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K — algebraically closed field

algebra — finite dimensional K-algebra

A an algebra

mod A category of finitely dimensional right A-modules
M module in mod A, exact sequence in mod A

0 — QA(M) —— Pa(M) — M — 0
syzygy module of M projective cover

M is periodic if Q(M) = M for some n > 1
A selfinjective and M periodic, then the Ext-algebra of M

Ext;(M, M) = € Ext;(M, M)

i>0

is a graded noetherian algebra (Schultz, 1986)
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A® = A’ @ A enveloping algebra of A

mod A® = bimod A category of finite dimensional
A-A-bimodules

A projective in mod A® < A s a semisimple algebra

Ais a periodic algebra if A is a periodic module in mod A®
(periodic A-A-bimodule)

A periodic algebra = A selfinjective algebra

A periodic algebra = mod A is a periodic category
every module in mod A without pro-
jective direct summands is periodic

In fact, we have

Q% (A) = Ain mod A® = QA(M) = M for any module M in mod A
without projective direct summands
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HH*(A) = Ext}¢(A, A) the Hochschild cohomology algebra of A

A selfinjective = A® selfinjective = Extljs(A, A) = Hom o (246 (A), A)
fori >0

A periodic algebra = HH*(A) a graded noetherian algebra

DP(mod A) derived category of bounded complexes over mod A

A, A\ algebras

A and A are derived equivalent if D°(mod A) and D?(mod A) are
equivalent as triangulated categories

Happel, Rickard
e —

A and A are derived equivalent HH*(A) = HH*(N\)

as graded K-algebras

Theorem (Rickard)

Let A and N be derived equivalent algebras.
A is a periodic algebra < N is a periodic algebra
Moreover, if A and A\ are periodic, then their periods coincide.
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PROBLEM

Determine the periodic algebras (up to Morita equivalence,
derived equivalence)

PERIODICITY CONJECTURE

Assume A is an algebra for which all simple modules in mod A
are periodic. Then A is a periodic algebra.

Theorem (Green—Snashall-Solberg, 2003)

Let A be an algebra such that every simple module in mod A is
periodic. Then A is a selfinjective algebra and Q.(A) = 1A, for
a positive integer d and a K -algebra automorphism o of A.

v

Is then o of finite order?
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Selfinjective Nakayama algebras
NI'(K) = KAp/Imp, m>2,n>1

an 1 oy
n /> L] \ .2
v A \vaz KA, path algebra of A,
I '3 Imnideal generated by all
an o\ Joa compositions of m consecutive
arrows in Aj
T
il R

N (K) symmetric algebra <— njm + 1
N]'(K) a periodic algebra (Erdmann—Holm, 1999)

, m B n ,charK =2,m=2,nodd
pe”Od of Nn (K) - { 2lcm(m,n) : otherwise

m
Hence every Brauer tree algebra is a periodic algebra

Brauer tree algebras are derived equivalent to symmetric
Nakayama algebras (Rickard, 1989)
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Tame and wild algebras

Theorem (Drozd, 1979)
Every algebra A is either tame or wild, and not both.

A and algebra

Ais wild if there is a K(x, y)-bimodule M such that:
@ Mis a finite rank free left K(x, y)-module
@ the functor — ®k x,,) mod K(x, y) — mod A preserves indecomposability
and respects isomorphism classes

A a wild algebra = for any algebra A over K there is an exact functor
F : modA — mod A which preserves indecomposability
and respects isomorphism classes
A is tame if, for any dimension d, there is a finite number of K[x]-A-bimodules
M;, 1 <i < ng, such that
@ M;, 1 < i< ng, are finite rank free left K[x]-modules,
@ K[x]/(x = X) @kpq Mi, X € K, i € {1,...,ng}, exhaust all but finitely many
isomorphism classes of indecomposable modules of dimension d in mod A
1na(d) the least number of K[x]-A-bimodules satisfying the above condition for d
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Hierarchy of algebras

wild

finite type
Va1 1a(d) =0

domestic type
Im>1 Va1 p1a(d) <m

polynomial growth
Im>1 Va1 pa(d) < d7

tame type
Va1 pa(d) < oo

wild

wild
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Preprojective algebras of Dynkin type

A Dynkin graph of type A,(n > 1), Dp(n > 4), Eg, E7, Eg
Qa double quiver of A
P(A) = KQa/Ia preprojective algebra of type A

KQa the path algebra of Qa

Ia the ideal of KQa generated by the sums 3, ., aa
for all 2-cycles at the vertices v of Qa

P(A) finite dimensional selfinjective K-algebra
QBaye (P(R)) = P(A) for A # A

Schofield (1990), Erdmann—Snashall (1998),
Brenner—Butler—King (2002),

For A # Ap(n < 5) and Dy, the algebras P(A) are wild
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Qu, : 0i>1i>2 o an-—2 1
§ ~ 11—z _—~ -+ TN—c2_—"N—
(n21) ay ay a2
0

7 ~= .
2 n—2
1 / 0
e et . T3l s 4—=5
ay a 0 ES) EN
OJE7 ay a * T\Lao as ay a
1 2 3 4 5 6
21 <_32 0 53 54 '_35
QEB : a4 ap % T\Lao as as as as
1 2 3 4 5 6 7
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Algebras of quaternion type

A is of quaternion type if

@ Ais indecomposable and symmetric

@ Ais tame of infinite type

@ every indecomposable nonprojective module in mod A is periodic

with period dividing 4

@ the Cartan matrix Cp4 is nonsingular
Erdmann proved (1988) that every algebra of quaterion type is Morita
equivalent to an algebra in 12 families of algebras listed bellow.

Moreover, A is of pure quaternion type, if A is not of polynomial growth.

Theorem (Erdmann-Skowronski, 2006)

Let A be an algebra of pure quaternion type. Then A is a periodic
algebra of period 4.

The derived equivalence clasification of algebras of pure quaternion
type established by Holm (1999) is applied.

The algebras of pure quaternion type are tame.
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Q*(c, d): Q(2A)%(c):
Q*(c):
B
a B —
a .@ B C.O @ C' -~ i
charK =2
o? = (Ba)k 1B + c(ap)k a? = (Ba)< 1B + c(aB)” B8y = (vaB) a
B2 = (af)Ta 52 = (aB)fa + d(ap)k BB = (aBy)f—lap
(@B)f = (Ba)k, (aB)ka =0 (aB) = (Ba), (aB)fa =0 a2 = (Bya) —1By+c(Bya)k
k>2 (Ba)kB=0 a?B8 =0
k>2,c,deK,(cd)#(0,0) k>2,ceK
Q(2B)%3(a, ¢): t .
O D 2.
; O TG S)
¥
B =n"", - = =a?
Bn = (aBy)1ap aB = Bn, ny = vya, By = o? h _,Y%n’:n;nl?(i ’ggz_ “
my = (vaB)kva vB =P+ an" 1 + on® ot =0, =0,7a2 =0
o? = i =0, =0 azp—0
k—1 k yat~ 1 =0,a5"18=0 Lok
a(ﬁlgl);:g’?}c(fga) s>4,acK*,cekK t23,ac k", ccK

t=3 1,t>3 =1
k>1,s>8,aeK*,ceK ( =>a#1,t>3=a=1)
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Q(3A) 3 (d):

Bon = (B8
sny = (vB)F 1y
nvB = d(nd)*~'n
Y88 = d(m)°~"s
Bénd =0,nyBy =0
k,s>2d e K*

(k=s=2=d#1,elsed=1)
Q(3C)ks
o .(;
<;'y
Beo =0, 97—0 ne® =0
6—0
617—%3—9 ' ne = (nd)k=
06 = (6115, (B) " 85 =
o)k Tny =0
k>2,s>3

BvB = (Bony)k~" Bon

vBy = (818K Tany

nén = (nyB8)K1nyp

516 = (vBon) 1488

ByBS =0,mény =0
k>2

Q(3D)k,s,t.

(Coee

By =a!

ya = (5nyB)K 1oy
af = (ﬁém)k 8sn
né = E[ 1
8¢ = (vBon)~14pBs
&n = (B8 TnyB
a®?B=0,6n5=0
k>1,5t>3

= 20!

Q(3B)ks:
B 5
e’ e " e__ "o
v n
By =a!

aB = (Bsny)<~"gon
ya = (snyB)KTany
nén = (nyB8)K~1nyp
16 = (788K~ "B6
a?B =0,B85n5 =0
k>1,s>3

Q(SIC)avva'

\V/

B6 = (kA2 "k, my = (A)@7A
X = (v8)° "y, k= (B7)° '8
AB = (8)° "y, i = (8m)° s
vB6 =0,6ny =0, Aen =0
a, b, c > 1 (at most one equal 1)
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Theorem (Dugas, 2010)

Let A be a nonsimple, indecomposable, selfinjective algebra of finite type.
Then A is a periodic algebra.

Special cases: @ Erdmann-Holm-Snashall (1999, 2002) Dynkin type A,
@ Brenner-Butler-King (2002): the trivial extension algebras
T(B) = B x D(B) of titled algebras B of Dynkin type
@ Erdmann-Skowronski (2008): almost all standard
selfinjective algebras of finite type

Estandard algebras (admit simply
Basic, nonsimple, inde- connected Galois coverings)

composable, selfinjective Riedtmann, Waschbiisch (1980-1983)

algebras of finite type [ nonstandard algebras ]
(occur only in characteristic 2)

Periodicity of standard selfinjective algebras of finite type follows from the
periodicity of preprojective algebras of Dynkin type (Brenner-Butler-King,
Dugas)

Periodicity of nonstandard selfinjective algebras of finite type follows from the
periodicity of a family of Brauer tree algebras (Dugas)
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A basic, indecomposable algebra

1/\:61 ++ens
e1,...,en pairwise orthogonal primitive idempotents of A

G a finite subgroup of Autk(A) acting freely on the chosen set
e1, ..., enpof primitive idempotents

Then we have a finite Galois covering A — A/G where A/G is
the orbit algebra of A with respect to G

In fact, we have an isomorphism of K-algebras
N/G=NG ={XecA|g(\) = \forall g € G} invariant algebra
(Auslander-Reiten-Smalo, 1989)

Theorem (Dugas, 2010)
Let A and N\ be basic indecomposable algebras related by a
finite Galois covering A\ — A= N/G. Then

A is a periodic algebra < A is a periodic algebra
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Selfinjective algebras of polynomial growth

Theorem (Skowronski, 1989, 2006)

Let A be a basic, indecomposable, selfinjective algebra over an
algebraically closed field K. Then

@ A is representation-infinite domestic <= A is socle
equivalent to an orbit algebra B/ G, where B is a tilted
algebra of Euclidean type and G is an admissible infinite
cyclic group of automorphisms of B.

@ A is nondomestic of polynomial growth <= A is socle
equivalent to an orbit algebra B/ G, where B is a tubular
algebra and G is an admissible infinite cyclic group of
automorphisms of B.

Two selfinjective algebras A and A are socle equivalent if the
quotient algebras A/ soc(A) and A/ soc(A) are isomorphic
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Riedtmann’s classification of selfinjective algebras of finite type
can be presented as follows

Let A be a basic, nonsimple, indecomposable, selfinjective
algebra over an algebraically closed field. Then A is of finite
type < A is socle equivalent to an orbit algebra B/ G, where
B is a tilted algebra of Dynkin type and G is an admissible
infinite cyclic group of automorphisms of B.
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THEOREM (Biatkowski-Erdmann-Skowronski, 2013)

Let A be a basic, indecomposable, representation-infinite selfinjective
algebra of polynomial growth. The following statements are equivalent.

@ All simple modules in mod A are periodic.
©Q A s a periodic algebra.

© A is socle equivalent to an orbit algebra E/ G, where B is a tubular
algebra and G is an admissible infinite cyclic group of
automorphisms of the repetitive category B of B.

Q = © Known R

@ = O A socle equivalent to B/G, B tilted algebra of Euclidean type,
then T4 admits an acyclic component C (with the stable part
CS=7ZA for a Euclidean quiver A) containing a simple module S.
But then S is not periodic, because for simple modules the pe-
riodicity is equivalent to T4-periodicity.

Q = O New (difficult) part.
We will present the main ingredients of our proof of this
implication.
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Tubular algebras

A tubular algebra B is a tubular (branch) extension of a tame
concealed algebra of one of the tubular types (2,2, 2, 2),
(3,3,3), (2,4,4), or (2,3,6) (Ringel, 1984)

@ gl.dmB=2

@ rkKy(B) =6,8,9,0r10

@ Bis triangular nondomestic of polynomial growth

@ The Auslander-Reiten quiver I'g of B is of the form

K

AT

fPB 765 V 7:78 7-0% QB
qeQt
preprojective Py (K)-family Py (K)-family Py (K)-family preinjective
component of of ray tubes of stable tubes of coray tubes component of

Euclidean type Euclidean type
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Canonical tubular algebras

A2,2,2,2,)), A € K\ {0, 1}, given by the quiver

and the relations apaq + 261 + 1271 = 0, agaq + A\B251 + 0201 = 0.
Ap.q.r), (p,q,r) € {(3,3,3),(2,4,4),(2,3,6)}, given by the quiver

O <—— 0 <— < 0 <—20
B Bz Ba—1 Bq
[} [ ] [ ] [} [} [ ]
’71\ %
Y2 Yr—1

and the relation ap ... apaq + Bg ... B2B1 +yr... 7271 = 0.
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Theorem (Ringel, 1984)
Let B be a basic, indecomposable algebra. Then

B = Enda(T) for a canonical tubular

B is a tubular algebra \ and a (multiplicity-free)
algebra |~ | tilting module T in the additive

category of Py U T U (Ugeo+ 74")

Hence, any two tubular algebras B and C of the same tubular
type (p,q,r) €{(3,3,3),(2,4,4),(2,3,6)} are derived
equivalent.

Similarly, every two tubular algebras B and C of tubular type
(2,2,2,2) given by the same canonical tubular algebra
A(2,2,2,2,)\) are derived equivalent.
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B tubular algebra, G admissible infinite cyclic group of automorphisms of B,A= E/G
Then 'y = '/ G and has the following clock structure

quQ;*‘ 7;7 ﬁ ﬁ ﬂ quQﬁ) 7:7
X
oAl

L]
o Ve To

where * denote projective modules, r >3, Q"' =Qn (i —1,i)foranyie {1,...,r},
and
@ foreachic {0,1,...,r — 1}, T/ is a Py(K)-family of quasi-tubes (the stable parts
are stable tubes);
@ foreachqe Q' ie {1,...,r}, 75 is a P1(K)-family of stable tubes;
Q@ all Py (K)-families 72, g € Q N [0, r], have the same tubular type (2,2,2,2),
(3,3,3), (2,4,4), 0r (2,3,6).




Periodicity of selfinjective algebras of polynomial growth

For an algebra B and a positive integer r, we have the r-fold trivial

extension algebra of B

by 0O O
o bp O
0 f3 b3
T(B)" = E/(yé) — . .
0 fr—1 br—1 0
L 0 f b
b1,...,br_1 S B, f1,...,fr_1 S D(B) )

T(B)") = T(B) = B x D(B) the trivial extension algebra of B by the
injective cogenerator D(B) = Homg(B, K)

T(B)(") is a symmetric algebra < r =1
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Standard selfinjective algebra of tubular type: a selfinjective
algebra of the form A = B/H, where B is a tubular algebra and H is
an admissible infinite cyclic group of automorphisms of B

Then A admits a simply connected Galois covering B— B/H =A

Theorem
Let A be a basic, indecomposable algebra. The following statements
are equivalent.
@ A is a standard selfinjective algebra of tubular type.
@ A is isomorphic to an orbit algebra T(B)(") /G, where B is a
tubular algebra, r a positive integer, and G an admissible finite
automorphism group of T(B)(").

Biatkowski-Skowronski (2002): tubular types (2,2,2,2), (3,3, 3),
(2,4,4)

Lenzing-Skowronski (2000): tubular type (2,3, 6)
Note that T(B)()/G = (T(B)")€ invariant algebra
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Theorem (Rickard, 1989)

Let B and C be derived equivalent algebras. Then the trivial
extension algebras T(B) and T(C) are derived equivalent.

We may consider the following scheme of finite Galois coverings

T(B)"

/\/\

T(B)"/G C)®)/H

where B and C are derived equivalent tubular algebras, r, s
positive integers, G, H admissible finite automorphism groups
of T(B)(" and T(C)(¥), respectively.

Then

T(B)")/G is a periodic algebra < T(C)(®)/H is a periodic algebra
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Nonstandard nondomestic selfinjective algebras of polynomial growth
(socle deformations of standard selfinjective algebras of tubular type)

Occur only in characteristic 2 and 3

A nonstandard nondomestic selfinjective algebra of polynomial
growth

Then there exists a unique standard selfinjective algebra A’ of
tubular type such that

0 dImK/\ = dimK N

@ A an A are socle equivalent (but A 2 A)

© N is a geometric degeneration of an A (belongs to the
closure GLk(d)A in the affine variety of K-algebras of
dimension d = dimg A = dimk A')

N the standard form of A

The pairs A an A are described by the tables
(Biatkowski-Skowronski, 2004)
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characteristic 3 2
tubular type (3.3.3) (2,2,2,2) (3,3,3) (2,3,6)
Mo
A2 AL AEKN\ {01} | Ao P
M il s ' . ‘4 . i .
a e e o 5H7 o
QC-%. . f “C“T'Qﬁ EEANN '15.4
8 v =0,
nonstandard , gaé - a% =0, a2 = 0, e \ . uB=0,an=0,
algebras a® =p, i 2o =0 Ba = b7, Eo =nu,
Bary = BaPy, 87 =0, 2 _ '3 Pa+oy+e£=0, 00 =~ + 06l
Ba2 =0 578 =0, & ot €070 ° 50606 =0,
oy =0 By = Bary, A= =70, 70 =57 | 480 =0, Baf = 5050 = 0.
7 _ o =aoc — 00000 =1,
=18 aB = apyB 0805 = 0,
odody =0
X % %o Yo
/ L | M) AEK (0.1} “H AN
o , aCo—s ot , L .4 . (g.
a . o ) t a e o Jé Y a
standar = o = Q A//’% *N.‘/j
algebras 1= e B £ e
a? =, Bci o 0f =07, A% =70, | o4 pytec=0, | pB=0,0n=0,
Bay =0 53 = ya = fv,08 =ac af=0,6c=0 Ba = v, Eo = nu,
o’ =70 o=0 o6 =~¢
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characteristic 2
tubular type @44
A As ne
L] a F
' » a— A7 . Ng .
o ki Q N . . 3
a K 14 &l o kL
.@. . " . "O . ' /5 \ / 5\
nonstandard 8 f 7 adyd =0, o C . (;T . o C . <;5 .
algebras 0B = ary, a? =98, a3 = o, ~6y8 =0, _
(55)35:0, B6=0,0v=0, afa =0, B = Bad, ac =0, 68 =odaB, ca =0,
yBay =0, ad =0,0a =0, Bap =0, ad =ovy,78a =0, | da=n~o, afy=0,
ayBa =0, |1B87=0,8v8=0, af = adyp, a?=63,786=0, | o® =74, 358y =0,
vBa = vB8Ba By = Bay Ba = 6v6y BB =0,686=0 | BSB=0,636=0
N, As
.4 é NS /\/7 . /\g .
a ¥ a 5 o 5 o ¥ . v
standard ,@)‘, <" e e QC./E\. ”C‘/é\'
algebras B8 o? =78, a8 = da, abys =0, B 5
0BS=0v, | 850 gy=0, |yyB=0,a8=0,| B89=00a0=0, | §8=00a=0,
(88)%6 =0, ad=0,0a =0, Ba = 6v8y ad =07, 7a=0, | da=~0, afy=0,
yBa =0 By =0 a? =68 a2:6(5
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Theorem (Biatkowski-Holm-Skowronski, 2003)

@ A and \s are derived equivalent (char K = 3)

@ A} and N, are derived equivalent (char K arbitrary)

Q /A4, Ns, Ng, N7, Ng are derived equivalent (char K = 2)

Q N, N5, Ng, N, Ny are derived equivalent (char K arbitrary)

@ Ajand A, i € {1,...,8} are symmetric algebras

@ Ag (char K = 2) is weakly symmetric but not symmetric
@ Ag (char K = 2) is symmetric

@ Ag (char K # 2) is weakly symmetric but not symmetric
@ Ao and A}, are not weakly symmetric
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THEOREM

A1 (char K = 3) periodic algebra of period 6

N, (char K arbitrary) periodic algebra of period 6
As(\) (char K = 2) periodic algebra of period 4
N5(X\) (char K arbitrary) periodic algebra of period 4
Ne (char K = 2) periodic algebra of period 8

Ny (char K arbitrary) periodic algebra of period 8
Ag (char K = 2) periodic algebra of period 6

3 charK =2
6 charK #2
Ao (char K = 2) periodic algebra of period 6

3 charK =2
6 charK #2

Ng periodic algebra of period = {

N}, periodic algebra of period = {

Hard work
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A basic, indecomposable, finite dimensional algebra, K algebraically closed
1a=e€e1+---+en e1,..., e, pairwise orthogonal primitive idempotents of A

e®e;, i,je{1,...,n}, pairwise orthogonal primitive idempotents of A°=A®®xA

140 = Z1§I}/S” 6 R e
P(i,j) = (ei ® g)A® = Ae; ® gA, i,j € {1,...,n}, complete set of pairwise
nonisomorphic indecomposable prOJectlve modules in mod A® = bimod A

Si=ejA/eiradA, i € {1,...,n}, complete set of pairwise nonisomorphic
simple modules in mod A

The following theorem describes the terms of a minimal projective bimodule
resolution of A.

Theorem (Happel, 1989)
A admits a minimal projective resolution in mod A® of the form

'—>]P>ri>]?r71 — . — Py i}Poi)A—)O,
where . r
@ P(i,j)dlmK EXIA(S,',S/-).

0<ij<n
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Theorem (Biatkowski—Erdmann—Skowronski, 2013)

Let A and \ be representation-infinite periodic algebras of
polynomial growth such that A\ is a nonstandard algebra and A
a standard algebra.

Then A and A\ are not derived equivalent.

Symmetric algebras case Holm-Skowronski (2011), using
Kilshammer ideals

A similar result holds for representation-finite selfinjective
algebras Asashiba (1999)

Holm-Skowronski (2006): different proof using Kiilshammer
ideals



