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Preliminaries

Let A be an algebra, that is an artin K -algebra, where K is a
commutative artin ring.

I By mod A we denote the category of finitely generated right
A-modules, and by ind A the full subcategory of mod A formed
by all indecomposable modules.

I For a module X in mod A, we denote by pdA X (respectively,
by idA X ) the projective (respectively, injective) dimension of
X .

I τA = D Tr is the Auslander-Reiten translation
(D = HomK (−,E ) is the standard duality on mod A, E is a
minimal injective cogenerator in mod K )

I We denote by ΓA the Auslander-Reiten quiver of A.
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I radA is the Jacobson radical of mod A, that is, the ideal in
mod A generated by all nonisomorphisms in ind A;
rad∞A =

⋂∞
i=1 radi

A (the infinite Jacobson radical)

C is a component of ΓA ⇒
I C is semiregular iff C doesn’t contain both a projective and

an injective module.
I C is generalized standard iff rad∞A (X ,Y ) = 0, for all

modules X and Y from C.
I cC is the cyclic part of C obtained from C by deleting vertices

not lying on cycles ( cΓA=cyclic comoponents of ΓA).
Recall C is almost acyclic iff cC is finite

I C is a semiregular tube iff C is a ray tube (obtained from a
stable tube by a finite number of ray insertions) or a coray
tube

Adam Skowyrski Homological problems for cycle-finite algebras



Basic concepts
Problems

Proof of Theorem A
Proof of Theorem B

Classes of algebras

1) Tilted algebras
I A is called a tilted algebra, provided that A ∼= EndH(T ), where

H is a hereditary algebra and T is a tilting module in mod H.
I A = EndH(T ) is tilted ⇒

I there is a splitting torsion pair (X (T ),Y(T )) is modA
I ΓA has a component CT (called the connecting component)

with a faithful section ∆ such that the predecessors of ∆ in C
are in Y(T ) and the proper successors of ∆ (in C) are in X (T )

I We have the following characterization of tilted algebras
Theorem [Liu-Skowroński]. A is a tilted algebra iff ΓA

admits a generalized standard component with faithful section.
I If A = EndH(T ) is a tilted algebra, then A is said to be of

Euclidean type iff H is a hereditary algebra of Euclidean type.
In particular, A is then a tame algebra.

I If A is a representation-infinite tilted algebra of Euclidean type,
then
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I one of the following holds:

(1) ΓA = PA ∪ T A ∪QA, where PA is the postprojective
component of ΓA, T A is an infinite family of pairwise
orthogonal ray tubes, and QA is the preinjective component of
ΓA containing all injective A-modules.

(2) ΓA = PA ∪ T A ∪QA, where PA is the postprojective
component of ΓA containing all projective A-modules, T A is
an infinite family of pairwise orthogonal coray tubes, and QA

is the preinjective component of ΓA.

2) Quasitilted algebras
I A is a quasitilted algebra iff gl.dim(A) 6 2 and, for every

module X in ind A, we have pdA X 6 1 or idA X 6 1.
I Every tilted algebra is a quasitilted algebra. If A is a quasitilted

algebra but not a tilted algebra, then A is, so called, quasitilted
algebra of canonical type.
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I A is quasitilted of canonical type ⇒ there are two associated
factor algebras A(l) and A(r) of A which essentaily determine
the structure of ΓA. Moreover, if A is tame, then both A(l) and
A(r) are tilted of Euclidean type or tubular algebras.

I A is tame quasitilted of canonical type ⇒ all components of
ΓA are semiregular and

ΓA = PA ∪ T A ∪QA,

I T A is an infinite family of pairwise orthogonal semiregular
tubes of ΓA.

I If A(l) is tilted of Euclidean type, then PA = PA(l)

. Otherwise

PA = PA(l)

0 ∪ T A(l)

0 ∪

 ⋃
q∈Q+

T A(l)

q

 .
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I If A(r) is tilted of Euclidean type, then QA = QA(r)

. Otherwise

QA =

 ⋃
q∈Q+

T A(r)

q

 ∪ T A(r)

∞ ∪QA(r)

∞ .

I The family PA is a family of components of ΓA(l) .
I The family QA is a family of components of ΓA(r) .

Adam Skowyrski Homological problems for cycle-finite algebras



Basic concepts
Problems

Proof of Theorem A
Proof of Theorem B

Classes of algebras

3) Generalized double tilted algebras
Theorem[Reiten-Skowroński]. A is a generalized double
tilted algebra iff ΓA admits a generalized standard component
with a faithful multisection.

Recall that
I A multisection ∆ in a component C of ΓA is a full valued

subquiver of C satisfying the following conditions.
(a) ∆ is almost acyclic;
(b) ∆ is convex in C;
(c) for each τA orbit O in C, we have 1 6 |∆ ∩ O| <∞;
(d) for all but finitely many τA orbits O in C, we have |∆∩O| = 1;
(e) no proper full valued subquiver of ∆ satisfies conditions

(a)-(d).

I A component C of ΓA admits a multisection iff C is almost
acyclic (Reiten and Skowroński).
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I ∆ is a multisection in a component C ⇒ there are associated
full valued subquivers ∆l , ∆c , and ∆r such that

C = Cl ∪∆c ∪ Cr ,

where Cl (respectively, Cr ) is the full translation subquiver of C
formed by predecessors of ∆l (respectively, by successors of
∆r )

4) Cycle-finite algebras
I A cycle in mod A is a sequence

X = X0
f1 // X1

// . . .
fr // Xr = X

of nonzero nonisomorphisms in ind A
I Such a cycle is called finite, provided that f1, . . . , fr /∈ rad∞A .

Following Assem and Skowroński, an algebra A is said to be
cycle-finite, iff all cycles in mod A are finite.
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I The class of cycle-finite algebras is large and contains, for
example: algebras of finite representation type, tame tilted
algebras, tame generalized double tilted algebras, tubular
algebras, tame quasitilted algebras, tame generalized multicoil
algebras, and strongly simply connected algebras of polynomial
growth.
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Motivation

Recall that there are two important full subcategories of ind A,
defined as follows:

I LA is the full subcategory of ind A formed by all
indecomposable modules X such that any predecessor Y of X
in ind A satisfies pdA Y 6 1;

I RA is the full subcategory of ind A formed by all
indecomposable modules X such that any successor Y of X in
ind A satisfies idA Y 6 1.
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The following theorem of Skowroński is the starting point of our
considerations.

Theorem
For an algebra A, the following conditions are equivalent.

(i) A is a generalized double tilted algebra or a quasitilted algebra.

(ii) ind A \ (LA ∪RA) is finite.

(iii) There are at most finitely many isomorphism classes of
modules X in ind A lying on paths from an injective module to
a projective module.
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Problems (1) and (2)

Note that, if one of the above statements (i)-(iii) hold, then the
following two conditions are satisfied.

(H1) For all but finitely many isomorphism classes of modules X in
ind A, we have pdA X 6 1 or idA X 6 1.

(H2) For all but finitely many isomorphism classes of modules X in
ind A, we have HomA(D(A),X ) = 0 or HomA(X ,A) = 0.

We are interested in the following two problems, posed by
Skowroński:

Problem (1). Let A be an algebra satisfying the condition (H1). Is
then A a generalized double tilted algebra or a quasitilted algebra?

Problem (2). Let A be an algebra satisfying the condition (H2). Is
then A a generalized double tilted algebra or a quasitilted algebra?
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Theorem A

The following theorem provides the solution of the Problems (1)
and (2), for cycle-finite algebras.

Theorem A
For a cycle-finite algebra, the following conditions are equivalent.

(i) A is a generalized double tilted algebra or a quasitilted algebra.

(ii) For all but finitely many isomorphism classes of modules X in
ind A, we have pdA X 6 1 or idA X 6 1.

(iii) For all but finitely many isomorphism classes of modules X in
ind A, we have HomA(D(A),X ) = 0 or HomA(X ,A) = 0.
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A remark

There are weaker versions of homological conditions (H1) and
(H2). Namely, we consider the following conditions:

(H1∗) For all but finitely many isomorphism classes of
modules X in ind A, we have pdA X 6 1.

(H1∗∗) For all but finitely many isomorphism classes of
modules X in ind A, we have idA X 6 1.

(H2∗) For all but finitely many isomorphism classes of
modules X in ind A, we have HomA(D(A),X ) = 0.

(H2∗∗) For all but finitely many isomorphism classes of
modules X in ind A, we have HomA(X ,A) = 0.

It has been proved by Skowroński that, if A is an algebra satisfying
one of the above conditions (H1∗), (H1∗∗), (H2∗), (H2∗∗), then A
is a generalized double tilted algebra.
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Problem (3)

The origins of the third problem go back to the concept of a short
chain, introduced and investigated by Reiten, Smalø and
Skowroński. Recall that a short chain (in mod A) is a sequence
X → M → τAX of nonzero homomorphisms in mod A with X
being indecomposable, and M is then called the middle of this
short chain. The following theorem due to Jaworska, Malicki and
Skowroński, characterizes the class of tilted algebras in terms of
short chains.
Theorem. Let A be an algebra. Then A is a tilted algebra if and
only if mod A admits a faithful module which is not the middle of a
short chain.
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Problem (3)

The last (third) of the Skowroński’s problems is formulated as
follows.

Problem(3). A is a generalized double tilted algebra iff mod A
admits a faithful module M which is the middle of at most finitely
many short chains.

Adam Skowyrski Homological problems for cycle-finite algebras



Basic concepts
Problems

Proof of Theorem A
Proof of Theorem B

Theorem B

The following theorem provides the solution of Problem(3) for
cycle-finite algebras.

Theorem B
Let A be a cycle-finite algebra. The following conditions are
equivalent.

(i) A is a generalized double tilted algebra.

(ii) mod A admits a faithful module being the middle of at most
finitely many short chains.
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Proof of Theorem A: Semiregular case

Theorem A.1. Let A be a cycle-finite algebra such that all
components of ΓA are semiregular. Then tfcae

(i) A is a quasitilted algebra of cannonical type.

(ii) For all but finitely many isomorphism classes of modules X in
ind A, we have pdA X 6 1 or idA X 6 1.

(iii) For all but finitely many isomorphism classes of modules X in
ind A, we have HomA(D(A),X ) = 0 or HomA(X ,A) = 0.
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Proof of Theorem A: Semiregular case

Obviously, implications (i)⇒(ii) and (i)⇒(iii) hold. We assume
that one of the conditions (ii) or (iii) holds. We need the following
theorem.
Theorem[Bia lkowski, Skowroński, -, Wísniewski] Let A be a
cycle-finite algebra such that all components of ΓA are semiregular.
Then there is a sequence B = (B1, . . . ,Bn) of tame quasitilted
algebras of canonical type such that

(1) B
(l)
1 and B

(r)
n are tilted algebras of Euclidean type and

B
(r)
i = B

(l)
i+1 is a tubular algebra, for any i ∈ {1, . . . , n − 1}.

(2) ΓA has the following form

ΓA = PB ∪

 ⋃
q∈Q∩[1,n]

T B
q

 ∪QB,

where
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Proof of Theorem A: Semiregular case

I PB = PB
(l)
1

I QB = QB(r)
n

I for each i ∈ {1, . . . , n}, T B
i = T Bi

I for each rational number q ∈ [1, n] \ {1, . . . , n}, T B
q is an

infinite family of pairwise orthogonal stable tubes of ΓA

(3) A is isomorphic to the following pushout algebra:

A(B) = B1 t
B

(r)
1

B2 t
B

(r)
2

... t
B

(r)
n−2

Bn−1 t
B

(r)
n−1

Bn

Corrolary. Let A = A(B) be a cycle-finite algebra with all
components of ΓA semiregular, B = (B1, . . . ,Bn). Then, if A
is not a quasitilted algebra of canonical type, then n > 2 and
there is i ∈ {1, . . . , n − 1} such that T B

i has a coray tube
containing an injective module and T B

i+1 has a ray tube
containing a projective module.
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Proof of Theorem A: Semiregular case

The above corrolary implies theorem A.1. Indeed, it follows that, if
A is a cycle-finite algebra of semiregular type which is not a
quasitilted algebra of canonical type, then there exists a stable
tube T B

q,λ of T B
q , q ∈ (i , i + 1), such that

HomA(D(A), T B
q,λ) 6= 0 and HomA(T B

q,λ,A) 6= 0,

which leads to a contradiction with (ii) and (iii).
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Proof of Theorem A: Non-semiregular case

The remaining statement is formulated as follows.
Theorem A.2. Let A be a cycle-finite algebra such that ΓA admits
a non-semiregular component. Then tfcae

(i) A is a generalized double tilted algebra.

(ii) For all but finitely many isomorphism classes of modules X in
ind A, we have pdA X 6 1 or idA X 6 1.

(iii) For all but finitely many isomorphism classes of modules X in
ind A, we have HomA(D(A),X ) = 0 or HomA(X ,A) = 0.
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Proof of Theorem A: Non-semiregular case

As before, implications (i)⇒(ii) and (i)⇒(iii) of theorem A.2 hold.
Assume that one of the conditions (ii) or (iii) holds. The following
proposition is playing a prominent role in this part of the proof of
theorem A.

Proposition 1.
Let A be a cycle-finite algebra such that one of the conditions
(H1) or (H2) is satisfied. Then every infinite cyclic component of
ΓA is the cyclic part cC of a semiregular tube C of ΓA.

Let C be a non-semiregular component of ΓA. Proposition 1.
implies that C is an almost acyclic component of ΓA (⇒ C admits
a multisection).
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Proof of Theorem A: Non-semiregular case

We prove that C is faithful and generalized standard component.
We investigate the structure of ΓA.

I C = Cl ∪∆c ∪ Cr
I Cl = C(1)l ∪ · · · ∪ C

(p)
l

I assume, for simplicity, that C(i)l is infinite, for all i ’s

I for all i ∈ {1, . . . , p}, C(i)l admits a left stable acyclic full

translation subquiver D(i), closed under predecessors.
We use the following theorem due to Malicki, de la Pẽna, and
Skowroński
Theorem. Let A be a cycle-finite algebra, C a component of
ΓA. Then, for every left stable acyclic full translation subquiver
D of C, closed under predecessors in C, there exists a tilted
algebra B = EndH(T ) of Euclidean type such that Y(T ) ∩ CT
is a full translation subquiver of D closed under predecessors.
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Proof of Theorem A: Non-semiregular case

The above theorem implies that, for every i ∈ {1, . . . , p}, there
is a factor tilted algebra Bi = EndHi (Ti ) of A such that

I Bi is of Euclidean type
I CTi ∩ Y(Ti ) is a full translation subquiver of D(i) closed under

predecessors in C
I B = B1 × · · · × Bp is a factor tilted algebra of A
I ΓBi = PBi ∪ T Bi ∪QBi , where T Bi is a family of ray tubes,

and PBi is the postprojective component, and QBi = CTi

contains all injective modules in indBi ,

I A is cycle-finite + Proposition 1. ⇒ for every ray tube T B
λ of

T B = T B1 ∪ · · · ∪ T Bp , there is a semiregular tube T A
λ of ΓA,

containing all modules from cT B
λ .
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Proof of Theorem A: Non-semiregular case

I Next we prove that T A = (T A
λ ) has no coray tubes with

injective modules.
Assume that this is not the case. Then

I there is a module V in ind Bi , lying on the mouth of a stable
tube of ΓBi and an epimorphism I → V with I an
indecomposable injective A-module

I there is a module R in D(i) and a monomorphism R → P with
P a projective module (in C)

But this leads to a contradiction with (i) and (ii), because the
following lemma is satisfied.
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Proof of Theorem A: Non-semiregular case

Lemma 1. Let B be a tilted algebra of Euclidean type with
infinite preinjective connecting component. Assume that V
and R are modules in ind B such that V lies on the mouth of
a stable tube of ΓB and R is contained in the preinjective
component of ΓB . Then the following holds.
(1) There are infinitely many pairwise nonisomorphic

indecomposable modules Zk in QB , k > 0, such that

HomB(V , τBZk) 6= 0 and HomB(τ−1B Zk ,R) 6= 0,

for all k > 0.
(2) There are infinitely many pairwise nonisomorphic

indecomposable modules Zk in QB , k > 0, such that

HomB(V ,Zk) 6= 0 and HomB(Zk ,R) 6= 0,

for all k > 0.
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A remark

The proof of Lemma 1 is based on the tilting Theorem of Brenner
and Butler and the tables of composition vectors of mouth
modules over hereditary algebras of Euclidean type from Memoirs
by Dlab and Ringel.
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Proof of Theorem A: Non-semiregular case

I Further, we prove that T A = T B

I Dually, we prove that there exists a factor tilted algebra
B ′ = B ′1 × · · · × B ′q of A such that the family T B′ of all coray
tubes of ΓB′ is a family of components of ΓA.

I Finally, we deduce that ΓA = PB ∪ T B ∪ C ∪ T B′ ∪QB′ ,
where

I PB = PB1 ∪ · · · ∪ PBp

I QB′
= QB′

1 ∪ · · · ∪ QB′
q

Using obtained information on ΓA, we deduce that C is a faithful
and generalized standard component of ΓA. Summarizing, C is a
generalized standard component with a faithful multisection ∆. �
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Proof of Theorem B

The proof of Theorem B is very similar to the proof of Theorem
A.2. Observe first that (i) implies (ii), because, if A is a
generalized double tilted algebra, then mod A admits a faithful
module M which is the middle of at most finitely many short
chains (for example, M may be defined as the direct sum of all
modules lying on ∆).
Now, assume that the condition (ii) is satisfied. We prove that A is
a generalized double tilted algebra in the same manner as in the
proof of Theorem A.2. Instead of the Proposition 1, we use the
following proposition.
Proposition 2. Let A be a cycle-finite algebra such that the
condition (ii) is satisfied. Then every infinite cyclic component of
ΓA is the cyclic part cC of a semiregular tube C of ΓA.
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Proof of Theorem B

Analogue of Lemma 1 is stated as follows.

Lemma 2. Let B, V , and R be as in Lemma 1. Then the
following holds.

(1) There are infinitely many pairwise nonisomorphic
indecomposable modules Zk in QB , k > 0, such that

HomB(V , τBZk) 6= 0 and HomB(Zk ,R) 6= 0,

for all k > 0.
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Thank you for your attention !!!

Adam Skowyrski Homological problems for cycle-finite algebras


	Basic concepts
	Problems
	Proof of Theorem A
	Semiregular case
	Non-semiregular case

	Proof of Theorem B

