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Quantum System and Quantum States
Postulate 1. Quantum system
Any quantum system is described by a finite-dimensional Hilbert space H.
• Finite-dimensional Hilbert space: a complex vector space with the standard inner

product ⟨·, ·⟩ : H × H → C.
• The composite system of quantum systems is given by tensor products of the quantum

systems.

Postulate 2. Quantum state
Any quantum state on a quantum system H is described by a density matrixon H.
• A matrix ρ on H is called a density matrix on H if

Tr ρ = 1 and ρ ≥ 0.

• If a density matrix is a rank-one matrix |x⟩⟨x|, it corresponds to the unit vector |x⟩ ∈ Hd.
=⇒ the quantum state is represented by a unit vector.
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Quantum Operations and QuantumMeasurements
Postulate 3. Quantum Operation
Any quantum operation is described by a trace-preserving completelypositive (TP-CP) linear map.
• Positive map is a map from positive semidefinite matrices to positive semidefinite

matrices.
• A map κ is a completely positive if κ ⊗ ιCn is a positive map for all n ∈ N.

– ιCn is identity map on Cn.
Postulate 4. Measurement
Any measurement on a quantum system H is described by a positiveoperator-valued measurement (POVM).
• A set of matrices MΩ := {Mω : ω ∈ Ω} is called a POVM on H if∑

ω

Mω = IH and Mω ≥ 0 for any ω ∈ Ω.

• The probability for obtaining ω is Tr ρMω . (c.f. ∑
ω
Tr ρMω = 1)

positive operator-valued measurement (POVM).
Definition (Positive Operator-Valued Measurement (POVM) MΩ)
A set of matrices MΩ := {Mω ∈ M(H) : ω ∈ Ω} is called a POVM on the
quantum system H if∑

ω

Tr ρMω = 1 and Mω ≥ 0 for any Mω ∈ MΩ.

Given a state ρ and a POVM M = {Mω : ω ∈ Ω} on H, the probability for
obtaining ω is Tr ρMω.
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Quantum Network Communication
Quantum network communication is the transmission of quantum states
over quantum network.

Quantum Network
(ρ, σ: Quantum states)

ρ σ

Quantum network consists of
• noiseless quantum channels
• sender/receiver nodes
• intermediate nodes– apply node operations (TP-CP maps).
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Quantum Network Code

Quantum NetworkEncoder Decoderρ E(ρ) σ D(σ) ≈ ρ

• Network code: a pair of encoder E and decoder D.
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Main Results
1. Secure Quantum Network Code

Quantum NetworkEncoder Decoder

Evechannel attack

ρ E(ρ) σ D(σ) ≈ ρ

S. Song and M. Hayashi, “Secure Quantum Network Code without Classical Communication,” Proceedings of 2018 IEEE Information Theory
Workshop (ITW 2018), pp. 126–130, 2018.

2. Quantum Network Code for Multiple-Unicast Network
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S. Song and M. Hayashi, “Quantum Network Code for Multiple-Unicast Network with Quantum Invertible Linear Operations,” Proceedings
of 13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018), vol. 111, pp 10:1–10:20, 2018. 9/24
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Secure Quantum Network Code

Quantum NetworkEncoder Decoder

Evechannel attack

ρ E(ρ) σ D(σ) ≈ ρ

S. Song and M. Hayashi, “Secure Quantum Network Code without Classical Communication,” Proceedings of 2018 IEEE Information Theory
Workshop (ITW 2018), pp. 126–130, 2018.
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Existing Studies of Secure Network Code
Secure classical network codeSecrecy Correct. Controlled Op. Asymp. Universality

Cai and Yeung, 2002 ✓ ✓
Matsumoto et al. , 2017 ✓ ✓ ✓

Hayashi et al., 2017 ✓ ✓ ✓ ✓

Secure quantum network code
Secrecy Correct. Controlled Op. Asymp. Universality

Kato et al., 2017 ✓ ✓
Song and Hayashi, 2018 ✓ ✓ ✓ ✓

• Secrecy in that no information is leaked.
• Correctability in that original message is recovered from attack.
• Controlled Operation in that the code controls intermediate node operations.
• Asymptotic in that the code uses the network asymptotic number of times.
• Universality in that the code does not depend on the network structure. 12/24



Overview of Result: Secure Quantum Network Code

Quantum Network
(Unknown, Restricted)Encoder Decoder

Evechannel attack

ρ E(ρ) σ D(σ) ≈ ρ

• Channel attack: measurements and/or TP-CP maps on attacking channels.
• Node operation: restricted to quantum invertible linear operations.
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Main Theorem
Definitions of information quantities

m0 The number of transmitted unit quantum systems H without attack
m1 The maximum number of attacked channels

Main Theorem: Secure quantum network code
When m1 < m0/2, there exists a sequence of quantum codes κ(n) such
that
• transmission rate is

lim
n→∞

1
n

logq dim H(n)
code = m0 − 2m1,

• secrecy and correctability holds, i.e.,
lim

n→∞
n(1 − F 2

e (ρmix, κ(n))) = 0.
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Idea for code construction
Idea for code construction
1. Node operations are restricted in the quantum network.
2. Two classical network is defined from quantum network.

– The bit classical network.
– The phase classical network.

3. If two classical network communications are correct, quantum network
communication is also correct.

4. Quantum network code defined from classical network code.
5. Secrecy follows from correctability of quantum network code.

In the following, I will explain
1. Network Operation: Quantum Invertible Linear Operation.
2. Reduction to Classical Network Communication.
3. Quantum Network Code defined from Classical Network Code. 15/24



Network Operation:
Quantum Invertible Linear Operation

Quantum Network
(unknown, restricted)Encoder Decoder

Evechannel attack

ρ E(ρ) σ D(σ) ≈ ρ
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Network Transmission
Unit quantum system H is a q-dimensional Hilbert space. (q: prime power)
• Bit basis {|x⟩b}x∈Fq , Phase basis {|x⟩p}x∈Fq .

|z⟩p := 1
√

q

∑
x∈Fq

ωxz|x⟩b, ω := exp
(

2πi

q

)
. (1)

By n uses of the network, H⊗m0×n is transmitted.
• Bit basis {|X⟩b}X∈Fm0×n

q
, Phase basis {|X⟩p}

X∈Fm0×n
q

.

vt vt′
H
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Quantum Network
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Node Operation: Quantum Invertible Linear Operation
Restriction on node operations
• Every intermediate node vt applies a unitary operation

L(At) :=
∑

X∈Fm0×n
q

|AtX⟩bb⟨X| (2)
(At ∈ Fm0×m0

q is an invertible matrix).
The operation L(At) satisfies

L(At)|X⟩b = |AtX⟩b, L(At)|X⟩p = |(A⊤
t )−1X⟩p. (3)

• Entire network operation is L(K) :=L(Ac · · · A1)=L(Ac) · · · L(A1).
18/24



Reduction to Classical Network Communication

Quantum Network
(unknown, restricted)Encoder Decoder

Evechannel attack

ρ E(ρ) σ D(σ) ≈ ρ
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Reduction to Classical Network Communication
• Reduction to classical correctability from quantum correctability.

For any M ∈ F(m0−2m1)×(n−2αnm0)
q ,

Encoder Network Decoder|M⟩b M
Bit basis measurement

and
Encoder Network Decoder|M⟩p M

Phase basis measurement
⇐

=

Quantum network communication is correct.
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Reduction to Classical Network Communication
• Reduction to classical correctability from quantum correctability.

For any ρ ∈ S(H(n)
code),

n(1 − F 2
e (ρ, κ(n)))︸ ︷︷ ︸Correctability

≤ n · (Pr[bit error] + Pr[phase error]).
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• Our quantum network is reduced to classical networks when bit or phase
basis state is sent.
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Reduction to Classical Network Communication
• Reduction to classical correctability from quantum correctability.

For any M ∈ F(m0−2m1)×(n−2αnm0)
q ,

Encoder Network Decoder|M⟩b M
Bit basis measurement

and
Encoder Network Decoder|M⟩p M

Phase basis measurement

• Our quantum network is reduced to classical networks when bit or phase
basis state is sent.
• Define quantum network code from classical network code.

– Difficulty: One quantum network code should correct two classical network
transmissions.

20/24



Reduction to Classical Network Communication

For any ρ ∈ S(H(n)
code),

n(1 − F 2
e (ρ, κ(n))) ≤ n · (Pr[bit error] + Pr[phase error]) (4)

≤ n · O

(
max

{ 1
qαn

,
(n/αn)m0

qαn(m0−m1)

})
→ 0. (5)
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Quantum Network Code
defined from Classical Network Code

Quantum Network
(unknown, restricted)Encoder Decoder

Evechannel attack

ρ E(ρ) σ D(σ) ≈ ρ

The encoder and decoder depends only on m0 and m1.
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Classical Network Code (Modified from Hayashi et al.)
Encoding (Orange: Shared Randomness // rank R2,b = m0 − m1)

R0

[
0 0

R2,b M

]
RV

1 =: X ∈ Fm0×n
qM ∈ F(m0−m1)×(n−m0)

q

Decoding
Y = KX + Z

(
K: Network Operation, Z: Malicious Attack)

Y ′ := Y (RV
1 )−1 = KR0

[
0 0

R2,b M

]
+ Z(RV

1 )−1

Find invertible matrix D s.t. D
(

Y ′
)
left block =

[
?

R2,b

]
,

and apply D to the right block: D
(

Y ′
)
right block=

[
?

M

]
↑

(with high probab.)
M
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Classical Code to Quantum Code
• In the decoding of classical code,

Find invertible matrix D s.t. D

(
Y ′

)
left block =

[
?

R2,b

]
,

and apply D to the right block: D

(
Y ′

)
right block=

[
?

M

]
M

Quantum code 1. performs measurement to the left block,
2. finds D ∈ Fm0×m0

q and 3. applies L(D) to the right block.
HA1 HB1 HC1

HA2 HB2 H(n)
code

HA3 HB3 HC3



 = H⊗m0×n

m1

m0−2m1

m1

left bit left phase right 23/24



Conclusion

We have constructed a secure quantum network code.
• Security (secrecy & correctability) is from malicious channel attacks.
• Our code is a quantum generalization of the classical network code.
• Multiple-unicast extension can be constructed by considering
interference as channel attack.
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