Capacity of Quantum Private Information Retrieval with Colluding Servers

Seunghoan Song 1 , Masahito Hayashi 2,1

¹ Nagoya University,

 $^{\rm 2}$ Southern University of Science and Technology

AQIS2020

What is PIR? A retrieval protocol without revealing which message is requested. [Chor et al.95].

What is PIR? A retrieval protocol without revealing which message is requested. [Chor et al.95].

What is PIR? A retrieval protocol without revealing which message is requested. [Chor et al.95].

What is PIR? A retrieval protocol without revealing which message is requested. [Chor et al.95].

1. One-server PIR

- PIR rate

$$R = \frac{\text{(Size of } M_K)}{\text{(Total download size)}} \le 1.$$

- PIR rate of trivial solution is $\frac{1}{f}$.
- Trivial solution is optimal [Chor et al.95].

1. One-server PIR

- PIR rate

$$R = \frac{\text{(Size of } M_K)}{\text{(Total download size)}} \le 1.$$

- PIR rate of trivial solution is $\frac{1}{f}$.
- Trivial solution is optimal [Chor et al.95].

2. Multi-server PIR

- User Secrecy: K is not leaked to each server.

PIR capacity [Sun-Jafar16]

$$\begin{split} C \coloneqq \sup R &= \sup \frac{(\text{Size of } M_K)}{(\text{Total download size})} \\ &= \frac{1 - n^{-1}}{1 - n^{-f}} \quad \text{ for n servers and f files} \end{split}$$

3. Multi-server QPIR [Song-Hayashi19]

Green: classical, Magenta: quantum.

- User Secrecy: \boldsymbol{K} is not leaked to each server.
- Server Secrecy: User only obtains M_K .

QPIR capacity [Song-Hayashi19]

$$C \coloneqq \sup \frac{\text{(Size of } M_K)}{\text{(Total download size)}}$$

= 1 for n ≥ 2 servers and f files

3. Multi-server QPIR [Song-Hayashi19]

Green: classical, Magenta: quantum.

- User Secrecy: \boldsymbol{K} is not leaked to each server.
- Server Secrecy: User only obtains M_K .

QPIR capacity [Song-Hayashi19]

$$C \coloneqq \sup \frac{(\text{Size of } M_K)}{(\text{Total download size})}$$

= 1 for
$$n \ge 2$$
 servers and f files

- 4. t-Private QPIR [Our Result] $(1 \le t \le n 1)$ - User t-Secrecy: K is secret to any t servers.
 - Server Secrecy

t-Private QPIR capacity [This Work]

$$C_{\mathsf{t}} \coloneqq \begin{cases} 1 & \text{if } \mathsf{t} \leq \frac{\mathsf{n}}{2}, \\ \frac{2(\mathsf{n} - \mathsf{t})}{\mathsf{n}} & \text{if } \mathsf{t} > \frac{\mathsf{n}}{2}. \end{cases} \text{ for n servers}$$

PIR Capacities

(n servers, f files, t colluding servers)

	Secrecy Cond.	Classical Capacity	Quantum Capacity
PIR	User secrecy	$\frac{1-n^{-1}}{1-n^{-f}}$ [Sun-Jafar16]	$1^{ { imes}}$ [Song-Hayashi19]
Symmetric PIR	User secrecy, Server secrecy	$1-rac{1}{n}$ [Sun-Jafar17] †	
t-Private PIR	User t-secrecy	$\frac{1}{1-(t/n)^f} \left(\frac{n-t}{n}\right) [\text{Sun-Jafar16-2}]$	$1 \text{ for } t \le \frac{n}{2}, ^{\ddagger}$
t-Private symmetric PIR	User t-secrecy, Server secrecy	$\frac{n-t}{n} _{[Wang-Skoglund17]} ^{\dagger}$	$2\left(\frac{n-t}{n}\right)$ for $t > \frac{n}{2}^{\ddagger}$

† Shared randomness among servers is necessary.

‡ Capacities are derived with the strong converse bounds.

Construction of t-Private QPIR Protocol

Construction of t-Private QPIR Protocol with optimal rate $\frac{2(n-t)}{n}$ for $t \ge \frac{n}{2}$

Are we skipping $t < \frac{n}{2}$? No! It is automatically constructed.

- 1) Our $\frac{n}{2}$ -private protocol achieves the capacity 1.
- 2) $\frac{n}{2}$ -private QPIR is also t-private QPIR for t < $\frac{n}{2}$.
- \implies Our $\frac{n}{2}$ -private protocol achieves t-private QPIR capacity 1 for t < $\frac{n}{2}$.

- Hilbert space $(\mathbb{C}^q)^{\otimes n}$ is related to the finite field vector space \mathbb{F}_q^{2n} .
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_{1})\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n})$ ($\forall \mathbf{v} \in V$))

$$\underbrace{\left(\rho \text{ on } \mathcal{H}^{\mathrm{V}}\right)}_{\mathsf{Quantum operation } \mathbf{W}(\mathbf{s})} \underbrace{\mathsf{W}(\mathbf{s})\rho \mathbf{W}(\mathbf{s})^{\dagger}}_{\mathsf{Measurement}} \underbrace{\mathsf{Measurement}}_{\mathsf{S} + \mathrm{V}^{\perp_{\mathrm{S}}} \in \mathbb{F}_{q}^{2n}/\mathrm{V}^{\perp_{\mathrm{S}}} \simeq \mathrm{V}}$$

- Hilbert space (ℂ^q)^{⊗n} is related to the finite field vector space 𝔽²ⁿ_q.
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_{1})\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in V))$

$$\underbrace{\left(\rho \text{ on } \mathcal{H}^{V}\right)}^{\text{Quantum operation } \mathbf{W}(\mathbf{s})} \underbrace{\left(\mathbf{W}(\mathbf{s})\rho\mathbf{W}(\mathbf{s})^{\dagger}\right)}^{\text{Measurement}} \underbrace{\left(\mathbf{s} + V^{\perp_{s}} \in \mathbb{F}_{q}^{2n} / V^{\perp_{s}} \simeq V\right)}_{q}$$

- Hilbert space $(\mathbb{C}^q)^{\otimes n}$ is related to the finite field vector space \mathbb{F}_q^{2n} .
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_{1})\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in V))$

$$\underbrace{\left(\rho \text{ on } \mathcal{H}^{V}\right)}^{\text{Quantum operation } \mathbf{W}(\mathbf{s})} \underbrace{\left(\mathbf{W}(\mathbf{s})\rho\mathbf{W}(\mathbf{s})^{\dagger}\right)}^{\text{Measurement}} \underbrace{\left(\mathbf{s} + V^{\perp_{s}} \in \mathbb{F}_{q}^{2n} / V^{\perp_{s}} \simeq V\right)}_{q}$$

- Hilbert space (ℂ^q)^{⊗n} is related to the finite field vector space 𝔽²ⁿ_q.
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_{1})\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in V))$

$$\underbrace{\left(\rho \text{ on } \mathcal{H}^{V}\right)}^{\text{Quantum operation } \mathbf{W}(\mathbf{s})} \underbrace{\left(\mathbf{W}(\mathbf{s})\rho\mathbf{W}(\mathbf{s})^{\dagger}\right)}^{\text{Measurement}} \underbrace{\left(\mathbf{s} + V^{\perp_{s}} \in \mathbb{F}_{q}^{2n} / V^{\perp_{s}} \simeq V\right)}_{q}$$

- Hilbert space (ℂ^q)^{⊗n} is related to the finite field vector space 𝔽²ⁿ_q.
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_1)\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in \mathrm{V}))$

- Hilbert space (ℂ^q)^{⊗n} is related to the finite field vector space 𝔽²ⁿ_q.
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_1)\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in \mathrm{V}))$

$$\underbrace{\left(\rho \text{ on } \mathcal{H}^{V}\right)}^{\text{Quantum operation } \mathbf{W}(\mathbf{s})} \underbrace{\left(\mathbf{W}(\mathbf{s})\rho\mathbf{W}(\mathbf{s})^{\dagger}\right)}^{\text{Measurement}} \underbrace{\left(\mathbf{s} + V^{\perp_{s}} \in \mathbb{F}_{q}^{2n}/V^{\perp_{s}} \simeq V\right)}_{q}$$

- Hilbert space (ℂ^q)^{⊗n} is related to the finite field vector space 𝔽²ⁿ_q.
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_1)\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in \mathrm{V}))$

Stabilizer Formalism

- Hilbert space (ℂ^q)^{⊗n} is related to the finite field vector space 𝔽²ⁿ_q.
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_{1})\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in V)$)

$$\underbrace{\left(\rho \text{ on } \mathcal{H}^{\mathrm{V}}\right)}_{\mathsf{Quantum operation } \mathbf{W}(\mathbf{s})} \underbrace{\mathsf{W}(\mathbf{s})\rho \mathbf{W}(\mathbf{s})^{\dagger}}_{\mathsf{W}(\mathbf{s})\rho \mathbf{W}(\mathbf{s})^{\dagger}} \underbrace{\mathsf{Measurement}}_{\mathsf{S} + \mathrm{V}^{\perp_{\mathrm{S}}} \in \mathbb{F}_{q}^{2n}/\mathrm{V}^{\perp_{\mathrm{S}}} \simeq \mathrm{V}}$$

← This is not yet QPIR protocol!

QPIR protocol should satisfy i) $\mathbf{s} + \mathbf{V}^{\perp_{\mathbf{s}}} \simeq M_K$,

ii) user secrecy and server secrecy.

Stabilizer Formalism

- Hilbert space (ℂ^q)^{⊗n} is related to the finite field vector space 𝔽²ⁿ_q.
- Stabilizer is defined from $V \subset \mathbb{F}_q^{2n}$ s.t. $V \subset V^{\perp_s}$.
- \mathcal{H}^{V} : code space (stabilized by $\mathbf{W}(\mathbf{v}) \coloneqq \mathsf{X}(v_{1})\mathsf{Z}(v_{n+1}) \otimes \cdots \otimes \mathsf{X}(v_{n+1})\mathsf{Z}(v_{2n}) \ (\forall \mathbf{v} \in V)$)

$$\overbrace{\rho \text{ on } \mathcal{H}^{\mathrm{V}}}^{\text{Quantum operation } \mathbf{W}(\mathbf{s})} \xrightarrow{\mathsf{W}(\mathbf{s})_{\rho} \mathbf{W}(\mathbf{s})^{\dagger}} \xrightarrow{\mathsf{Measurement}} \underbrace{\mathbf{s} + \mathrm{V}^{\perp_{\mathrm{S}}} \in \mathbb{F}_{q}^{2n} / \mathrm{V}^{\perp_{\mathrm{S}}} \simeq \mathrm{V}}_{q}$$

← This is not yet QPIR protocol!

QPIR protocol should satisfy i) $\mathbf{s} + \mathbf{V}^{\perp_{\mathbf{s}}} \simeq M_K$,

ii) user secrecy and server secrecy.

i), ii) are satisfied by finding good V.

Good stabilizer V is chosen by the following lemma.

Lemma 5.2: There exists a matrix $D_1 = (\mathbf{v}_1, \dots, \mathbf{v}_{2t}) = (\mathbf{w}_1^{\mathsf{T}}, \dots, \mathbf{w}_{2n}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{F}_q^{2n \times 2t}$ satisfying the following conditions.

(a) $V = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2n-2t}\}, V^{\perp_s} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2t}\}, \text{ and } V \subset V^{\perp_s}.$ (b) $\mathbf{w}_{\pi(1)}, \dots, \mathbf{w}_{\pi(t)}, \mathbf{w}_{\pi(1)+n}, \dots, \mathbf{w}_{\pi(t)+n}$ are linearly independent for any $\pi \in \operatorname{perm}(\mathsf{n}).$

Good stabilizer ${\rm V}$ is chosen by the following lemma.

Lemma 5.2: There exists a matrix $D_1 = (\mathbf{v}_1, \dots, \mathbf{v}_{2t}) = (\mathbf{w}_1^{\mathsf{T}}, \dots, \mathbf{w}_{2n}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{F}_q^{2n \times 2t}$ satisfying the following conditions. (a) $V = \operatorname{span}{\{\mathbf{v}_1, \dots, \mathbf{v}_{2n-2t}\}}, V^{\perp_s} = \operatorname{span}{\{\mathbf{v}_1, \dots, \mathbf{v}_{2t}\}}, \text{ and } V \subset V^{\perp_s}.$

(b) $\mathbf{w}_{\pi(1)}, \ldots, \mathbf{w}_{\pi(t)}, \mathbf{w}_{\pi(1)+n}, \ldots, \mathbf{w}_{\pi(t)+n}$ are linearly independent for any $\pi \in \text{perm}(n)$.

- (a) defines stabilizer
- (b) is used for secrecy in our protocol.

Good stabilizer ${\rm V}$ is chosen by the following lemma.

Lemma 5.2: There exists a matrix $D_1 = (\mathbf{v}_1, \dots, \mathbf{v}_{2t}) = (\mathbf{w}_1^{\mathsf{T}}, \dots, \mathbf{w}_{2n}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{F}_q^{2n \times 2t}$ satisfying the following conditions. (a) $V = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2n-2t}\}, V^{\perp_s} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2t}\}, \text{ and } V \subset V^{\perp_s}.$

(b) $\mathbf{w}_{\pi(1)}, \ldots, \mathbf{w}_{\pi(t)}, \mathbf{w}_{\pi(1)+n}, \ldots, \mathbf{w}_{\pi(t)+n}$ are linearly independent for any $\pi \in \operatorname{perm}(n)$.

- (a) defines stabilizer
- (b) is used for secrecy in our protocol.

Classical Version of Lemma 5.2: (b') Any t rows of $D \in \mathbb{F}_{q}^{n \times t}$ are linearly independent.

Good stabilizer ${\rm V}$ is chosen by the following lemma.

Lemma 5.2: There exists a matrix $D_1 = (\mathbf{v}_1, \dots, \mathbf{v}_{2t}) = (\mathbf{w}_1^{\mathsf{T}}, \dots, \mathbf{w}_{2n}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{F}_q^{2n \times 2t}$ satisfying the following conditions. (a) $V = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2n-2t}\}, V^{\perp_s} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2t}\}, \text{ and } V \subset V^{\perp_s}.$

(b) $\mathbf{w}_{\pi(1)}, \ldots, \mathbf{w}_{\pi(t)}, \mathbf{w}_{\pi(1)+n}, \ldots, \mathbf{w}_{\pi(t)+n}$ are linearly independent for any $\pi \in \operatorname{perm}(n)$.

- (a) defines stabilizer
- (b) is used for secrecy in our protocol.

Classical Version of Lemma 5.2: (b') Any t rows of $D \in \mathbb{F}_{q}^{n \times t}$ are linearly independent.

(b') is used for crypto. protocols (e.g., PIR, secret sharing).
 These protocols transmits (n - t) symbols by using n symbols.

Good stabilizer V is chosen by the following lemma.

Lemma 5.2: There exists a matrix $D_1 = (\mathbf{v}_1, \dots, \mathbf{v}_{2t}) = (\mathbf{w}_1^{\mathsf{T}}, \dots, \mathbf{w}_{2n}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{F}_a^{2n \times 2t}$ satisfying the following conditions. (a) $V = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2n-2t}\}, V^{\perp_s} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2t}\}, \text{ and } V \subset V^{\perp_s}.$

(b) $\mathbf{w}_{\pi(1)}, \ldots, \mathbf{w}_{\pi(t)}, \mathbf{w}_{\pi(1)+n}, \ldots, \mathbf{w}_{\pi(t)+n}$ are linearly independent for any $\pi \in \operatorname{perm}(n)$.

- (a) defines stabilizer
- (b) is used for secrecy in our protocol.

Classical Version of Lemma 5.2: (b') Any t rows of $D \in \mathbb{F}_a^{n \times t}$ are linearly independent.

- (b') is used for crypto. protocols (e.g., PIR, secret sharing). These protocols transmits (n - t) symbols by using n symbols.
- In quantum case, we expect that 2(n t) symbols are transmitted.
 - (: we can use both *bit* and *phase* information)

Good stabilizer ${\rm V}$ is chosen by the following lemma.

Lemma 5.2: There exists a matrix $D_1 = (\mathbf{v}_1, \dots, \mathbf{v}_{2t}) = (\mathbf{w}_1^{\mathsf{T}}, \dots, \mathbf{w}_{2n}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{F}_q^{2n \times 2t}$ satisfying the following conditions. (a) $V = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2n-2t}\}, V^{\perp_s} = \operatorname{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{2t}\}, \text{ and } V \subset V^{\perp_s}.$

(b) $\mathbf{w}_{\pi(1)}, \ldots, \mathbf{w}_{\pi(t)}, \mathbf{w}_{\pi(1)+n}, \ldots, \mathbf{w}_{\pi(t)+n}$ are linearly independent for any $\pi \in \operatorname{perm}(n)$.

- (a) defines stabilizer
- (b) is used for secrecy in our protocol.

Classical Version of Lemma 5.2: (b') Any t rows of $D \in \mathbb{F}_{q}^{n \times t}$ are linearly independent.

- (b') is used for crypto. protocols (e.g., PIR, secret sharing).
 These protocols transmits (n t) symbols by using n symbols.
- In quantum case, we expect that 2(n − t) symbols are transmitted.
 (∵ we can use both *bit* and *phase* information)
- We construct a QPIR protocol that achieves QPIR capacity $\frac{2(n-t)}{n}$.

Converse Bounds

• Two converse bounds

-
$$C_t \le 1$$
 for $t < \frac{n}{2}$,
- $C_t \le \frac{2(n-t)}{n}$ for $t \ge \frac{n}{2}$.

(n servers & t colluding servers)

```
Converse for t \le n/2: C_t \le 1
```


• Noting on the download step, QPIR protocol is reduced to the quantum channel coding.

```
\implies \log (\text{Size of } M_K) \le \log (\text{Dimension of } \mathcal{A}_1 \otimes \dots \otimes \mathcal{A}_n)\implies C_t = \sup \frac{\log (\text{Size of } M_K)}{\log (\text{Dimension of } \mathcal{A}_1 \otimes \dots \otimes \mathcal{A}_n)} \le 1.
```

Converse for t > n/2: $C_t \le \frac{2(n-t)}{n}$

Give the user power to distinguish colluding servers.

• From secrecy conditions, $\mathcal{A}_{\pi,t}$ can be considered as shared entanglement.

Converse for t > n/2: $C_t \le \frac{2(n-t)}{n}$

Give the user power to distinguish colluding servers.

• From secrecy conditions, $\mathcal{A}_{\pi,t}$ can be considered as shared entanglement.

 \implies log (Size of M_K) $\leq 2 \log$ (Dimension of \mathcal{A}_{π,t^c}) = $2(n-t) \log \dim \mathcal{A}_1$

$$\implies C_{\mathsf{t}} = \sup \frac{\log \left(\mathsf{Size of } M_K \right)}{\log \left(\mathsf{Dim. of } \mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n \right)} \leq \frac{2 \log \left(\mathsf{Dim. of } \mathcal{A}_{\pi, \mathsf{t}^c} \right)}{\log \left(\mathsf{Dim. of } \mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n \right)} = \frac{2(\mathsf{n} - \mathsf{t})}{\mathsf{n}}.$$

Conclusion

- t-private QPIR capacity is $\min\left\{1, \frac{2(n-t)}{n}\right\}$.
- We constructed an optimal QPIR protocol with colluding servers.

	Secrecy Cond.	Classical Capacity	Quantum Capacity
PIR	User secrecy	$\frac{1-n^{-1}}{1-n^{-f}} \text{[Sun-Jafar16]}$	1 [Song-Hayashi19]
Symmetric PIR	User secrecy, Server secrecy	$1-rac{1}{n}$ [Sun-Jafar17]	
t-Private PIR	User t-secrecy	$\frac{1}{1-(t/n)^f} \left(\frac{n-t}{n}\right) \text{[Sun-Jafar16-2]}$	$\min\left\{1, 2\left(\frac{n-t}{-t}\right)\right\}$
t-Private	User t-secrecy,	n – t	(' (n /)
symmetric PIR	Server secrecy	[Wang-Skoglund17]	

Open Questions

- Trade-off between the QPIR capacity and the amount of entanglement.
- Quantum extensions of many classical PIR results.
- Application of QPIR to other problems.