\mathbf{M}_{\Omega}:=\{M_{\omega}:\omega\in\Omega\}$ is called a POVM on $\mathcal H$ if

$$\sum M_\omega = I_{\mathcal{H}} \quad ext{and} \quad M_\omega \geq 0 \quad ext{for any } \omega \in \Omega.$$

• The probability for obtaining ω is Tr $ho M_{\omega}$.

(c.f. $\sum_\omega {\rm Tr}\, \rho M_\omega = 1$)

- 2. Secure Quantum Network Code
 - 2.1 Quantum Network Code
 - 2.2 Two Main Results on QNC
 - 2.3 Secure Quantum Network Code

Quantum Network Communication

Quantum network communication is the transmission of quantum states over quantum network.

Quantum network consists of

- noiseless quantum channels
- sender/receiver nodes
- intermediate nodes
 - apply node operations (TP-CP maps).

Quantum Network Communication

Quantum network communication is the transmission of quantum states over quantum network.

Quantum network consists of

- noiseless quantum channels
- sender/receiver nodes
- intermediate nodes
 - apply node operations (TP-CP maps).

Quantum Network Communication

Quantum network communication is the transmission of quantum states over quantum network.

Quantum network consists of

- noiseless quantum channels
- sender/receiver nodes
- intermediate nodes
 - apply node operations (TP-CP maps).

Quantum Network Code

• Network code: a pair of encoder \mathcal{E} and decoder \mathcal{D} .

Main Results

1. Secure Quantum Network Code

S. Song and M. Hayashi, "Secure Quantum Network Code without Classical Communication," Proceedings of 2018 IEEE Information Theory Workshop (ITW 2018), pp. 126–130, 2018.

2. Quantum Network Code for Multiple-Unicast Network

S. Song and M. Hayashi, "Quantum Network Code for Multiple-Unicast Network with Quantum Invertible Linear Operations," Proceedings of 13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018), vol. 111, pp 10:1–10:20, 2018. 9/24

Quantum Network Code for Multiple-Unicast Network

Quantum Network Code for Multiple-Unicast Network

Problem: coping with interference.

Secure Quantum Network Code

S. Song and M. Hayashi, "Secure Quantum Network Code without Classical Communication," Proceedings of 2018 IEEE Information Theory Workshop (ITW 2018), pp. 126–130, 2018.

Existing Studies of Secure Network Code

Secure	classical	network	code

	Secrecy	Correct.	Controlled Op.	Asymp.	Universality
Cai and Yeung, 2002	\checkmark		\checkmark		
Matsumoto et al. , 2017	\checkmark			\checkmark	\checkmark
Hayashi et al., 2017	\checkmark	\checkmark		\checkmark	\checkmark

Secure quantum network code

	Secrecy	Correct.	Controlled Op.	Asymp.	Universality
Kato et al., 2017	\checkmark		\checkmark		
Song and Hayashi, 2018	\checkmark	\checkmark		\checkmark	\checkmark

- Secrecy in that no information is leaked.
- Correctability in that original message is recovered from attack.
- Controlled Operation in that the code controls intermediate node operations.
- Asymptotic in that the code uses the network asymptotic number of times.
- Universality in that the code does not depend on the network structure.

Overview of Result: Secure Quantum Network Code

- Channel attack: measurements and/or TP-CP maps on attacking channels.
- Node operation: restricted to quantum invertible linear operations.

Main Theorem

Definitions of information quantities

m_0	The number of transmitted unit quantum systems ${\mathcal H}$ without attack
m_1	The maximum number of attacked channels

Main Theorem: Secure quantum network code

When $m_1 < m_0/2$, there exists a sequence of quantum codes $\kappa^{(n)}$ such that

transmission rate is

$$\lim_{n \to \infty} \frac{1}{n} \log_q \dim \mathcal{H}_{\text{code}}^{(n)} = m_0 - 2m_1,$$

secrecy and correctability holds, i.e.,

$$\lim_{n \to \infty} n(1 - F_e^2(\rho_{\min}, \kappa^{(n)})) = 0.$$

Idea for code construction

Idea for code construction

- 1. Node operations are restricted in the quantum network.
- 2. Two classical network is defined from quantum network.
 - The bit classical network.
 - The phase classical network.
- **3**. If two classical network communications are correct, quantum network communication is also correct.
- 4. Quantum network code defined from classical network code.
- 5. Secrecy follows from correctability of quantum network code.

In the following, I will explain

- 1. Network Operation: Quantum Invertible Linear Operation.
- 2. Reduction to Classical Network Communication.
- 3. Quantum Network Code defined from Classical Network Code.

Network Operation: Quantum Invertible Linear Operation

Network Transmission

Unit quantum system \mathcal{H} is a *q*-dimensional Hilbert space. (*q*: prime power)

• Bit basis $\{|x\rangle_b\}_{x\in\mathbb{F}_q}$, Phase basis $\{|x\rangle_p\}_{x\in\mathbb{F}_q}$.

$$|z\rangle_p := \frac{1}{\sqrt{q}} \sum_{x \in \mathbb{F}_q} \omega^{xz} |x\rangle_b, \quad \omega := \exp\left(\frac{2\pi i}{q}\right). \tag{1}$$

By n uses of the network, $\mathcal{H}^{\otimes m_0 \times n}$ is transmitted.

• Bit basis $\{|X\rangle_b\}_{X\in\mathbb{F}_q^{m_0\times n}}$, Phase basis $\{|X\rangle_p\}_{X\in\mathbb{F}_q^{m_0\times n}}$.

Network Transmission

Unit quantum system \mathcal{H} is a *q*-dimensional Hilbert space. (*q*: prime power)

• Bit basis $\{|x\rangle_b\}_{x\in\mathbb{F}_q}$, Phase basis $\{|x\rangle_p\}_{x\in\mathbb{F}_q}$.

$$|z\rangle_p := \frac{1}{\sqrt{q}} \sum_{x \in \mathbb{F}_q} \omega^{xz} |x\rangle_b, \quad \omega := \exp\left(\frac{2\pi i}{q}\right). \tag{1}$$

By n uses of the network, $\mathcal{H}^{\otimes m_0 \times n}$ is transmitted.

• Bit basis $\{|X\rangle_b\}_{X\in\mathbb{F}_q^{m_0\times n}}$, Phase basis $\{|X\rangle_p\}_{X\in\mathbb{F}_q^{m_0\times n}}$.

Network Transmission

Unit quantum system \mathcal{H} is a *q*-dimensional Hilbert space. (*q*: prime power)

• Bit basis $\{|x\rangle_b\}_{x\in\mathbb{F}_q}$, Phase basis $\{|x\rangle_p\}_{x\in\mathbb{F}_q}$.

$$|z\rangle_p := \frac{1}{\sqrt{q}} \sum_{x \in \mathbb{F}_q} \omega^{xz} |x\rangle_b, \quad \omega := \exp\left(\frac{2\pi i}{q}\right). \tag{1}$$

By n uses of the network, $\mathcal{H}^{\otimes m_0 \times n}$ is transmitted.

• Bit basis $\{|X\rangle_b\}_{X\in\mathbb{F}_a^{m_0\times n}}$, Phase basis $\{|X\rangle_p\}_{X\in\mathbb{F}_a^{m_0\times n}}$.

Node Operation: Quantum Invertible Linear Operation

Restriction on node operations

• Every intermediate node v_t applies a unitary operation

$$\mathcal{L}(A_t) := \sum_{X \in \mathbb{F}_q^{m_0 \times n}} |A_t X\rangle_{bb} \langle X|$$
(2)

 $(A_t \in \mathbb{F}_q^{m_0 imes m_0}$ is an invertible matrix).

The operation $\mathcal{L}(A_t)$ satisfies

$$\mathcal{L}(A_t)|X\rangle_b = |A_tX\rangle_b, \quad \mathcal{L}(A_t)|X\rangle_p = |(A_t^{\top})^{-1}X\rangle_p.$$
(3)

• Entire network operation is $\mathcal{L}(K) := \mathcal{L}(A_c \cdots A_1) = \mathcal{L}(A_c) \cdots \mathcal{L}(A_1)$.

• Reduction to classical correctability from quantum correctability.

• Reduction to classical correctability from quantum correctability.

$$\begin{split} & \text{For any } \rho \in \mathcal{S}(\mathcal{H}_{\text{code}}^{(n)}), \\ & \underbrace{n(1-F_e^2(\rho,\kappa^{(n)}))}_{\text{Correctability}} \leq n \cdot (\Pr[\text{bit error}] + \Pr[\text{phase error}]). \end{split}$$

• Reduction to classical correctability from quantum correctability.

For any
$$M \in \mathbb{F}_q^{(m_0-2m_1)\times(n-2\alpha_nm_0)}$$
,
 $|M\rangle_b \longrightarrow \boxed{\text{Encoder}} \cdot \boxed{\text{Network}} \cdot \boxed{\text{Decoder}} \xrightarrow{\text{Bit basis measurement}} M$
and
 $|M\rangle_p \longrightarrow \boxed{\text{Encoder}} \cdot \boxed{\text{Network}} \cdot \boxed{\text{Decoder}} \xrightarrow{\text{Phase basis measurement}} M$

• Our quantum network is reduced to classical networks when bit or phase basis state is sent.

$$\mathcal{L}(A_t)|X\rangle_b = |A_tX\rangle_b, \quad \mathcal{L}(A_t)|X\rangle_p = |(A_t^{\top})^{-1}X\rangle_p.$$
(4)

• Reduction to classical correctability from quantum correctability.

For any
$$M \in \mathbb{F}_q^{(m_0 - 2m_1) \times (n - 2\alpha_n m_0)}$$
,
 $|M\rangle_b \longrightarrow \text{Encoder} \ast \text{Network} \ast \text{Decoder} \xrightarrow{\text{Bit basis measurement}} M$
and
 $|M\rangle_p \longrightarrow \text{Encoder} \ast \text{Network} \ast \text{Decoder} \xrightarrow{\text{Phase basis measurement}} M$

• Our quantum network is reduced to classical networks when bit or phase basis state is sent.

- Define quantum network code from classical network code.
 - Difficulty: One quantum network code should correct two classical network transmissions.

For any
$$\rho \in \mathcal{S}(\mathcal{H}_{code}^{(n)})$$
,
 $n(1 - F_e^2(\rho, \kappa^{(n)})) \le n \cdot (\Pr[\text{bit error}] + \Pr[\text{phase error}])$ (4)
 $\le n \cdot O\left(\max\left\{\frac{1}{q^{\alpha_n}}, \frac{(n/\alpha_n)^{m_0}}{q^{\alpha_n(m_0-m_1)}}\right\}\right) \to 0.$ (5)

Quantum Network Code defined from Classical Network Code

The encoder and decoder depends only on m_0 and m_1 .

Classical Network Code (Modified from Hayashi et al.)

Encoding

(Orange: Shared Randomness // rank $R_{2,b} = m_0 - m_1$)

$$M \in \mathbb{F}_q^{(m_0 - m_1) \times (n - m_0)} \longrightarrow \mathbb{R}_0 \left[\begin{array}{c|c} \mathbf{0} & \mathbf{0} \\ \hline \mathbf{R}_{2,b} & \mathbf{M} \end{array} \right] \mathbb{R}_1^V =: X \in \mathbb{F}_q^{m_0 \times n}$$

Decoding

$$Y = KX + Z \qquad \left(K: \text{Network Operation, } Z: \text{ Malicious Attack} \right)$$

$$\longrightarrow Y' := Y(R_1^V)^{-1} = KR_0 \left[\begin{array}{c} \mathbf{0} & \mathbf{0} \\ R_{2,b} & M \end{array} \right] + Z(R_1^V)^{-1}$$

$$\longrightarrow \text{ Find invertible matrix } D \text{ s.t. } D\left(Y'\right)_{\text{left block}} = \left[\begin{array}{c} \frac{?}{R_{2,b}} \end{array} \right],$$

and apply D to the right block: $D\left(Y'\right)_{\text{right block}} = \left[\begin{array}{c} \frac{?}{M} \end{array} \right] \longrightarrow M$
(with high probab.)

Classical Code to Quantum Code

• In the decoding of classical code,

Find invertible matrix
$$D$$
 s.t. $D\left(Y'\right)_{\text{left block}} = \left[\frac{?}{R_{2,b}}\right]$,
and apply D to the right block: $D\left(Y'\right)_{\text{right block}} = \left[\frac{?}{M}\right] \longrightarrow M$

Quantum code 1. performs measurement to the left block, 2. finds $D \in \mathbb{F}_{a}^{m_{0} \times m_{0}}$ and 3. applies $\mathcal{L}(D)$ to the right block.

$$\begin{array}{c} m_{1} \left\{ \left[\begin{array}{cccc} \mathcal{H}_{\mathcal{A}1} & \stackrel{i}{\mid} \mathcal{H}_{\mathcal{B}1} & \stackrel{i}{\mid} \mathcal{H}_{\mathcal{C}1} \\ & & \mathcal{H}_{\mathcal{C}1} \\ \mathcal{H}_{\mathcal{A}2} & \stackrel{i}{\mid} \mathcal{H}_{\mathcal{B}2} & \stackrel{i}{\mid} \mathcal{H}_{\mathrm{code}} \\ & & \mathcal{H}_{\mathcal{A}2} & \stackrel{i}{\mid} \mathcal{H}_{\mathcal{B}2} & \stackrel{i}{\mid} \mathcal{H}_{\mathrm{code}} \\ & & \mathcal{H}_{\mathcal{A}3} & \stackrel{i}{\mid} \mathcal{H}_{\mathcal{B}3} & \stackrel{i}{\mid} \mathcal{H}_{\mathcal{C}3} \\ & & & \mathcal{H}_{\mathcal{C}3} \end{array} \right] = \mathcal{H}^{\otimes m_{0} \times n}$$

Conclusion

We have constructed a secure quantum network code.

- Security (secrecy & correctability) is from malicious channel attacks.
- Our code is a quantum generalization of the classical network code.
- Multiple-unicast extension can be constructed by considering interference as channel attack.