
Scissor’s congruence groups

Lars Hesselholt

It has been known since ancient times that two polygons that have the same
area can be divided into a finitely many pairwise congruent triangles. Hilbert, in his
third problem at the International Congress of Mathematicians in 1900, asked for
an example of two polyhedra of equal volume which cannot be divided into finitely
many pairwise congruent tetrahedra. Within the same year, Dehn showed that the
cube and the regular tetrahedron of equal volume indeed cannot be divided into
finitely many pairwise congruent tetrahedra. Two polyhedra are said to be scissor’s
congruent if they can be divided into finitely many pairwise congruent tetrahedra.
The question of how to parametrize the set of polyhedra up to scissor’s congruence
turns out to involve much of the modern mathematics developed in the twentieth
century. We will discuss the solution to this question along with some the modern
mathematical structures involved.

The present notes are partly based on Dupont’s book [5] which we recommend
for further reading. We have strived to supply proofs of some basic results in the
theory which are not readily found in the literature.
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1. Hilbert’s third problem

Two planar polygons P and P ′ are said to be scissor’s congruent if they can
be divided into finitely many pairwise congruent triangles. In this case,

area(P ) = area(P ′).

The following theorem implies, in particular, that the opposite is true as well.

Theorem 1.1. Every planar polygon P is scissor’s congruent to a rectangle
with one side of length 1.

Proof. Since every planar polygon can be divided into triangles, we may
assume that P is a triangle. First, as indicated by the following figure, every
triangle is scissor’s congruent to a parallelogram.
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Next, as the following figure indicates, every parallelogram, in turn, is scissor’s
congruent to a rectangle.

�����������������

L

�����������������

L

� � � � � �

__ __

Moreover, by iteratting the procedure indicated by the next figure, it follows that
every rectangle is scissor’s congruent to a rectangle, where one side is at least 1,
and where the other side is a most 1.
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As indicated by the following figure, every such rectangle, in turn, is scissor’s con-
gruent to a parallelogram, where the distance between two of the parallel edges is
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equal to 1.
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Finally, as the following diagram indicates, every such parallelogram is scissor’s
congruent to a rectangle with one side of length 1.
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This completes the proof. �

Remark 1.2. This theorem was likely known to the ancient Chinese and Greek.
It gives one possible way of defining the area of a planar polygon, namely, as the
length of the other side in the resulting rectangle.

In a letter in 1844, Gauss noted that the proof that two pyramids with the
same base area and height have the same volume uses subdivision into an infinite
number of pieces, and he asked for a proof of this which only uses subdivision into
a finite number of pieces. Hilbert, however, did not think that this was possible
and posed as his third problem at the International Congress of Mathematicians in
Paris 1900 the following:

Hilbert’s Third Problem. Show that there exists two polyhedra of equal
volume which are not scissor’s congruent.

Already the same year, Dehn proved that the cube and the regular tetrahedron
of equal volume are not scissor’s congruent. We will give a modern formulation of
Dehn’s proof in the next section. To begin, we make our definitions precise.

A k-simplex in Rn is a tuple

σ = (a0, a1, . . . , ak)

of k + 1 points in ai ∈ Rn. The associated geometric k-simplex |σ| is defined to be
the convex hull of the k + 1 points,

|σ| = conv({a0, . . . , ak}) =
{

k
∑

i=0

tiai | ti ∈ [0, 1], t0 + · · · + tk = 1
}

.
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In the case k = n, we say that σ is proper if |σ| is not contained in an affine
hyperplane in Rn. A sub-tuple τ of σ is called a face of σ, and the subset |τ | ⊂ |σ|
is called a face of |σ|. We allow τ = ∅ and τ = σ. A polytope in Rn is a subset

P ⊂ Rn

with the property that there exists a finite set {σ1, . . . , σm} of proper pairwise
distinct n-simplices in Rn such that

P =

m
⋃

i=1

|σi|

and such that for all for all 1 6 i < j 6 m, the intersection

|σi| ∩ |σj |

is a face of both |σi| and |σj |. A set of simplices {σ1, . . . , σm} as above is said to be
a triangulation of the polytope P ⊂ Rn. We note that the number m of n-simplices
in a triangulation of the non-empty polytope P ⊂ Rn is not bounded above. The
following figure illustrates two triangulations with m = 2 and m = 4, respectively,
of the same polytope.
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In particular, every non-empty polytope P ⊂ Rn admits an infinite number of
triangulations.

We write d(a, a′) for the euclidean distance between the points a and a′ in Rn.
An isometry of Rn is a map f : Rn → Rn such that for all a, a′ ∈ Rn,

d(f(a), f(a′)) = d(a, a′).

We recall that isometries preserve volume and angles.

Remark 1.3. We briefly recall the structure of the euclidean group E(n) that
is defined to be the set of isometries of Rn with the group structure given by
composition. For every v ∈ Rn, the map

tv(a) = a + v

is an isometry called a translation. The assignment v 7→ tv is an isomorphism of the
additive group Rn onto the subgroup T (n) ⊂ E(n) of translations; it is a normal
subgroup. The subgroup O(n) ⊂ E(n) of orthogonal transformations consists of
the isometries f such that f(0) = 0; it is not normal. An orthogonal transformation
is a linear map and the representing matrix is an orthogonal n × n-matrix. Every
element f ∈ E(n) can be written uniquely as the composition

f = tf(0) ◦ f̄ ,

where f̄ is the orthogonal transformation defined by f̄(a) = f(a) − f(0). Hence,
the euclidean group is equal to the semi-direct product

E(n) = O(n) ⋉ T (n)

of the subgroups T (n) and O(n).
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Definition 1.4. The polytopes P, P ′ ⊂ Rn are said to be scissor’s congruent if
there exists triangulations {σ1, . . . , σm} of P and {σ′

1, . . . , σ
′
m} of P ′ and isometries

f1, . . . , fm ∈ E(n) such that f(|σi|) = |σ′
i| for all i = 1, . . . , m.

Lemma 1.5. Let S = {σ1, . . . , σr} and T = {τ1, . . . , τs} be two triangulations
of the polytope P ⊂ Rn. Then there is a triangulation U = {υ1, . . . , υt} of P such
that every geometric simplex associated to a simplex in S or T is equal to a union
of geometric simplices associated to simplices in U .

Proof. Clearly, it suffices to show that if the intersection

Q = |σ| ∩ |τ | ⊂ Rn

of two geometric n-simplices has non-empty interior, then Q is a polytope. To this
end, we recall the main theorem of convex polytopes. A halfspace H ⊂ Rn is a
subset of the form {x ∈ Rn | 〈x, v〉 6 a} for some v ∈ Rn and a ∈ R. Now, the
main theorem of convex polytopes states that the subset S ⊂ Rn is equal to the
convex hull of a finite set of points if and only if it is bounded and equal to the
intersection of a finite set of halfspaces. We refer to [16, Theorem 1.1] for a proof.
The following figure illustrates the theorem.
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A subset S ⊂ Rn of this form is called a convex polytope. The dimension of the
convex polytope S ⊂ Rn is the smallest dimensions of an affine subspace of Rn

that contains S. (Exercise: Show that if the subset R ⊂ Rn is both convex and
a polytope, then it is a convex polytope of dimension n.) In the case at hand, we
find that Q ⊂ Rn is a convex polytope. Indeed, if S1, S2 ⊂ Rn are bounded subsets
equal to the intersections of two finite sets of hyperplanes then the same is true for
S1 ∩ S2 ⊂ Rn. Moreover, since Q has an interior point, its dimension is n.

Now, let S ⊂ Rn be a convex polytope of dimension n. We show, by induction
on n > 0 that S ⊂ Rn is a polytope. The case n = 0 is trivial, so we assume that
the case n = d−1 has been proved and prove the case n = d. The subset F ⊂ S is a
face of S if there exists a halfspace H = {x ∈ Rd | 〈x, v〉 6 a} such that S ⊂ H and
F = S ∩ ∂H , where ∂H = {x ∈ Rd | 〈x, v〉 = a} is the boundary of H . We recall
from [16, Proposition 2.3] that every face of a convex polytope is itself a convex
polytope and that the intersection of two faces is itself a face. We let F1, . . . , Fk be
the faces in S of dimension d − 1, and let x ∈ S be an interior point, which exists
because S ⊂ Rd has dimension d. We write S as the union

S =

k
⋃

i=1

conv({x} ∪ Fi)
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of the cones whose bases are the faces F1, . . . , Fk and whose cone point is the interior
point x. The following figure illustrates the situation.
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By the inductive hypothesis, each of the faces F1, . . . , Fk admits a triangulation.
We let {σi,1, . . . , σi,mi

} be a triangulation of Fi with σi,j = (ai,j,1, . . . , ai,j,d), and
define σ̄i,j = (x, ai,j,1, . . . , ai,j,d). Then {σ̄i,1, . . . , σ̄i,mi

} is a triangulation of the
cone conv({x} ∪ Fi), and the union

k
⋃

i=1

{σ̄i,1, . . . , σ̄i,mi
}

is the desired triangulation of S. This proves the induction step. �

Corollary 1.6. Scissor’s congruence defines an equivalence relation on the
set of polytopes in Rn.

Proof. It is clear that scissor’s congruence is reflexive and symmetric. We
show that it is also transitive. So let P, P ′, P ′′ ⊂ Rn be three polytopes and
assume that P and P ′ are scissor’s congruent and that P ′ and P ′′ are scissor’s
congruent. We must show that P and P ′′ are scissor’s congruent. Since P and P ′

are scissor’s congruent, we have triangulations {σ1, . . . , σr} of P and {σ′
1, . . . , σ

′
r}

of P ′ and isometries f1, . . . , fr of Rn such that fi(|σi|) = |σ′
i| for all i = 1, . . . , r,

and since P ′ and P ′′ are scissor’s congruent, we have triangulations {τ ′
1, . . . , τ

′
s} of

P ′ and {τ ′′
1 , . . . , τ ′′

s } of P ′′ and isometries g1, . . . , gs of Rn such that gj(|τ ′
j |) = |τ ′′

j |
for all j = 1, . . . , s. By Lemma 1.5, there exists a triangulation {υ′

1, . . . , υ
′
t} of P ′

with the property that for every i = 1, . . . , r and j = 1, . . . , s,

|σ′
i| =

⋃

k∈I(i)

|υ′
k|

|τ ′
j | =

⋃

k∈J(j)

|υ′
k|,

where I(i) and J(j) are subsets of {1, 2, . . . , t}. We note that {1, 2, . . . , t} is equal
both to the disjoint union of the subsets I(1), . . . , I(r) and to the disjoint union
of the subsets J(1), . . . , J(s). We now define triangulations {υ1, . . . , υt} of P and
{υ′′

1 , . . . , υ′′
t } of P ′′ as follows. If k ∈ I(i), then we choose an n-simplex υk such

that fi(|υk|) = |υ′
k|. (The choice of υk amounts to a choice of ordering of the

vertices in |υk|.) Similarly, if k ∈ J(j), then we choose an n-simplex υ′′
k such that

gj(|υ′
k|) = |υ′′

k |. Finally, if k ∈ I(i) and k ∈ J(j) , then hk = gj ◦ fi is an isometry
of Rn and hk(|υk|) = |υ′′

k |. This shows that P and P ′′ are scissor’s congruent as
desired. �
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Proposition 1.7. If the polytopes P, P ′ ⊂ Rn are scissor’s congruent, then

vol(P ) = vol(P ′).

Proof. Since the polytopes P and P ′ are scissor’s congruent, we can find
triangulations {σ1, . . . , σm} of P and {σ′

1, . . . , σ
′
m} of P ′ and isometries f1, . . . , fm

such that fi(|σi|) = |σ′
i|. And since isometries preserve volume, we find

vol(P ) =

m
∑

i=1

vol(|σi|) =

m
∑

i=1

vol(fi(|σi|)) =

m
∑

i=1

vol(|σ′
i|) = vol(P ′).

This completes the proof. �
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2. The Dehn invariant

The Dehn invariant D(P ) is an invariant of polytopes P ⊂ R3. Like the volume,
it has the property that if the polytopes P, P ′ ⊂ R3 are scissor’s congruent, then
D(P ) = D(P ′). Therefore, it is possible to prove that P and P ′ are not scissor’s
congruent by showing that D(P ) 6= D(P ′). However, unlike the volume, the Dehn
invariant D(P ) is not a real number but rather an element of the (much larger) real
vector space R⊗ (R/πZ). We devote the remainder of this section to the definition
and study of this vector space.

In general, the tensor product of the abelian groups A and B is defined to
be the abelian group A ⊗ B that has one generator a ⊗ b for every ordered pair
(a, b) ∈ A × B and with these generators subject to the relations that

(a + a′) ⊗ b = a ⊗ b + a′ ⊗ b

a ⊗ (b + b′) = a ⊗ b + a ⊗ b′

for all a, a′ ∈ A and b, b′ ∈ B. The relations express that A ⊗ B has the following
universal property: If C is an abelian group and if

f : A × B → C

is a bi-additive map, then there is a unique additive map

f̄ : A ⊗ B → C

such that f̄(a ⊗ b) = f(a, b). We prove two basic lemmas about tensor products.

Lemma 2.1. Let A and B be abelian groups. For all a ∈ A, b ∈ B, and n ∈ Z,

(na) ⊗ b = n(a ⊗ b) = a ⊗ (nb).

Proof. We prove the left-hand equality; the proof of the right-hand equality
is analogous. Suppose first that n > 1. The case n = 1 is trivial, so we assume,
inductively, that the case n = r − 1 has been proved and prove the case n = r. By
using the first of the defining relations, we find

(ra) ⊗ b = (a + (r − 1)a) ⊗ b = a ⊗ b + ((r − 1)a) ⊗ b

= a ⊗ b + (r − 1)(a ⊗ b) = r(a ⊗ b),

which proves the induction step. Next, we have

0 ⊗ b + 0 ⊗ b = (0 + 0) ⊗ b = 0 ⊗ b,

and subtracting 0⊗ b on both sides, we find 0⊗ b = 0. This proves the case n = 0.
Finally, suppose that n 6 −1. By what was just proved, we find

(na) ⊗ b + (−na) ⊗ b = (na + (−na)) ⊗ b = 0 ⊗ b = 0.

Hence, since −n > 1, we find

(na) ⊗ b = −((−na) ⊗ b) = −(−n(a ⊗ b)) = n(a ⊗ b)

as desired. �

Corollary 2.2. The additive map

f : R ⊗ (R/πZ) → R ⊗ (R/πQ)

defined by f(x ⊗ (y + πZ)) = x ⊗ (y + πQ) is an isomorphism.
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Proof. To prove the corollary, we define an additive map

ḡ : R ⊗ (R/πQ) → R ⊗ (R/πZ)

and show that f and ḡ are each other’s inverses. To this end, we claim that the
formula g(x, y + πQ) = x ⊗ (y + πZ) gives a well-defined bi-additive map

g : R × (R/πQ) → R ⊗ (R/πZ).

Indeed, suppose that the elements (x1, y1+πQ) and (x2, y2+πQ) of R×(R/πQ) are
equal. In this case, we have x1 = x2 and y1 − y2 ∈ πQ, so if we write x = x1 = x2

and y1 − y2 = π · (m/n), then we find

x1 ⊗ (y1 + πZ) − x2 ⊗ (y2 + πZ) = x ⊗ (y1 − y2 + πZ)

= x ⊗ (π ·
m

n
+ πZ) =

1

n
· (nx) ⊗ (π ·

m

n
+ πZ)

=
1

n
· x ⊗ (π · m + πZ) = 0

which shows that g is well-defined as claimed. Here the third and fourth equalities
follow from Lemma 2.1. Moreover, the defining relations for the tensor product
R⊗ (R/πZ) show that g is a bi-additive map. Therefore, it gives rise to the desired
additive map ḡ defined by the formula ḡ(x ⊗ (y + πQ)) = x ⊗ (y + πZ). It is clear
from this formula that the maps f and ḡ are each other’s inverses. Hence, the map
f is an isomorphism as stated. �

We next recall that the direct sum B1 ⊕B2 of the abelian groups B1 and B2 is
defined to be the set of ordered pairs (b1, b2) with componentwise sum.

Lemma 2.3. Let A, B1, and B2 be abelian groups. Then the additive map

f : (A ⊗ B1) ⊕ (A ⊗ B2) → A ⊗ (B1 ⊕ B2)

defined by f(a1 ⊗ b1, a2 ⊗ b2) = a1 ⊗ (b1, 0) + a2 ⊗ (0, b2) is well-defined and an
isomorphism.

Proof. We first argue that f is well-defined. To this end, it suffices to show
that the additive maps f1 : A⊗B1 → A⊗(B1⊕B2) and f2 : A⊗B2 → A⊗(B1⊕B2)
defined by f1(a ⊗ b1) = a ⊗ (b1, 0) and f2(a ⊗ b2) = a ⊗ (0, b2), respectively, are
well-defined. To show that f1 is well-defined, we must show that

f1((a + a′) ⊗ b1) = f1(a ⊗ b1) + f1(a
′ ⊗ b1)

f1(a ⊗ (b1 + b′1)) = f1(a ⊗ b1) + f1(a ⊗ b′1).

By the definition of the map f1, this amounts to showing that

(a + a′) ⊗ (b1, 0) = a ⊗ (b1, 0) + a′ ⊗ (b1, 0)

a ⊗ (b1 + b′1, 0) = a ⊗ (b1, 0) + a ⊗ (b′1, 0),

which follows from the defining relations of the tensor product A ⊗ (B1 ⊕ B2). So
the map f1 is well-defined. The proof that f2 is well-defined is entirely similar, so
f is well-defined as stated.

To prove that f is an isomorphism, we let

g : A ⊗ (B1 ⊕ B2) → (A ⊗ B1) ⊕ (A ⊗ B2)
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to be the additive map defined by g(a ⊗ (b1, b2)) = (a ⊗ b1, a ⊗ b2). We leave it to
the reader to verify that the map g is well-defined. Finally, we check that f ◦ g and
g ◦ f are equal to the respective identity maps. First,

(f ◦ g)(a ⊗ (b1, b2)) = f(a ⊗ b1, a ⊗ b2)

= a ⊗ (b1, 0) + a ⊗ (0, b2)

= a ⊗ (b1, b2),

where the last equality follows from the defining relations of the tensor product
A ⊗ (B1 ⊕ B2). Second,

(g ◦ f)(a1 ⊗ b1, a2 ⊗ b2) = g(a1 ⊗ (b1, 0) + a2 ⊗ (0, b2))

= g(a1 ⊗ (b1, 0)) + g(a2 ⊗ (0, b2))

= (a1 ⊗ b1, 0) + (0, a2 ⊗ b2)

= (a1 ⊗ b1, a2 ⊗ b2),

where the second equality follows from g being additive. This shows that f is an
isomorphism and that g is the inverse map of f . �

More generally, let Bi (i ∈ I) be a (possibly infinite) family of abelian groups.
We recall that the direct sum

⊕

i∈I Bi is defined to be the abelian group given by
the set of all tuples (bi | i ∈ I) such that all but finitely many of the components bi

are equal to zero with componentwise addition. The map

inj : Bj →
⊕

i∈I

Bi

that to b ∈ Bj associates the tuple (bi | i ∈ I) with bi = bj, if i = j, and bi = 0,
otherwise, is an additive map.

Addendum 2.4. Let A and Bi (i ∈ I) be abelian groups. Then the map

f :
⊕

i∈I

(A ⊗ Bi) → A ⊗ (
⊕

i∈I

Bi)

defined by f(ai ⊗ bi | i ∈ I) =
∑

i∈I a⊗ ini(bi) is well-defined and an isomorphism.

Proof. The proof is similar to the proof of Lemma 2.3; we leave it as an
exercise to the reader to write out the details. �

The abelian group R/πQ has a natural structure of Q-vector space with the
scalar multiple of y + πQ ∈ R/πQ by q ∈ Q defined by q · (y + πQ) = qy + πQ.
Similarly, the abelian group R ⊗ (R/πQ) has a natural structure of R-vector space
with the scalar multiple of x ⊗ (y + πQ) ∈ R ⊗ (R/πQ) by a ∈ R defined by
a · x ⊗ (y + πQ) = ax⊗ (y + πQ). We recall that, in general, if V is a vector space
over the field k, then there exists a basis S ⊂ V . We also recall that the subset
S = {vi | i ∈ I} ⊂ V is a basis if and only if the k-linear map f :

⊕

i∈I k → V
defined by f(ai | i ∈ I) =

∑

i∈I aivi is an isomorphism.

Proposition 2.5. If the subset S = {yi +πQ | i ∈ I} is a basis of the Q-vector
space R/πQ, then the subset T = {1 ⊗ (yi + πQ) | i ∈ I} is a basis of the R-vector
space R ⊗ (R/πQ).
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Proof. If S = {yi + πQ | i ∈ I} is a basis of the Q-vector space R/πQ, then
the Q-linear map g :

⊕

i∈I Q → R/πQ given by g(qi | i ∈ I) =
∑

i∈I(qiyi + πQ) is
an isomorphism. It follows that the R-linear map

h : R ⊗ (
⊕

i∈I

Q) → R ⊗ (R/πQ)

defined by h(a ⊗ (qi | i ∈ I)) = a ⊗ g(qi | i ∈ I) is an isomorphism. We further
recall from Addendum 2.4 that the map

f :
⊕

i∈I

(R ⊗ Q) → R ⊗ (
⊕

i∈I

Q)

defined by f(a ⊗ (qi | i ∈ I)) =
∑

i∈I ai ⊗ ini(qi) is an isomorphism. Moreover, we
claim that the formula e(a) = a ⊗ 1 defines an R-linear isomorphism

e : R → R ⊗ Q.

Indeed, by writing q = m/n and using Lemma 2.1, we see as in the proof of
Corollary 2.2 that the map d : R ⊗ Q → R defined by d(a ⊗ q) = aq is well-defined
and that d ◦ e and e ◦ d are equal to the respective identity maps. Finally, we leave
it as an exercise to the reader to verify that the composition

c = h ◦ f ◦ (
⊕

i∈I

e) :
⊕

i∈I

R → R ⊗ (R/πQ)

is given by the formula

c(ai | i ∈ I) =
∑

i∈I

ai · (1 ⊗ (yi + πQ)).

This shows that the subset T = {1 ⊗ (yi + πQ) | i ∈ I} is a basis of the R-vector
space R ⊗ (R/πQ) as stated. �

Remark 2.6. It follows, in particular, from Proposition 2.5 that the Q-vector
space R/πQ and the R-vector space R ⊗ (R/πQ) have the same dimension. (The
dimension of a vector space is defined to be the cardinality of a basis. It is a
theorem that any two bases of the same vector space have the same cardinality.)
The common dimension is necessarily uncountably infinite. For on the one hand,
every countably infinite dimensional Q-vector space is itself countable, and on the
other hand, the set R/πQ is uncountable. In effect, it is not difficult to show that

dimR(R ⊗ (R/πQ)) = dimQ(R/πQ) = card(R) = 2ℵ0 .

Corollary 2.7. Suppose that θ + πQ is a non-zero element of R/πQ. Then
1 ⊗ (θ + πQ) is a non-zero element of R ⊗ (R/πQ).

Proof. Let S = {yi + πQ | i ∈ I} be a basis of the Q-vector space R/πQ, and
let T = {1 ⊗ (yi + πQ) | i ∈ I} be the corresponding basis of the R-vector space
R ⊗ (R/πQ) given by Proposition 2.5. We write θ + πQ as a Q-linear combination

θ + πQ =
∑

i∈I

qi(yi + πQ).

Since θ+πQ is assumed to be non-zero, it follows that at least one of the coordinates
qi ∈ Q is non-zero. Now, we claim that

1 ⊗ (θ + πQ) =
∑

i∈I

1 ⊗ qi(yi + πQ) =
∑

i∈I

qi ⊗ (yi + πQ) =
∑

i∈I

qi(1 ⊗ (yi + πQ).
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Indeed, the first equality follows from the defining relations of the tensor product
R⊗ (R/πQ); the second equality follows from Lemma 2.1 upon writing qi = mi/ni;
and the last equality follows from the definition of the R-vector space structure
on R ⊗ (R/πQ). We conclude that at least one of the coordinates of the element
1 ⊗ (θ + πQ) with respect to the basis T is non-zero. Therefore this element is
non-zero as stated. �

Remark 2.8. We may also consider R/πZ and R/πQ as topological spaces
with the quotient topology induced by the standard metric topology on the real
line R. The first space is easy to visualize as a circle of radius π. However, the
second space is not easily visualized. It is a totally disconnected space which means
that the only connected subsets are the empty set and the subsets that consist of
a single point.

Now, let σ be a proper 3-simplex in R3, and let e be an edge (1-face) of σ. We
define the dihedral angle of σ at e to be the interior angle

θ(σ, e) ∈ R/πZ

between two normal vectors to |e| that lie in the two 2-faces |τ | and |τ ′| of |σ| that
intersect in |e| and that point into these faces.

wwwwwwwwwwwwwww

oo

?????????????????

__

θ(σ,e)

e

Let also ℓ(e) ∈ R be the length of the geometric edge |e|. The Dehn invariant of
the proper 3-simplex σ in R3 is defined to be the sum

D(σ) =
∑

e⊂σ

ℓ(σ, e) ⊗ θ(σ, e) ∈ R ⊗ (R/πZ)

which ranges over the (six) edges e of σ.

Definition 2.9. The Dehn invariant of the polytope P ⊂ R3 is the sum

D(P ) =

m
∑

i=1

D(σi) ∈ R ⊗ (R/πZ)

of the Dehn invariants of the simplices in a triangulation {σ1, . . . , σm} of P .

It is clear from this definition that if P, P ′ ⊂ R3 are scissor’s congruent poly-
topes, then D(P ) = D(P ′). However, it is not at all clear that the Dehn invariant
is well-defined. We need the following result.

Lemma 2.10. The Dehn invariant D(P ) of the polytope P ⊂ R3 is independent
of the choice of triangulation {σ1, . . . , σm} of P .
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Proof. In view of Lemma 1.5, it suffices to show that if {σ′
1, . . . , σ

′
m} is a

triangulation of the geometric 3-simplex |σ|, then

D(σ) =

m
∑

i=1

D(σ′
i),

or equivalently,

∑

e⊂σ

ℓ(e) ⊗ θ(σ, e) =

m
∑

i=1

∑

e′⊂σ′

i

ℓ(e′) ⊗ θ(σ′
i, e

′).

To this end, we rewrite the right-hand side as
∑

e′∈E

∑

i∈I(e′)

ℓ(e′) ⊗ θ(σ′
i, e

′) =
∑

e′∈E

ℓ(e′) ⊗
(

∑

i∈I(e′)

θ(σ′
i, e

′)
)

,

where E is the set of 1-simplices e′ that are contained in one of σ′
1, . . . , σ

′
m, and

where I(e′) = {i | e′ ⊂ σ′
i}. The set E is the disjoint union

E = E1 ⊔ E2 ⊔ E3,

where e′ ∈ E1 if |e′| is contained in an edge |e| of |σ|, where e′ ∈ E2 if the interior
of |e′| is contained in the interior of |σ|, and where e′ ∈ E3 if the interior of |e′| is
contained in the interior of a face of |σ|. If e′ ∈ E2 then

∑

i∈I(e′) θ(σ′
i, e

′) = 2π+πZ,

and if e′ ∈ E3 then
∑

i∈I(e′) θ(σ′
i, e

′) = π + πZ. Therefore,
∑

e′∈E

ℓ(e′) ⊗
(

∑

i∈I(e′)

θ(σ′
i, e

′)
)

=
∑

e′∈E1

ℓ(e′) ⊗
(

∑

i∈I(e′)

θ(σ′
i, e

′)
)

.

Finally, we write the set E1 as the disjoint union

E1 =
∐

e⊂σ

E1(e)

where E1(e) ⊂ E1 is the subset whose elements are the e′ with |e′| ⊂ |e|. Since the
geometric edges |e′| with e′ ∈ E1(e) subdivide the geometric edge |e|, we have

ℓ(e) =
∑

e′∈E1(e)

ℓ(e′).

Moreover, for every edge e ⊂ σ and every e′ ∈ E1(e), we have

θ(σ, e) =
∑

i∈I(e′)

θ(σ′
i, e

′).

Therefore, we find that
∑

e⊂σ

ℓ(e) ⊗ θ(σ, e) =
∑

e⊂σ

∑

e′∈E1(e)

ℓ(e′) ⊗
(

∑

i∈I(e′)

θ(σ′
i, e

′)
)

=
∑

e′∈E1

ℓ(e′) ⊗
(

∑

i∈I(e′)

θ(σ′
i, e

′)
)

as desired. This completes the proof. �

Remark 2.11. Let P ⊂ R3 be a polytope and let {σ1, . . . , σm} be a triangula-
tion of P . We see as in the proof of Lemma 2.10 that

D(P ) =

m
∑

i=1

∑

e⊂σi

ℓ(e) ⊗ θ(σi, e) =
∑

e∈E

ℓ(e) ⊗
(

∑

i∈I(e)

θ(σi, e)
)

,
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where E is the set of 1-simplices that are contained in one of the σ1, . . . , σm, and
where I(e) = {i | e ⊂ σi}. Again, if the interior of |e| is contained either in the
interior of P or in the interior of a face (we have not defined what this means in
general) of P , then

∑

i∈I(e) θ(σi, e) is zero in R/πZ. Therefore, when we calculate

the Dehn invariant D(P ), we can ignore the edges e of this kind.

Theorem 2.12 (Dehn [3]). The cube C and the regular tetrahedron T of equal
volume are not scissor’s congruent.

Proof. It suffices to show that D(C) 6= D(T ). Let ℓC and ℓT are the length
of the edges in C and T . Using Remark 2.11, we find that

D(C) = 12 · ℓC ⊗ (
π

2
+ πZ) = 0

D(T ) = 6 · ℓT ⊗ (θ + πZ)

where the angle 0 6 θ 6 π is determined by

cos(θ) =
1

3
.

We claim that θ /∈ πQ. Granting this, we see that D(T ) is non-zero in R⊗ (R/πZ).
Indeed, the claim shows that θ +πQ is non-zero in R/πQ, and hence, Corollary 2.7
shows that 1 ⊗ (θ + πQ) is non-zero in R ⊗ (R/πQ). Finally, Corollary 2.2 shows
that 1 ⊗ (θ + πZ) and hence D(T ) is non-zero in R ⊗ (R/πZ).

To prove the claim, we first show that if cos(θ) = 1/3, then for every positive
integer cos(nθ) = an/3n, where an is an integer not divisible by 3. We proceed by
induction beginning from the case n = 1 which is trivial. So we assume that the
cases n 6 r hold and prove the case n = r + 1. Now, as is well-known,

cos((r + 1)θ) + cos((r − 1)θ) = 2 cos(rθ) cos(θ),

from which we conclude that

cos((r + 1)θ) = 2 cos(rθ) cos(θ) − cos((r − 1)θ)

=
2ar

3r+1
−

ar−1

3r−1
=

2ar − 9ar−1

3r+1
.

Since ar and ar−1 are integers not divisible by 3, so is ar+1 = 2ar − 9ar−1. This
proves the induction step. We conclude, by induction, that cos(nθ) = an/3n with
an an integer not divisible by 3 for all positive integers n. In particular, for every
positive integer n, the rational number cos(nθ) is not an integer.

We can now prove the claim. For suppose, conversely, that

θ =
m

n
π ∈ πQ

with n a positive integer. In this case, nθ = mπ, and hence,

cos(nθ) = cos(mπ) = ±1

which is an integer. We conclude that θ /∈ πQ as claimed. �

In the next lecture, we will begin to formulate and answer the question of how
to “parametrize” all polytopes P ⊂ R3 “up to scissor’s congruence.”
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3. The scissor’s congruence group

We wish to parametrize polytopes in Rn up to scissor’s congruence. To make
this problem precise, we introduce the scissor’s congruence group.

Definition 3.1. Suppose that P, Q ⊂ Rn is a pair of polytopes with the
property that also P ∪ Q ⊂ Rn is a polytope and that there exists a triangulation
{σ1, . . . , σk, σk+1, . . . , σm} of P ∪Q such that {σ1, . . . , σk} and {σk+1, . . . , σm} are
triangulations of P and Q. In this case, the polytope P ∪ Q is denoted P + Q and
called the polytope sum of P and Q.

The polytope sum P + Q is not defined for every pair of polytopes P, Q ⊂ Rn.
For example, the polytope sum P +P is not defined unless P is the empty polytope.
However, the polytope sum P +Q is clearly defined whenever P and Q are disjoint.
And if P, Q ⊂ Rn is an arbitrary pair of polytopes, we can always find a translation
tv : Rn → Rn such that P and Q′ = tv(Q) are disjoint.

Definition 3.2 (Jessen [7]). The scissor’s congruence group of Rn is defined
to be the abelian group given by the quotient

P (Rn) = F (Rn)/R(Rn)

of the free abelian group F (Rn) with one generator 〈P 〉 for every polytope P ⊂ Rn

by the subgroup R(Rn) ⊂ F (Rn) generated by the following elements (i)–(ii):

(i) For every pair of polytopes P, Q ⊂ Rn for which the polytope sum P + Q is
defined, the element

〈P + Q〉 − 〈P 〉 − 〈Q〉

is a generator of R(Rn).
(ii) For every polytope P ⊂ Rn and every isometry f : Rn → Rn, the element

〈P 〉 − 〈f(P )〉

is a generator of R(Rn).

The class 〈P 〉+R(Rn) ∈ P (Rn) that contains the polytope P ⊂ Rn is denoted [P ].

Let P, Q ⊂ Rn be a pair of polytopes, and let Q′ be a translation of Q such
that P and Q′ are disjoint. In this case, the polytope sum P + Q′ is defined, and
by relations (ii) and (i), respectively, we find that

[P ] + Q] = [P ] + [Q′] = [P + Q′].

In this way, we can interpret the sum of the classes [P ] and [Q] in terms of polytope
sum. It follows that every element in P (Rn) can be written (non-uniquely) as a
difference [P ] − [Q] between the classes of two polytopes.

Lemma 3.3. Let P and P ′ be two polytopes in Rn. The following are equivalent.

(1) The classes [P ] and [P ′] in P (Rn) are equal.
(2) There exists two scissor’s congruent polytopes Q and Q′ in Rn such that the

polytope sums P + Q and P ′ + Q′ exist and are scissor’s congruent.

Proof. We first show that for R, R′ ⊂ Rn two scissor’s congruent polytopes,
we have [R ] = [R′]. By the definition of scissor’s congruence, we have triangulations
{σ1, . . . , σm} of R and {σ′

1, . . . , σ
′
m} of R′ and isometries f1, . . . , fm of Rn such that
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f(|σi|) = |σ′
i| for all i = 1, . . . , m. Therefore, by the definition of the scissor’s

congruence group, we find

[R ] =

m
∑

i=1

[ |σi| ] =

m
∑

i=1

[fi(|σi|)] =

m
∑

i=1

[ |σ′
i| ] = [R′]

as desired. Here the first and last equalities follow from the relation (i) and the
second equality follows from the relation (ii).

Now, suppose that (2) holds. Then [Q] = [Q′] and [P +Q] = [P ′ +Q′] by what
was just proved. Therefore, using Remark 3.1, we find that

[P ] = [P ] + [Q] − [Q] = [P + Q] − [Q]

= [P ′ + Q′] − [Q′] = [P ′] + [Q′] − [Q′] = [P ′]

which proves (1).
Conversely, suppose that (1) holds. Then the difference 〈P 〉−〈P ′〉 is an element

of R(Rn) ⊂ F (Rn), and hence, can be written as a sum

r
∑

i=1

(〈Ri + Si〉 − 〈Ri〉 − 〈Si〉) −
s

∑

j=1

(〈Tj + Uj〉 − 〈Tj〉 − 〈Uj〉) +

t
∑

k=1

(〈Vk〉 − 〈Wk〉),

where the first and second summands are instances of the relation (i), and where
the last summand are instances of the relation (ii). It follows that

〈P 〉 +

r
∑

i=1

(〈Ri〉 + 〈Si〉) +

s
∑

j=1

〈Tj + Uj〉 +

t
∑

k=1

〈Wk〉

= 〈P ′〉 +

r
∑

i=1

〈Ri + Si〉 +

s
∑

j=1

(〈Tj〉 + 〈Uj〉) +

t
∑

k=1

〈Vk〉.

This is an equality of two sums of generators in the free abelian group F (Rn). Such
an equality holds if and only if the generators that appear on the left-hand side
are equal, up to reordering, to the generators that appear on the right-hand side.
From this equality, we find that the two polytopes defined by the following polytope
sums are scissor’s congruent. Here, we write (−)′′ to indicate suitable translation
to make the two polytope sums exist.

P +

r
∑

i=1

(R′′
i + S′′

i ) +

s
∑

j=1

(Tj + Uj)
′′ +

t
∑

k=1

W ′′
k

P ′ +

r
∑

i=1

(Ri + Si)
′′ +

s
∑

j=1

(T ′′
j + U ′′

j ) +

t
∑

k=1

V ′′
k .

Now, if we define Q and Q′ to the polytope sums

Q =

r
∑

i=1

(R′′
i + S′′

i ) +

s
∑

j=1

(Tj + Uj)
′′ +

t
∑

k=1

W ′′
k

Q′ =
r

∑

i=1

(Ri + Si)
′′ +

s
∑

j=1

(T ′′
j + U ′′

j ) +
t

∑

k=1

V ′′
k ,

then P + Q and P ′ + Q′ are scissor’s congruent. But Q and Q′ are also scissor’s
congruent. Indeed, R′′

i + S′′
i is scissor’s congruent to Ri + Si which is a translation
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of (Ri + Si)
′′; (Tj + Uj)

′′ is a translation of Tj + Uj which is scissor’s congruent to
T ′′

j + U ′′
j ; and W ′′

k is a translation of Wk, which is a translation of Vk, which, in
turn, is a translation of V ′′

k . This proves (2). �

Theorem 3.4 (Zylev [17]). Let P, P ′, Q, Q′ ⊂ Rn be polytopes such that the
polytope sums P + Q and P ′ + Q′ exist and are equal. If Q and Q′ are scissor’s
congruent, then also P and P ′ are scissor’s congruent.

Proof. We will use the following facts (a)–(b) without proof.

(a) If A, B ⊂ Rn are polytopes, then so is the subset A · B ⊂ Rn defined to be
the closure of the intersection of the interior of A and the interior of B.

(b) If A ⊂ B ⊂ Rn are polytopes, then so is the subset B − A ⊂ Rn defined to
be the closure of the complement of A in B, and B = A + (B − A).

By subdividing Q and Q′, we can find polytopes Q1, . . . , Qr and Q′
1, . . . , Q

′
r such

that Q = Q1 + · · · + Qr and Q′ = Q′
1 + · · · + Q′

r, and such that for all 1 6 i 6 r,
the polytopes Qi and Q′

i are scissor’s congruent and their common volume strictly
smaller than half the common volume of P and P ′. The proof of the theorem is by
induction on the number r > 0 of summands. The case r = 0 is trivial, since Q and
Q′ are both empty. So we let r > 0 and assume that the theorem has been proved
for smaller values of r. Since the volume of Q′

r is strictly smaller than the volume
of P − (P · Q′

r), we can find pairwise disjoint polytopes R1, . . . , Rr ⊂ P − (P · Q′
r)

such that Ri and Qi · Q′
r are scissor’s congruent for all 1 6 i 6 r. We now define

Q̄1, . . . , Q̄r and P̄ to be the polytopes

Q̄i = (Qi − (Qi · Q
′
r)) + Ri

P̄ = (P + Q) − Q′
r − (Q̄1 + · · · + Q̄r−1).

Now, for all 1 6 i 6 r, the polytopes Q̄i and Qi are scissor’s congruent, and hence,
scissor’s congruent to Q′

i. Moreover, P̄ and P have the same volume. Since also

P ′ = (P ′ + Q′) − Q′
r = (Q′

1 + · · · + Q′
r−1),

the inductive hypothesis shows that P̄ and P ′ are scissor’s congruent. It remains
to show that P and P̄ are scissor’s congruent. To this end, we define

P̃ = P − (R1 + · · · + Rr) + (Q1 · Q
′
r) + · · · + (Qr · Q

′
r).

The polytopes P and P̃ are scissor’s congruent, since Ri and Qi · Q′
r are scissor’s

congruent for all 1 6 i 6 r. Finally,

P̄ = P̃ − Q′
r + Q̄r

which shows that also P̃ and P̄ are scissor’s congruent. We conclude that P and
P̄ are scissor’s congruent, and hence, that P and P ′ are scissor’s congruent. This
completes the proof of the induction step. �

Corollary 3.5. The following are equivalent for polytopes P, P ′ ⊂ Rn.

(a) The classes [P ] and [P ′] in P (Rn) are equal.
(b) The polytopes P and P ′ are scissor’s congruent.

Proof. It follows from Lemma 3.3 that (b) implies (a). Suppose, conversely,
that [P ] = [P ′]. By Lemma 3.3, there exists scissor’s congruent polytopes Q and Q′

such that the polytope sums P +Q and P ′+Q′ exist and are scissor’s congruent. We
define polytopes P ′′ and Q′′ that are scissor’s congruent to P ′ and Q′, respectively,
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and for which P ′′ + Q′′ = P + Q. Given these, Zylev’s theorem shows that P and
P ′′, and hence, P and P ′ are scissor’s congruent as desired. Let {σ1, . . . , σm} be
a triangulation of P + Q, let {σ′

1, . . . , σ
′
m} be a triangulations of P ′ + Q′, and let

f1, . . . , fm be isometries of Rn with fi(|σi|) = |σ′
i|. Let U ⊂ P + Q be the union of

the interiors of the geometric simplices |σ1|, . . . , |σm|, and let U ′ ⊂ P ′ + Q′ be the
union of the interiors of the geometric simplices |σ′

1|, . . . , |σ
′
m|. Let f : U → U ′ be

the homeomorphism whose restriction to the interior of |σi| is the isometry fi. We
now define P ′′ ⊂ Rn to be the closure of f−1(U ′∩P ′) and define Q′′ ⊂ Rn to be the
closure of f−1(U ′ ∩ Q′). Using Lemma 1.5, we see that P ′′ and Q′′ are polytopes
and that Q′′ is scissor’s congruent to Q′. Finally, it is clear from the definition that
the polytope sum P ′′ + Q′′ exists and is equal to P + Q. �

Remark 3.6. The definition of the congruence group is an example of the
general group-completion construction introduced by Grothendieck in his famous
work on the Riemann-Roch theorem [1]. To briefly explain the construction, let M
be an abelian monoid. We use additive notation and write x+y for the composition
of the elements x, y ∈ M . The group completion (or Grothendieck group) of M is
the abelian group K(M) defined by the quotient

K(M) = F (M)/R(M)

of the free abelian group F (M) with one generator 〈x〉 for every x ∈ M by the
subgroup R(M) ⊂ F (M) generated by the elements

〈x + y〉 − 〈x〉 − 〈y〉

for all x, y ∈ M . Let [x] = 〈x〉+ R(M) ∈ K(M). There is a canonical monoid map

γ̃ : M → K(M)

defined by γ̃(x) = [x]. This map has the following universal property: For every

abelian group A and every monoid map f̃ : M → A, there exists a unique group
homomorphism f : K(M) → A such that f̃ = f ◦ γ̃. The map γ̃ is injective if
and only if for all x, y, z ∈ M , x + z = y + z implies that x = y. In this case
we say that cancellation holds in M . We note that cancellation holds in K(M)
because every element has an additive inverse. The group-completion construction
introduces formal additive inverses of the elements in M . For example, if N0 be the
additive monoid of non-negative integers, then K(N0) is (canonically isomorphic
to) the additive group Z of all integers.

Now, let M(Rn) denote the set of equivalence classes of polytopes P ⊂ Rn under
the equivalence relation of scissor’s congruence, and let (P ) denote the equivalence
class that contains the polytope P . For all (P ), (Q) ∈ M , we define

(P ) + (Q) = (P + Q′),

where Q′ is a translation of Q such that the polytope sum P + Q′ is defined. We
leave it as an exercise to the reader to verify that (P ) + (Q) is well-defined. It
follows from the definition of the scissor’s congruence group P (Rn) that the map

f̃ : M(Rn) → P (Rn)

defined by f̃((P )) = [P ] is a monoid map and that it has the same universal
property as the map γ̃ : M(Rn) → K(M(Rn)). Therefore, the induced map

f : K(M(Rn)) → P (Rn)
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is an isomorphism of abelian groups; the inverse is the unique group homomor-
phism γ : P (Rn) → K(M) induced by the monoid map γ̃. By Corollary 3.5, we
see that cancellation holds in the monoid M(Rn). When he defined the scissor’s
congruence group in 1941, Jessen apparently did not realize the very general nature
and importance of the construction. It was left for Grothendieck to discover this
fifteen years later. Group-completion has played a central role in mathematics ever
since.
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4. The group P (R3)

We recall from Definition 3.2 that the scissor’s congruence group P (Rn) is
defined to be the quotient F (Rn)/R(Rn) of the free abelian group F (Rn) with one
generator 〈P 〉 for every polytope P ⊂ Rn by the subgroup R(Rn) generated by the
elements 〈P + Q〉 − 〈P 〉 + 〈Q〉, for all polytopes P, Q ⊂ Rn such that the polytope
sum P + Q exists, together with the elements 〈P 〉 − 〈f(P )〉, for every polytope
P ⊂ Rn and every isometry f : Rn → Rn. We define a group homomorphism

vol = voln : P (Rn) → R

that to the generator [P ] = 〈P 〉 + R(Rn) associates the (n-dimensional) volume of
P as follows. There is a unique group homomorphism vol′ : F (Rn) → R that takes
the generator 〈P 〉 to the volume of P ; it maps the element

∑

P nP 〈P 〉 of F (Rn)
to the real number

∑

P nP vol(P ). Now, if P, Q ⊂ Rn are two polytopes such that
the polytope sum P + Q exists, then vol(P + Q) = vol(P ) + vol(Q), and therefore,
vol′(〈P + Q〉 − 〈P 〉 − 〈Q〉) = 0. Similarly, if P ⊂ Rn is a polytope and f : Rn → Rn

an isometry, then vol(P ) = vol(f(P )), and hence, vol′(〈P 〉−〈f(P )〉) = 0. It follows
that vol′(R(Rn)) = 0, so the group homomorphism vol′ : F (Rn) → R induces a
group homomorphism vol: P (Rn) → R as desired.

Lemma 4.1. The group homomorphism vol: P (R) → R is an isomorphism.

Proof. Let F : R → P (R) be the map that takes a > 0 to the class [[0, a]]
of the interval [0, a] ⊂ R, that takes a < 0 to the opposite −[[a, 0]] of the class
of the interval [a, 0] ⊂ R, and that takes 0 to 0. We claim that F is a group
homomorphism. Indeed, if 0 < a, b < a + b, then

F (a) + F (b) = [[0, a]] + [[0, b]] = [[0, a]] + [[a, a + b]]

= [[0, a + b]] = F (a + b);

if a < 0 < a + b < b, then

F (a) + F (b) = −[[a, 0]] + [[0, b]] = −[[a, 0]] + [[a, a + b]]

= [[0, a + b]] = F (a + b);

and similarly for b < 0 < a + b < a; if a < a + b < 0 < b, then

F (a) + F (b) = −[[a, 0]] + [[0, b]] = −[[a, 0]] + [[a, a + b]]

= −[[a + b, 0]] = F (a + b);

and similarly for b < a + b < 0 < a; and finally if a + b < a, b < 0, then

F (a) + F (b) = −[[a, 0]]− [[b, 0]] = −[[a, 0]] − [[a + b, a]]

= −[[a + b, 0]] = F (a + b);

this proves the claim. It follows immediately from definitions that vol ◦F is equal
to the identity map of R. To prove that also F ◦ vol is equal to the identity map
of P (R), it will suffice to show that [P ] = F (vol([P ])) for every polytope P ⊂ R.
Indeed, since F ◦vol and idP (R) are group homomorphisms, it suffices to prove that
they take the same value on a set of generators of the group P (R). Now, for every
polytope P ⊂ R there exists a1 < b1 < a2 < b2 < · · · < ar < br such that

P = [a1, b1] + [a2, b2] + · · · + [ar, br].
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It follows that, if we write bi = ai + ci, then

[P ] = [[a1, b1]] + · · · + [[ar, br]]

= [[0, c1]] + [[c1, c1 + c2]] + · · · + [[c1 + · · · + cr−1, c1 + · · · + cr−1 + cr]]

= [[0, c1 + · · · + cr]]

= (F ◦ vol)([P ])

which shows that F ◦ vol = idP (R) as desired. This proves the lemma. �

Lemma 4.2. For every positive integer n, there is a group homomorphism

E : P (Rn) → P (Rn+1)

that to the class of P associates the class of the cylinder P × [0, 1].

Proof. We claim that if P ⊂ Rn is a polytope, then so is the cylinder

P × [0, 1] ⊂ Rn × R = Rn+1.

To prove this, we may assume that P = |σ| is the geometric n-simplex associated
with a proper n-simplex σ = (a0, . . . , an). Now, if we let bi = (ai, 0) ∈ Rn × R and
ci = (ai, 1) ∈ Rn × R, then the n + 1 proper (n + 1)-simplices

σ0 = (b0, c0, c1, . . . , cn−1, cn)

σ1 = (b0, b1, c1, . . . , cn−1, cn)

...

σn = (b0, b1, . . . , bn−1, bn, cn)

define a triangulation {σ0, . . . , σn} of |σ| × [0, 1], proving the claim. The following
figure illustrates the triangulation for n = 1.
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It follows that there is a group homomorphism E′ : F (Rn) → P (Rn+1) that to
the generator 〈P 〉 associates the class [P × [0, 1]]. It remains to show that E′

maps the subgroup R(Rn) ⊂ F (Rn) to zero, and hence, induces the stated group
homomorphism E : P (Rn) → P (Rn+1). Now, if P, Q ⊂ Rn are polytopes such that
the polytope sum P + Q exists, then the polytope (P × [0, 1]) + (Q × [0, 1]) exists
and equal to (P + Q) × [0, 1]. Finally, if f is an isometry of Rn, then f × id is an
isometry of Rn × R and (f × id)(P × [0, 1]) = f(P ) × [0, 1]. We conclude that E′

maps the subgroup R(Rn) ⊂ F (Rn) to zero as desired. �

We can now restate Theorem 1.1 as the following calculation of the scissor’s
congruence group of the plane.
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Theorem 4.3. The group homomorphisms

P (R)
E // P (R2)

vol // R

are both isomorphisms.

Proof. We note that vol2 ◦E = vol1 : P (R) → R which is an isomorphism by
Lemma 4.1. It follows that E is injective and that vol is surjective. Moreover, the
image of E is a subgroup im(E) ⊂ P (R2) and Theorem 1.1 shows that it contains
the class [P ] of every polytope P ⊂ R2. Since these classes generate P (R2), it
follows that im(E) = P (R2). Hence, the map E is also surjective and therefore an
isomorphism. We conclude that also vol2 is an isomorphism. �

Corollary 4.4. The composition of the group homorphisms

P (R2)
E // P (R3)

vol // R

is an isomorphism. In particular, the left-hand map E is injective.

Proof. Indeed, we have vol3 ◦E = vol2 : P (R2) → R which is an isomorphism
by Theorem 4.3. �

The group P (Rn) is generated by the classes of the proper geometric n-simplices.
Indeed, if P ⊂ Rn is a polytope and if {σ1, . . . , σm} is a triangulation of P , then

[P ] = [ |σ1| + · · · + |σm| ] = [ |σ1| ] + · · · + [ |σm| ].

We use this to make the following calculation.

Lemma 4.5. The composition of the group homomorphisms

P (R2)
E // P (R3)

D // R ⊗ (R/πZ)

is equal the zero map.

Proof. It will suffice to show that for every triangle |σ| ⊂ R2 in the plane,
the cylinder |σ| × [0, 1] ⊂ R3 has trivial Dehn invariant. As the following figure
illustrates, there are a total of nine edges in |σ| × [0, 1].
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Six of these are of the form |τ | × {0} or |τ | × {1}, where |τ | is an edge of |σ|, and
the remaining three are of the form |v| × [0, 1], where |v| is a vertex of |σ|. The
dihedral angles at the former six edges all are equal to π/2, and hence, these edges
do not contribute to D(|σ| × [0, 1]). The sum of the dihedral angles at the latter
three edges is equal to π, and since the three edges all have the same length 1, they
also do not contribute to D(|σ| × [0, 1]). The lemma follows. �
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The sequence of abelian groups and group homomorphisms

A
f

// B
g

// C

is said to be exact if im(f) = ker(g). Here,

im(f) = {f(a) | a ∈ A} ⊂ B

ker(g) = {b ∈ B | g(b) = 0} ⊂ B.

We note that im(f) ⊂ ker(g) if and only if g ◦ f is the zero homomorphism. For
example, we have proved in Lemma 4.4 that the sequence

0 // P (R2)
E // P (R3)

is exact. Indeed, the kernel of E is zero, since E is injective.

Theorem 4.6 (Sydler [14]). The sequence

P (R2)
E // P (R3)

D // R ⊗ (R/πZ)

is exact.

We proved in Lemma 4.5 above that im(E) ⊂ ker(D). The more diffucult
statement that im(E) is equal to ker(D) was proved by Sydler in 1965. We will
outline a proof following Dupont [5] in the next section.

Corollary 4.7. The two polytopes P, P ′ ⊂ R3 are scissor’s congruent if and
only if vol(P ) = vol(P ′) and D(P ) = D(P ′).

Proof. Suppose first that P, P ′ ⊂ R3 are two scissor’s congruent polytopes.
We proved in Proposition 1.7 that vol(P ) = vol(P ′), and a similar proof shows that
D(P ) = D(P ′). Suppose conversely that P, P ′ ⊂ R3 are two polytopes for which
vol(P ) = vol(P ′) and D(P ) = D(P ′). We conclude from Theorem 4.6 that

[P ] − [P ′] = E(ξ)

for some ξ ∈ P (R2). But

vol2(ξ) = vol3(E(ξ)) = vol3([P ] − [P ′]) = vol3([P ]) − vol3([P
′]) = 0,

so by Theorem 4.3, we conclude that ξ = 0, and therefore, that [P ] = [P ′]. Now,
Corollary 3.5 shows that P and P ′ are scissor’s congruent as stated. �

It turns out that the Dehn invariant is not surjective. In the remainder of
this section, we determine its image following Jessen [8]. We write R∗ for the
multiplicative group of non-zero real numbers.

Lemma 4.8. There is a left action of the group R∗ on P (Rn) with λ ∈ R∗ acting
through the group homomorphism µλ : P (Rn) → P (Rn) defined by

µλ([P ]) =

{

[λP ] if λ > 0

−[(−λ)P ] if λ < 0.

Proof. We first show that the group homomorphism µλ : P (Rn) → P (Rn) is
well-defined. It will suffice consider the case where λ > 0. First, if P ⊂ Rn is a
polytope, then so is the subset λP = {λx | x ∈ P} ⊂ Rn which we call the dilation
of P by λ. So there is a group homomorphism µ′

λ : F (Rn) → P (Rn) that maps 〈P 〉
to [λP ], and we must show that µ′

λ maps R(Rn) to zero. First, if P, Q ⊂ Rn are
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polytopes such that the polytope sum P +Q is defined, then also the polytope sum
λP + λQ is defined and is equal to λ(P + Q), so µ′

λ(〈P + Q〉 − 〈P 〉 − 〈Q〉) = 0.
Second, let P ⊂ Rn be a polytope and let f : Rn → Rn be an isometry. We write
f as the composition f = tf(0) ◦ f̄ of the orthogonal transformation f̄ and the
translation tf(0) as in Remark 1.3. Now, we have

λf(P ) = λtf(0)(f̄(P )) = tλf(0)(λf̄(P )) = tλf(0)(f̄(λP ))

which shows that also µ′
λ(〈P 〉−〈f(P )〉) = 0. This proves the group homomorphism

µλ : P (Rn) → P (Rn) is well-defined. Finally, it remains to show that the group
homomorphisms µλ : P (Rn) → P (Rn) with λ ∈ R∗ constitute a left action of the
group R∗ on P (Rn). This means that for all λ, µ ∈ R∗, µλ ◦ µλ′ = µλλ′ . However,
this follows immediately from the definition. �

Remark 4.9. If V is a real vector space, then we obtain a left action of R∗

on V by letting λ ∈ R∗ act through scalar multiplication by λ. However, the left
action by R∗ on P (Rn) does not extend to a real vector space structure on P (Rn)
except in the case n = 1. Indeed, for n > 2, the group homomorphisms

µλ+λ′ , µλ + µλ′ : P (Rn) → P (Rn)

are not equal. For instance, the figure

P l(1)(P ) l(1)(P )

l(2)(P )

illustrates that for n = 2, the maps µ2 and µ1 + µ1 are different.

Corollary 4.10. The image of the Dehn invariant

D : P (R3) → R ⊗ (R/πZ)

is a subspace of the real vector space on the right-hand side.

Proof. Since D is a group homomorphism, im(D) is an additive subgroup.
We must show that im(D) is stable under scalar multiplication. It suffices to show
that for every polytope P ⊂ Rn and every positive real number λ, λD(P ) ∈ im(D).
But by the definition of the Dehn invariant, we have λD(P ) = D(λP ). �

Proposition 4.11. The image of the Dehn invariant

D : P (R3) → R ⊗ (R/πZ)

is equal to the subspace generated by the elements

cotα ⊗ α + cotβ ⊗ β − cot(α ∗ β) ⊗ (α ∗ β),

where α, β ∈ (0, π/2) and α ∗ β ∈ (0, π/2) is the unique solution to the equation

sin2(α ∗ β) = sin2 α · sin2 β.
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Proof. We recall from the discussion that precedes Lemma 4.5 that P (R3) is
generated by the classes of all tetrahedra (proper geometric 3-simplices) T ⊂ R3.
In effect, we claim that the following special type of tetrahedra generate P (R3).
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Indeed, every tetrahedron can be written as the polytope sum of six tetrahedra,
three of which are of this special type and the remaining three of which are mirror
reflections of tetrahedra of this speical type. Now, every tetrahedron of the special
type, in turn, is of the form λT (α, β), where λ is a positive real number, and where
T (α, β) ⊂ R3 is the tetrahedron with vertices

A = (0, 0, 0),

B = (cotα, 0, 0),

C = (cotα, cotα cotβ, 0),

D = (cotα, cotα cotβ, cotβ).

Here α, β ∈ (0, π/2) and α ∗ β is defined as in the statement. It follows that the
Dehn invariants of the tetrahedra T (α, β) with α, β ∈ (0, π/2) generate the subspace
im(D) ⊂ R ⊗ (R/πZ). By definition, we have

θ(AC) = θ(BC) = θ(BD) =
π

2
,

and by elementary geometry, we find

θ(AB) = α, θ(CD) = β, θ(AD) =
π

2
− α ∗ β

ℓ(AD) = cot(α ∗ β), ℓ(AC) =
cotα

sin β
, ℓ(BD) =

cotβ

sin α
.

From this, we conclude that

D(T (α, β)) = cotα ⊗ α + cotβ ⊗ β − cot(α ∗ β) ⊗ (α ∗ β)

as stated. This completes the proof. �

Definition 4.12. The real vector space of absolute Kähler differentials of R is
the quotient real vector space

Ω1
R = F/R,

where F is the real vector space with basis {(a) | a ∈ R} and R ⊂ F is the subspace
generated by the following elements (i)–(ii).

(i) For all a, b ∈ R, the element (a + b) − (a) − (b) is a generator of R.
(ii) For all a, b ∈ R, the element (ab) − b(a) − a(b) is a generator of R.
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The universal derivation is the additive map

d : R → Ω1
R

that to a associates da = (a) + R.

The relations (i)–(ii) imply the following identities (1)–(2), the second of which
is called the Leibniz rule.

(1) For all a, b ∈ R, d(a + b) = da + db.
(2) For all a, b ∈ R, d(ab) = bda + adb.

Let V be a real vector space. The map D : R → V is said to be a derivation if it
satisfies (1)–(2). The universal derivation d : R → Ω1

R is a derivation. Moreover, if
D : R → V is any derivation, then there exists a unique R-linear map

hD : Ω1
R → V

such that D = hD ◦d. Indeed, since the elements da with a ∈ R span Ω1
R, and since

we require that hD(da) = D(a), there exists a most one such map hD. Conversely,
let h′

D : F → V be the unique R-linear map that to (a) associates D(a). Since D is
a derivation, h′

D maps the subspace R ⊂ F to zero, and hence, induces the desired
R-linear map hD : Ω1

R → V .
The Leibniz rule implies that d(1) = 0, and since d is additive, we conclude

that d(Z) = 0. Let q ∈ Q and write q = m/n. We have

0 = d(m) = d(n ·
m

n
) =

m

n
d(n) + nd(

m

n
) = nd(

m

n
),

and since n 6= 0, we find that d(Q) = 0.

Lemma 4.13. There is a surjective R-linear map

C : R ⊗ (R/πZ) → Ω1
R

defined by the formula

C(ℓ ⊗ (θ + πZ)) =

{

(ℓ/ cos θ)d(sin θ) if cos θ 6= 0

0 if cos θ = 0.

Proof. We first show that C is well-defined. If θ1 − θ2 ∈ πZ, then

(ℓ/ cos θ1)d(sin θ1) = (ℓ/ cos θ2)d(sin θ2)

as required. It is also clear that

C((ℓ1 + ℓ2) ⊗ (θ + πZ)) = C(ℓ1 ⊗ (θ + πZ)) + C(ℓ2 ⊗ (θ + πZ)),

so it remains to show that

C(ℓ ⊗ (θ1 + θ2 + πZ)) = C(ℓ ⊗ (θ1 + πZ)) + C(ℓ ⊗ (θ2 + πZ)).

To this end, we recall that

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2

sin(θ1 + θ2) = cos θ1 sin θ2 + sin θ1 cos θ2.

Moreover, since cos2 θ + sin2 θ = 1, we have

d(cos θ) = − tan θd(sin θ),



26 LARS HESSELHOLT

and therefore,

d sin(θ1 + θ2) = d(cos θ1 sin θ2 + sin θ1 cos θ2)

= sin θ2d(cos θ1) + cos θ1d(sin θ2)

+ cos θ2d(sin θ1) + sin θ1d(cos θ2)

=
cos θ1 cos θ2 − sin θ1 sin θ2

cos θ1
d(sin θ1)

+
cos θ1 cos θ2 − sin θ1 sin θ2

cos θ2
d(sin θ2)

=
cos(θ1 + θ2)

cos θ1
d(sin θ1) +

cos(θ1 + θ2)

cos θ2
d(sin θ2)

The desired identity follows by multiplying both sides by ℓ/ cos(θ1 + θ2).
We next show that C is surjective. Since C is R-linear, it suffices to show that

for all a ∈ R, da ∈ im(C). If a ∈ Z, then da = 0 ∈ im(C). And if a /∈ Z, then
a ∈ (n, n + 1) for a unique n ∈ Z. If n = 0, then we can write a = sin θ, so

da = C(1 ⊗ (θ + πZ) ∈ im(C).

If n 6= 0, then da = nd(a/n) which is in im(C) because d(a/n) ∈ im(C). �

Lemma 4.14. The composition of the group homomorphisms

P (R3)
D // R ⊗ (R/πZ)

C // Ω1
R

is equal to the zero map.

Proof. For all a ∈ R, we have d(a2) = 2ada, so if a 6= 0, we find

d(a2)

a2
= 2

da

a
.

We let α, β, and α∗β be as in the statement of Proposition 4.11 and write a = sin2 α
and b = sin2 β such that ab = sin2(α ∗ β). We now have

C(cot α ⊗ α + cotβ ⊗ β − cot(α ∗ β) ⊗ (α ∗ β))

=
d(sin α)

sin α
+

d(sin β)

β
−

d(sin(α ∗ β))

sin(α ∗ β)

=
1

2

(d(sin2 α)

sin2 α
+

d(sin2 β)

sin2 β
−

d(sin2(α ∗ β))

sin2(α ∗ β)

)

=
1

2

(da

a
+

db

b
−

d(ab)

ab

)

=
1

2ab
(bda + adb − d(ab)) = 0

which proves the lemma. �

Theorem 4.15 (Jessen [8]). The sequence

P (R3)
D // R ⊗ (R/πZ)

C // Ω1
R

is exact.
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The theorem amounts to the statement that the image of D, which we described
in Proposition 4.11, is equal to the kernel of C. We proved in Lemma 4.14 that
im(D) ⊂ ker(C). In the next section, we outline a proof that equality holds. The
theorems of Sydler and Jessen together with the ancient calculation of the scissor’s
congruence group P (R2) combine to give the following result, which constitutes the
calculation of the scissor’s congruence group P (R3).

Theorem 4.16 (Dehn-Sydler-Jessen). The following sequence of abelian groups
and group homomorphism is exact.

0 // P (R2)
E // P (R3)

D // R ⊗ (R/πZ)
C // Ω1

R
// 0

Moreover, the composition vol ◦E : P (R2) → R is an isomorphism.

Remark 4.17. Let S = {ai | i ∈ I} ⊂ R be a subset. Then the following are
equivalent; for a proof see e.g. [11, Theorem 26.5].

(1) The subset {ai | i ∈ I} is a transcendence basis of R over Q.
(2) The subset {dai | i ∈ I} is a basis of the real vector space Ω1

R.

The cardinality of a subset with these properties is equal to that of the real numbers.
One may also show that the dimension of the subspace im(D) ⊂ R ⊗ (R/πZ) is
equal to the cardinality of the real numbers.
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5. Group homology

In this final section, we outline the homological proof of the Dehn-Sydler-Jessen
theorem following Dupont [4] and Dupont-Sah [6].

We recall that P (Rn) is defined to be the quotient abelian group

P (Rn) = F (Rn)/R(Rn),

where R(Rn) ⊂ F (Rn) is the subgroup generated by the elements listed in (i)–(ii)
of Definition 3.2. We now let R′(Rn) ⊂ R(Rn) ⊂ F (Rn) be the subgroup generated
by the elements listed in (i) only and define

P ′(Rn) = F (Rn)/R′(Rn).

We write [P ]′ = 〈P 〉 + R′(Rn) for the class of the polytope P ⊂ Rn. Suppose now
that f : Rn → Rn is an isometry. Since f(R′(Rn)) = R′(Rn), there is a well-defined
group automorphism

ρ(f) : P ′(Rn) → P ′(Rn)

that takes the class [P ]′ to the class [f(P )]′. If f, g : Rn → Rn are two isometries,
then ρ(f ◦ g) = ρ(f) ◦ ρ(g). It follows that there is a group homomorphism

ρ : E(n) → Aut(P ′(Rn))

that to the isometry f assigns the group automorphism ρ(f). We say that the
map ρ defines a structure of left E(n)-module on P ′(Rn). In general, if the group
homomorphism ρ : G → Aut(M) defines a structure of left G-module on the abelian
group M , then the abelian group of coinvariant is defined to be the quotient

H0(G, M) = M/N

of M by the subgroup N ⊂ M generated by the elements x − ρ(g)(x) with x ∈ M
and g ∈ G. In the case at hand, we have the canonical isomorphism

H0(E(n), P ′(Rn))
∼
−→ P (Rn)

that takes the class of [P ]′ to [P ]. We recall from Remark 1.3 that the subgroup of
translations T (n) ⊂ E(n) is normal and that the quotient E(n)/T (n) is canonically
identified with the subgroup O(n) ⊂ E(n) of orthogonal transformations. Since
T (n) ⊂ E(n) is normal, the structure of left E(n)-module on P ′(Rn) induces a
structure of left O(n)-module on the group of coinvariants H0(T (n), P ′(Rn)), and
we have canonical isomorphisms of abelian groups

H0(O(n), H0(T (n), P (Rn)′))
∼
−→ H0(E(n), P ′(Rn))

∼
−→ P (Rn).

To understand the left E(n)-module P ′(Rn), we consider the chain complex C̃∗(R
n)

concentrated in degrees k > −1, where C̃k(Rn) is the free abelian group generated
by the set consisting of all (not necessarily proper) k-simplices σ = (a0, . . . , ak) in
Rn, and where the differential

d : C̃k(Rn) → C̃k−1(R
n)

is the group homomorphism defined by

d(a0, . . . , ak) =

k
∑

i=0

(−1)i(a0, . . . , âi, . . . , ak).
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In particular, C̃−1(R
n) is the free abelian group with the single generator ( ). The

homology groups of C̃∗(R
n) are zero in all degrees. We now define

Filn−1 C̃k(Rn) ⊂ C̃k(Rn)

to be the subgroup generated by the k-simplices σ = (a0, . . . , ak) whose associated
geometric simplex |σ| is contained in an affine hyperplane of Rn. We remark that

for k 6 n − 1, Filn−1 C̃k(Rn) = C̃k(Rn). In general, Filn−1 C̃∗(R
n) ⊂ C̃∗(R

n) is

a sub-chain complex, and we define grnC̃∗(R
n) to be the quotient chain complex

such that we have the following short exact sequence of chain complexes.

0 // Filn−1 C̃∗(R
n)

i // C̃∗(R
n)

p
// grnC̃∗(R

n) // 0

We remark that grnC̃n(Rn) is a free abelian group and that a basis is given by

the image by p of the subset of C̃n(Rn) that consists of all proper n-simplices. If
σ = (a0, . . . , an) is a proper n-simplex and if ai = (ai1, . . . , ain) ∈ Rn, then the
matrix (aij − a0j)16i,j6n is invertible, and we define

ǫ(σ) =
det(aij − a0j)

| det(aij − a0j)|
∈ {−1, +1}

and call it the orientation of σ. The following figure illustrates the definition.
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The following result was proved by Dupont [4, Theorem 2.3]. For a proof by purely
algebraic means, we refer to Morelli [12, Proposition 1].

Proposition 5.1. The group homomorphism

ϕ : Hn(grnC̃∗(R
n)) → P ′(Rn)

that to the class of σ assigns ǫ(σ)[ |σ| ]′ is well-defined and an isomorphism.

The isometry f : Rn → Rn induces an automorphism of abelian groups

ρk(f) : Hk(grnC̃∗(R
n)) → Hk(grnC̃∗(R

n))

and by functoriality this defines a group homomorphism

ρk : E(n) → Aut(Hk(grnC̃∗(R
n))).

We define the canonical left E(n)-module structure on Hk(grnC̃∗(R
n)) to be the left

E(n)-module structure defined by the group homomorphism ρk. The isomorphism
ϕ in Proposition 5.1, however, is not an isomorphism of left E(n)-modules. Now,
in general, if ρ : E(n) → Aut(M) is any left E(n)-module, we define the associated
twisted E(n)-module ρt : E(n) → Aut(M) by

ρt(f)(x) = det(f̄)ρ(f)(x),

where f = tf(0) ◦ f̄ with f̄ ∈ O(n). We write M t for the twisted left E(n)-module
associated with the left E(n)-module M .
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Addendum 5.2. There is an isomorphism of left E(n)-modules

ϕ : Hn(grnC̃∗(R
n))t → P ′(Rn)

that to the homology class of σ assigns ǫ(σ)[ |σ| ]′.

Proof. We let f ∈ E(n), let σ = (a0, . . . , an) be a proper n-simplex in Rn,
and define f(σ) = (f(a0), . . . , f(an)). It is clear that |f(σ)| = f(|σ|) and it is
immediate from the definition of orientation that ǫ(f(σ)) = det(f̄)ǫ(σ). Hence,

ϕ(ρt
n(f)(σ)) = ϕ(det(f̄)(ρn(f)(σ))) = det(f̄)ϕ(ρn(f)(σ))

= det(f̄)ǫ(f(σ))[ |f(σ)| ]′ = ǫ(σ)[f(|σ|)]′

= ρ(f)(ǫ(σ)[ |σ| ]) = ρ(f)(ϕ(σ))

which shows that ϕ is a map of left E(n)-modules. Proposition 5.1 shows that it is
an isomorphism. �

We recall from Lemma 4.8 that there is a left action of the multiplicative group
R∗ of non-zero real numbers on the scissor’s congruence group P (Rn). There is also
a left action of R∗ on the group P ′(Rn) defined in an entirely analogous manner. The
action by λ ∈ R∗ is a map of left E(n)-modules µλ : P ′(Rn) → P ′(Rn). Similarly,
the scalar multiplication by λ ∈ R∗ defines map µλ : Rn → Rn which, in turn,
induces a map of left E(n)-modules µλ : Hn(grn C̃∗(R

n)) → Hn(grnC̃∗(R
n)).

Addendum 5.3. The isomorphism

ϕ : Hn(grnC̃(Rn))t ∼
−→ P ′(Rn)

is an isomorphism of left R∗-modules.

For every integer q > 0, we introduce a chain complex of real vector spaces

C̃∗(T (Rn), Λq
Q(g))

that is concentrated in degrees k > −1. If k > 0, then we define

C̃k(T (Rn), Λq
Q(g)) =

⊕

U0⊂···⊂Uk

Λq
Q(U0),

where the sum ranges over flags U0 ⊂ · · · ⊂ Uk of subspaces of Rn of dimension
at most n − 1, and where Λq

Q(V ) is the qth exterior product of V considered as a
rational vector space; and if k = −1, then we define

C̃−1(T (Rn), Λq
Q(g)) = Λq

Q(Rn).

If k > 1 and if 0 < i 6 k (resp. if k > 1 and i = 0, resp. if k = 0), then we let

di : C̃k(T (Rn), Λq
Q(g)) → C̃k−1(T (Rn), Λq

Q(g))

be the R-linear map that maps the summand indexed by U0 ⊂ · · · ⊂ Uk to that
indexed by U0 ⊂ · · · ⊂ Ûi ⊂ · · · ⊂ Uk by the identity map Λq

Q(U0) → Λq
Q(U0)

(resp. by the map Λq
Q(U0) → Λq

Q(U1) induced by the inclusion U0 → U1; resp. by the

map Λq
Q(U0) → Λq

Q(Rn) induced by the inclusion U0 → Rn). Now the differential

of the chain complex C̃∗(T (Rn), Λq
Q(g)) is the R-linear map defined by

d =

k
∑

i=0

(−1)di : C̃k(T (Rn), Λq
Q(g)) → C̃k−1(T (Rn), Λq

Q(g)).
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The reader can easily verify that d ◦ d is the zero homomorphism as required. The
following result is [5, Proposition 3.11].

Proposition 5.4 (Dupont). Let n be a positive integer.

(1) The abelian group H0(T (n), P ′(Rn)) has a canonical R-vector space structure
such that for all λ ∈ R∗ and f ∈ O(n), the maps µλ and ρ(f) are R-linear.

(2) For every λ ∈ R∗, H0(T (n), P ′(Rn)) decomposes as a direct sum

H0(T (n), P ′(Rn)) =

n
⊕

q=1

H0(T (n), P ′(Rn))µλ=λq

of eigenspaces for the dilation map µλ, and moreover, the decomposition is
independent of λ ∈ R∗.

(3) For every 1 6 q 6 n, there a canonical isomorphism of left O(n)-modules

Hn−1−q(C̃∗T (Rn), Λq
Q(g)))t ∼

−→ H0(T (n), P ′(Rn))µλ=λq

and the isomorphism is R-linear.

Proof. The proof uses the method introduced by Grothendieck of considering
the two spectral sequences associated to a double complex; see e.g. [15, Section 5.6].
If V ⊂ Rn is a real subspace, then we denote by T (V ) the group of translations
of V . For instance, we have T (Rn) = T (n). We now define a double complex of
abelian groups A∗,∗(R

n) concentrated in bidegrees (p, q) with p, q > −1. It has

Ap,q(R
n) =

{

H0(T (Rn), C̃q(R
n)) if p = −1

⊕

U0⊂···⊂Up
H0(T (U0), C̃q(U0)) if p > 0,

where the sum ranges over flags U0 ⊂ · · · ⊂ Up of subspaces of Rn of dimension at
most n − 1, and where the definition of the two differentials

d′ : Ap,q(R
n) → Ap−1,q(R

n)

d′′ : Ap,q(R
n) → Ap,q−1(R

n)

is similar to that of the differentials in C̃∗(T (Rn), ΛQ(g)) and C̃∗(R
n), respectively,

except that in the case of d′′, we multiply by the factor (−1)p. Associated with this
double complex, we have two spectral sequences

IE2
s,t = Hs(Ht(A∗,∗(R

n), d′), d′′) ⇒ Hs+t(Tot(A∗,∗(R
n)))

IIE2
s,t = Hs(Ht(A∗,∗(R

n), d′′), d′) ⇒ Hs+t(Tot(A∗,∗(R
n)))

both of which converge to the homology of the associated total complex. In the
first spectral sequence, we have

IE2
s,t =

{

Ht(H0(T (n), grnC̃∗(R
n))) if s = −1

0 if s ≥ 0,

so the spectral sequence collapses and shows that the edge homomorphism

Ht(H0(T (n), grnC̃∗(R
n))) → Ht−1(Tot(A∗,∗(R

n)))

is an isomorphism. We also remark that the canonical map

H0(T (n), Ht(grnC̃∗(R
n))) → Ht(H0(T (n), grnC̃∗(R

n)))

is also an isomorphism for t 6 n and that both groups are zero for t < n. Indeed,
the complex grnC̃∗(R

n) is concentrated in degrees k > n. Therefore, the homology
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group Hk(Tot(A∗,∗(R
n))) of the total complex is zero for k < n−1 and is canonically

isomorphic to H0(T (n), P ′(Rn))t for k = n − 1. The isomorphism is compatible
with the left actions by the groups O(n) and R∗.

In the second spectral sequence Er
s,t = IIEr

s,t, we have

E1
∗,t =

{

C̃∗(T (Rn), Λt
Q(g)) if t > 0

0 if t 6 0.

and hence,

E2
∗,t =

{

Hs(C̃∗(T (Rn), Λt
Q(g))) if t > 0

0 if t 6 0.

Indeed, the complex C̃∗(V ) is a free resolution of the trivial T (V )-module Z. Hence,

the homology group Hq(H0(T (V ), C̃∗(V ))) is equal to the qth group homology
group of V with coefficients in Z if q > 0 and is zero if q 6 0. But for every torsion
free abelian group V , the qth group homology group of V with coefficients in Z

is canonically isomorphic to Λq
Z(V ); see e.g. [2, Theorem 6.4]. Now, for all r > 1,

the groups Er
s,t are real vector spaces. Indeed, this is true for r = 1, and since the

differentials dr : Er
s,t → Er

s−r,t+r−1 are R-linear, the same holds for all r > 1. Now,
the map µλ : Rn → Rn given by scalar multiplication by λ ∈ R∗ induces a map of
spectral sequences µλ : Er

s,t → Er
s,t which is equal to multiplication by λt. It follows

that dr is zero for all r > 2. Indeed, if x ∈ Er
s,t, then

λt+r−1dr(x) = µλ(dr(x)) = dr(µλ(x)) = dr(λtx) = λtdr(x)

which shows that dr(x) = 0. Finally, the spectral sequence gives a filtration

0 = F−2Hm ⊂ F−1Hm ⊂ · · · ⊂ FmHm = Hm = Hm(Tot(A∗,∗(R
n)))

and a canonical identification grsHs+t = E∞
s,t = E2

s,t, and both are compatible with
the actions by the groups O(n) and R∗. Now, for 1 6 q 6 n, we find

(Hn−1)
µλ=λq

= (Fn−1−qHn−1)
µλ=λq

= (E2
n−1−q,q)

µλ=λq

= E2
n−1−q,q

as left O(n)-modules. This completes the proof. �

There is a map of chain complexes

φ : C̃∗(T (Rn), Λq
Q(g)) → C̃∗(T (Rn), Λq

R(g))

compatible with the left actions of the groups O(n) and R∗. Here the definition
of the complex on the right-hand side is analogous to that of the complex on the
left-hand side except that Λq

Q(V ) is replaced by Λq
R(V ), and the chain map φ is

induced by the canonical projection Λq
Q(V ) → Λq

R(V ). If V is a finite dimensional

real vector space with basis {e1, . . . , ek}, then Λq
R(V ) is a finite dimensional real

vector space with basis {ei1 ∧ · · · ∧ eiq
| 1 6 i1 < · · · < iq 6 k}. By contrast, then

the real vector space Λq
Q(V ) is uncountably infinite dimensional for all q > 2, unless

V is the zero space. So the target of the chain map φ is a much more manageable
complex that is the domain. The injectivity part of the following result was proved
by Jessen and Thorup [9, Theorem 2] and by Sah [13], and the surjectively part
was proved by Dupont [4, Theorem 3.12] with the vanishing of the target homology
group for p + q < n− 1 based on earlier work of Lusztig [10, §1]. We also refer the
reader to [12, Theorem 2].
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Theorem 5.5. Let n and q be positive integers. The map of homology groups

φ∗ : Hp(C̃∗(T (Rn), Λq
Q(g))) → Hp(C̃∗(T (Rn), Λq

R(g)))

induced by the chain map φ is an isomorphism, if p + q 6 n − 1, and the common
group is zero, if p + q < n − 1.

Now, for every 1 6 q 6 n, we define the real vector space

Dq(Rn) = Hn−1−q(C̃∗(T (Rn), Λq
R(g))).

It is a left O(n)-module, by functoriality, and the action by f ∈ O(n) is an R-linear
map. By Proposition 5.4 and Theorem 5.5, we have a canonical isomorphism

n
⊕

q=1

H0(O(n), Dq(Rn)t)
∼
−→ P (Rn)

of abelian groups. We now show that roughly half of the summands vanish.

Lemma 5.6. If n + q is odd, then H0(O(n), Dq(Rn)t) is zero.

Proof. The canonical inclusion of the subgroup {± id} into O(n) induces a
map of homology groups

H0({± id}, Dq(Rn)t) → H0(O(n), Dq(Rn)t)

which clearly is surjective. Now, the map

ρ(− id) : Dq(Rn) → Dq(Rn)

is equal to multiplication by (−1)q, and hence, the map

det(− id)ρ(− id) : Dq(Rn) → Dq(Rn)

is equal to multiplication by (−1)n+q. Therefore, we have

H0({± id}, Dq(Rn)t) = Dq(Rn)/(1 − (−1)n+q)Dq(Rn).

If n+ q is odd, then the right-hand side is equal to Dq(Rn)/2Dq(Rn), which is zero
as Dq(Rn) is a real vector space. �

We discuss one more general theorem, valid for all positive integers n. If V is a
real vector space of dimension n and if 1 6 q 6 n is an integer, then we define the
chain complex of real vector spaces C̃∗(T (V ), Λq

R(g) in a manner entirely similar
to the case V = Rn.

Lemma 5.7. Let V be a real vector space of dimension n and let 1 6 q 6 n be
an integer. The homology group Hp(C̃∗(T (V ), Λq

R(g)) is zero unless p + q = n− 1.

Proof. For p + q < n− 1, the homology group vanishes by Theorem 5.5. Let

C̃N
∗ (T (V ), Λq

R(g)) → C̃∗(T (V ), Λq
R(g))

be the chain map that, in degree k > 0, is given by the canonical inclusion
⊕

U0(···(Uk

Λq
R(U0) →

⊕

U0⊂···⊂Uk

Λq
R(U0)

of the summands indexed by all strict flags U0 ( · · · ( Uk of subspaces of V of
dimension at most n− 1, and that, in degree k = −1, is given by the identity map.
It induces an isomorphism of all homology groups; see e.g. [15, Theorem 8.3.8].

Since the groups C̃N
p (T (V ), Λq

R(g)) vanish for p + q > n− 1, the same obviously is
true for the homology groups. �
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If V is a real vector space and 1 6 q 6 n = dimR(V ) an integer, we write

Dq(V ) = Hn−1−q(C̃∗(T (V ), Λq
R(g)))

for the unique non-zero homology group of the indicated chain complex.

Theorem 5.8. For all positive integers n and all integers 1 6 q 6 n, there is
a canonical exact sequence of left O(n)-modules

Dq(Rn)
⊕

Un−1

Dq(Un−1)
⊕

Un−2

Dq(Un−2)

⊕

Uq+1

Dq(Uq+1)
⊕

Uq

Λq
R(Uq) Λq

R(Rn)

0

0

// // // // . . .

. . . // // // //

where the sum
⊕

Ud
Dq(Ud) ranges over all subspace Ud ⊂ Rn of dimension d. The

left action of f ∈ O(n) on this sum takes the summand indexed by Ud ⊂ Rn to
the summand indexed by f(Ud) ⊂ Rn by the map Dq(Ud) → Dq(f(Ud)) induced by
f : Ud → f(Ud).

Proof. We define a filtration

0 = Fq−2C̃
N
∗ (q) ⊂ Fq−1C̃

N
∗ (q) ⊂ · · · ⊂ Fn−2C̃

N
∗ (q) ⊂ Fn−1C̃

N
∗ (q) = C̃N

∗ (q)

of the normalized chain complex C̃N
∗ (q) = C̃N

∗ (T (Rn), Λq
R(Rn)) from the proof of

Lemma 5.7. If q 6 s < n, then for k > 0, we define

FsC̃
N
k (q) =

⊕

U0(···(Uk

dim(Uk)6s

Λq
R(U0) ⊂ C̃N

k (q);

and for k = −1, we define FsC̃
N
−1(q) = Λq

R(Rn). Finally, we define Fq−1C̃
N
∗ (q) to

be Λq
R(Rn) considered as a complex concentrated in degree k = −1. The filtration

gives rise to a spectral sequence

E1
s,t = Hs+t(grs C̃N

∗ (q)) ⇒ Hs+t(C̃
N
∗ (q)).

By definition, we have for q 6 s < n a canonical identification

grs C̃N
k (q) =

⊕

Us

C̃N
k−1(T (Us), Λ

q
R(g)),

where the sum ranges over subspaces Us ⊂ Rn whose dimension is equal to s.
Therefore, by Lemma 5.7, we find that for q 6 s < n,

E1
s,−q =

⊕

Us

Dq(Us)

and that E1
s,t = 0 for all other values of t. Similarly, we find immediately from

the definition that E1
q−1,−q = Λq

R(Rn) and that E1
q−1,t = 0 for all other values of

t. Hence, for degree reasons, we have E∞
s,t = E2

s,t, and the common group can be
non-zero only if q−1 6 s < n and t = −q. Now, the spectral sequence converges to
Hs+t(C̃

N (q)) which, by Lemma 5.7, is non-zero only if s+ t = n−1− q. Therefore,
we conclude that E2

n−1,−q = Dq(Rn) is the only non-zero group in the E2-term.
This completes the proof. �

The following result gives a simplified expression for the group homology of the
group O(n) with coefficients in the twisted left O(n)-modules associated with the
terms in the sequence in Theorem 5.8.
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Lemma 5.9. Let n be a positive integer and let 1 6 q 6 n and q 6 s < n be
integers. There is a canonical isomorphism of graded abelian groups

H∗(O(s), Dq(Rs)t) ⊗ H∗(O(n − s), Zt)
∼
−→ H∗(O(n), (

⊕

Us

Dq(Us))
t).

Moreover, the common groups vanish unless n − s is even.

Proof. There is a canonical isomorphism of O(n)-modules

Z[O(n)] ⊗Z[O(s)⊗O(n−s)] Dq(Rs)t ⊗ Zt ∼
−→ (

⊕

Us

Dq(Us))
t.

Therefore, by Shapiro’s lemma, we have a canonical isomorphism

H∗(O(s) × O(n − s), Dq(Rs)t ⊗ Zt)
∼
−→ H∗(O(n), (

⊕

Us

Dq(Us))
t).

Finally, the Eilenberg-Zilber theorem gives a canonical isomorphism

H∗(O(s), Dq(Rs)t) ⊗ H∗(O(n − s), Zt)
∼
−→ H∗(O(s) × O(n − s), Dq(Rs)t ⊗ Zt),

since the homology groups H∗(O(s), Dq(Rs)t) are torsion-free abelian groups. This
proves the first statement. To prove the second statement, one uses that multipli-
cation by the the central element γ ∈ O(s) × O(n − s) defined by

γ(x1, . . . , xs, xs+1, . . . , xn) = (x1, . . . , xs,−xs+1, . . . ,−xn)

induces an automorphism of the homology group in question which is both equal
to the identity map and to multiplication by (−1)n−s. �

Finally, we specialize to the case n = 3. We have the canonical isomorphism

H0(O(3), D1(R3)t) ⊕ H0(O(3), D3(R3)t)
∼
−→ P (R3).

The second summand is easily identified as follows. There is an isomorphism of left
O(3)-modules vol: Λ3

R(R3) → Rt defined by vol(a1 ∧ a2 ∧ a3) = det(aij). It induces
the isomorphism of left O(3)-modules vol: Λ3

R(R3)t → R, and hence,

H0(O(3), D3(R3)t) = H0(O(3), Λ3
R(R3)t)

∼

vol // H0(O(3), R) = R.

To identify the first summand is (a lot) more difficult. We use the general theory
to prove the following theorem of Dupont [4, Corollary 1.2].

Theorem 5.10 (Dupont). There is a canonical exact sequence

0 → H2(SO(3), R3) → H0(O(3), D1(R3)t) → R ⊗ (R/2πZ) → H1(SO(3), R3) → 0.

where R3 is the standard left SO(3)-module.

Proof. In general, for G a group and C∗ an exact sequence of left G-modules,
there is a spectral sequence with E1

s,t = Ht(G, Cs) that converges to zero. In the
case where C∗ has three (non-zero) terms, the spectral sequence gives rise to the
familiar long exact homology sequence. We apply the spectral sequence in the case
of the following Lusztig exact sequence of left O(3)-modules

(R3)t (
⊕

U1)
too (

⊕

D1(U2))
too D1(R3)too

from Theorem 5.8 which has four (non-zero) terms. We wish to understand the
group E1

3,0 = H0(O(3), (D1(R3)t)). First, by Lemma 5.9, we have

E1
1,∗ = H∗(O(3), (

⊕

U1)
t) = H∗(O(1), (R1)t) ⊗ H∗(O(2), Zt).
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Here R1 is the standard left O(1)-module, so (R1)t is the trivial O(1)-module R.
Since O(1) is finite and R divisible, we have H∗(O(1), (R1)t) = R concentrated
in degree zero. In particular, it will suffice to evaluate the groups H∗(O(2), Zt)
modulo the Serre subcategory of torsion abelian groups. To this end, we consider
the Hochschild-Serre spectral sequence

E2
p,q = Hp({±1}, Hq(SO(2), Zt)) ⇒ Hp+q(O(2), Zt).

Since the group SO(2) is abelian and since Zt is trivial as a left SO(2)-module,
there is a canonical map of {±1}-modules

f : Λq
Z(SO(2))t → Hq(SO(2), Zt)

which is an isomorphism modulo the Serre category of torsion abelian groups. The
generator −1 of {±1} acts on the domain of f by the opposite of the map induced
by inversion in SO(2), and this map is equal to multiplication by (−1)q+1. We now
compose the map of coinvariants induced by f with the edge homomorphism of the
spectral sequence to obtain the canonical map

H0({±1}, Λq
Z(SO(2))t) → Hq(O(2), Zt)

which is an isomorphism modulo the Serre subcategory of torsion abelian groups
since {±1} is finite. Moreover, from the above description of the left {±1}-module
structure of Λq

Z(SO(2))t we find that

H0({±1}, Λq
Z(SO(2))t) =

{

Λq
Z(SO(2))/2Λq

Z(SO(2)) if q is even

Λq
Z(SO(2)) if q is odd.

Finally, we have the group isomorphism g : R/2πZ → SO(2) defined by

g(θ + 2πZ) =

(

cos θ − sin θ
sin θ cos θ

)

.

We conclude that the groups E1
1,q in the hyperhomology spectral sequence are given,

up to canonical isomorphism, by

E1
1,q =

{

0 if q is even

R ⊗ Λq
Z(R/2πZ) if q is odd.

Similarly, by Lemma 5.9, we have

E1
2,∗ = H∗(O(3), (

⊕

D1(U2))
t) = 0.

It remains to identify the groups E1
0,q. The group O(3) is equal to the product

group SO(3)×{± id}. Moreover, as a left SO(3)-module (R3)t = R3, and as a left
{± id}-module, (R3)t is the trivial module R3. Therefore, by the Eilenberg-Zilber
theorem, we have a canonical isomorphism

H∗(SO(3), R3) ⊗ H∗({± id}, Z)
∼
−→ H∗(O(3), (R3)t),

since the first tensor factor is torsion free as an abelian group. Modulo the Serre
subcategory of torsion abelian groups, the second tensor factor is isomorphic to Z

concentrated in degree zero. Therefore, we conclude that the map

Hq(SO(3), R3) → Hq(O(3), (R3)t)
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induced by the canonical inclusion SO(3) → O(3) is an isomorphism for all q. This
identifies E1

0,q with Hq(SO(3), R3). The E1-term of the hyperhomology spectral
sequence now has been identified, up to canonical isomorphism, as follows.

H2(SO(3), R3)

H1(SO(3), R3)

H0(SO(3), R3)

0

R ⊗ (R/2πZ)

0

0

0

0

H2(O(3), D1(R3)t)

H1(O(3), D1(R3)t)

H0(O(3), D1(R3)t)

...
...

...
...

Since the hyperhomology spectral sequence converges to zero, we find that there is
an exact sequence as stated. �

Remark 5.11. Let us define the map D′ : P (R3) → R⊗(R/2πZ) to be the com-
position of the canonical projection P (R3) → H0(O(3), D1(R3)t) onto the weight 1
eigenspace of the dilation maps followed by the middle map in the exact sequence
of Theorem 5.10. Then the composition of the map D′ with the canonical projec-
tion R ⊗ (R/2πZ) → R ⊗ (R/πZ) is equal to the Dehn invariant. It is possible
to define the refinement D′ of the Dehn invariant geometrically as follows. We
define the triangulation {σ1, . . . , σm} of the polytope P ⊂ R3 to be oriented if
ǫ(σi) = +1 for all 1 6 i 6 m. Given an oriented simplex σ and an edge e ⊂ σ,
we can define a dihedral angle θ′(σ, e) ∈ R/2πZ, since a normal plane to the edge
e has an induced orientation. The definition of D′(σ) and D′(P ) now proceeds as
before. This refinement of course is inconsequential since the canonical projection
R ⊗ (R/2πZ) → R ⊗ (R/πZ) is an isomorphism.

In conclusion we state without proof the following theorem of Dupont and Sah
which completes the homological proof of the theorem of Dehn-Sydler-Jessen.

Theorem 5.12 (Dupont-Sah [6]). The following (1)–(2) hold:

(1) There is a canonical isomorphism Ω1
R

∼
−→ H1(SO(3), R3).

(2) The group H2(SO(3), R3) is zero.
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