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K – algebraically closed field

algebra – finite dimensional K -algebra

A an algebra

mod A category of finitely dimensional right A-modules

M module in mod A, exact sequence in mod A

0 −→ ΩA(M) −−−−−−−→ PA(M) −→ M −→ 0
syzygy module of M projective cover

M is periodic if Ωn
A(M) ∼= M for some n ≥ 1

A selfinjective and M periodic, then the Ext-algebra of M

Ext∗A(M,M) =
⊕
i≥0

ExtiA(M,M)

is a graded noetherian algebra (Schultz, 1986)
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Ae = Aop ⊗K A enveloping algebra of A

mod Ae = bimod A category of finite dimensional
A-A-bimodules

A projective in mod Ae ⇐⇒ A is a semisimple algebra

A is a periodic algebra if A is a periodic module in mod Ae

(periodic A-A-bimodule)

A periodic algebra⇒ A selfinjective algebra

A periodic algebra⇒ mod A is a periodic category(
every module in mod A without pro-
jective direct summands is periodic

)
In fact, we have

Ωn
Ae (A) ∼= A in mod Ae ⇒ Ωn

A(M) ∼= M for any module M in mod A
without projective direct summands



Periodicity of selfinjective algebras of polynomial growth 3

HH∗(A) = Ext∗Ae (A,A) the Hochschild cohomology algebra of A

A selfinjective⇒ Ae selfinjective⇒ ExtiAe (A,A) ∼= HomAe (Ωi
Ae (A),A)

for i ≥ 0

A periodic algebra⇒ HH∗(A) a graded noetherian algebra

Db(mod A) derived category of bounded complexes over mod A

A,Λ algebras

A and Λ are derived equivalent if Db(mod A) and Db(mod Λ) are
equivalent as triangulated categories

A and Λ are derived equivalent
Happel, Rickard
=========⇒ HH∗(A) ∼= HH∗(Λ)

as graded K -algebras

Theorem (Rickard)
Let A and Λ be derived equivalent algebras.

A is a periodic algebra ⇐⇒ Λ is a periodic algebra
Moreover, if A and Λ are periodic, then their periods coincide.
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PROBLEM
Determine the periodic algebras (up to Morita equivalence,
derived equivalence)

PERIODICITY CONJECTURE
Assume A is an algebra for which all simple modules in mod A
are periodic. Then A is a periodic algebra.

Theorem (Green–Snashall–Solberg, 2003)
Let A be an algebra such that every simple module in mod A is
periodic. Then A is a selfinjective algebra and Ωd

Ae (A) ∼= 1Aσ for
a positive integer d and a K -algebra automorphism σ of A.

Is then σ of finite order?
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Selfinjective Nakayama algebras
Nm

n (K ) = K ∆n/Im,n, m ≥ 2, n ≥ 1
1

2

3

i

n − 1

n
•

•

•

···
•

···

•

•

α1
!!

α2

��

α3��

αi−1
pp

αi

dd

αn−2

PP

αn−1
AA

αn //

K ∆n path algebra of ∆n

Im,n ideal generated by all
compositions of m consecutive
arrows in ∆n

Nm
n (K ) symmetric algebra ⇐⇒ n|m + 1

Nm
n (K ) a periodic algebra (Erdmann–Holm, 1999)

period of Nm
n (K ) =

{
n , char K = 2,m = 2,n odd

2 lcm(m,n)
m , otherwise

Hence every Brauer tree algebra is a periodic algebra
Brauer tree algebras are derived equivalent to symmetric
Nakayama algebras (Rickard, 1989)
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Tame and wild algebras

Theorem (Drozd, 1979)

Every algebra A is either tame or wild, and not both.

A and algebra
A is wild if there is a K 〈x , y〉-bimodule M such that:

M is a finite rank free left K 〈x , y〉-module
the functor −⊗K 〈x,y〉 mod K 〈x , y〉 → mod A preserves indecomposability
and respects isomorphism classes

A a wild algebra⇒ for any algebra Λ over K there is an exact functor
F : mod Λ → mod A which preserves indecomposability
and respects isomorphism classes

A is tame if, for any dimension d , there is a finite number of K [x ]-A-bimodules
Mi , 1 ≤ i ≤ nd , such that

Mi , 1 ≤ i ≤ nd , are finite rank free left K [x ]-modules,
K [x ]/(x − λ)⊗K [x ] Mi , λ ∈ K , i ∈ {1, . . . ,nd}, exhaust all but finitely many
isomorphism classes of indecomposable modules of dimension d in mod A

µA(d) the least number of K [x ]-A-bimodules satisfying the above condition for d
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Hierarchy of algebras

wild

finite type
∀d≥1 µA(d) = 0

domestic type
∃m≥1 ∀d≥1 µA(d) ≤ m

polynomial growth
∃m≥1 ∀d≥1 µA(d) ≤ dm

tame type
∀d≥1 µA(d) <∞

wild

wild
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Preprojective algebras of Dynkin type

∆ Dynkin graph of type An(n ≥ 1), Dn(n ≥ 4), E6, E7, E8

Q∆ double quiver of ∆

P(∆) = KQ∆/I∆ preprojective algebra of type ∆

KQ∆ the path algebra of Q∆

I∆ the ideal of KQ∆ generated by the sums
∑

a,ia=v aā
for all 2-cycles at the vertices v of Q∆

P(∆) finite dimensional selfinjective K -algebra

Ω6
P(∆)e

(
P(∆)

) ∼= P(∆) for ∆ 6= A1

Schofield (1990), Erdmann–Snashall (1998),
Brenner–Butler–King (2002),

For ∆ 6= An(n ≤ 5) and D4, the algebras P(∆) are wild
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QAn :
(n ≥ 1)

0
a0 // 1
ā0

oo
a1 // 2
ā1

oo oo ... // n − 2
an−2 // n − 1
ān−2

oo

QDn :
(n ≥ 4)

0
a0

##
2

ā0

cc

ā1

{{

a2 // 3
ā2

oo oo ... // n − 2
an−2 // n − 1
ān−2

oo

1
a1

;;

QE6 :

0
a0
��

1
a1 // 2
ā1

oo
a2 // 3
ā2

oo
a3 //

ā0

OO

4
ā3

oo
a4 // 5
ā4

oo

QE7 :

0
a0
��

1
a1 // 2
ā1

oo
a2 // 3
ā2

oo
a3 //

ā0

OO

4
ā3

oo
a4 // 5
ā4

oo
a5 // 6
ā5

oo

QE8 :

0
a0
��

1
a1 // 2
ā1

oo
a2 // 3
ā2

oo
a3 //

ā0

OO

4
ā3

oo
a4 // 5
ā4

oo
a5 // 6
ā5

oo
a6 // 7
ā6

oo
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Algebras of quaternion type

A is of quaternion type if
A is indecomposable and symmetric
A is tame of infinite type
every indecomposable nonprojective module in mod A is periodic
with period dividing 4
the Cartan matrix CA is nonsingular

Erdmann proved (1988) that every algebra of quaterion type is Morita
equivalent to an algebra in 12 families of algebras listed bellow.
Moreover, A is of pure quaternion type, if A is not of polynomial growth.

Theorem (Erdmann-Skowroński, 2006)

Let A be an algebra of pure quaternion type. Then A is a periodic
algebra of period 4.

The derived equivalence clasification of algebras of pure quaternion
type established by Holm (1999) is applied.

The algebras of pure quaternion type are tame.
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Qk (c):

•α
��

β
��

α2 = (βα)k−1β + c(αβ)k

β2 = (αβ)k−1α
(αβ)k = (βα)k , (αβ)kα = 0

k ≥ 2

Qk (c,d):

•α
��

β
��

char K = 2
α2 = (βα)k−1β + c(αβ)k

β2 = (αβ)k−1α+ d(αβ)k

(αβ)k = (βα)k , (αβ)kα = 0
(βα)kβ = 0

k ≥ 2, c, d ∈ K , (c, d) 6= (0, 0)

Q(2A)k (c):

•α
�� β // •

γ
oo

γβγ = (γαβ)k−1γα
βγβ = (αβγ)k−1αβ

α2 = (βγα)k−1βγ+c(βγα)k

α2β = 0
k ≥ 2, c ∈ K

Q(2B)k ,s
1 (a, c):

•α
�� β // •

γ
oo η

��

γβ = ηs−1,
βη = (αβγ)k−1αβ
ηγ = (γαβ)k−1γα

α2 =
a(βγα)k−1βγ + c(βγα)k

α2β = 0, γα2 = 0
k ≥ 1, s ≥ 3, a ∈ K∗, c ∈ K

Q(2B)s
2(a, c):

•α
�� β // •

γ
oo η

��

αβ = βη, ηγ = γα, βγ = α2

γβ = η2 + aηs−1 + cηs

αs+1 = 0, ηs+1 = 0
γαs−1 = 0, αs−1β = 0
s ≥ 4, a ∈ K∗, c ∈ K

Q(2B)t
3(a, c):

•α
�� β // •

γ
oo η

��

αβ = βη, ηγ = γα, βγ = α2

γβ = aηt−1 + cηt

α4 = 0, ηt+1 = 0, γα2 = 0
α2β = 0

t ≥ 3, a ∈ K∗, c ∈ K
(t = 3⇒ a 6= 1, t > 3⇒ a = 1)
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Q(3A)k ,s
1 (d):

•
β // •
γ
oo

δ // •
η
oo

βδη = (βγ)k−1β

δηγ = (γβ)k−1γ

ηγβ = d(ηδ)s−1η

γβδ = d(δη)s−1δ
βδηδ = 0, ηγβγ = 0

k, s ≥ 2, d ∈ K∗

(k = s = 2⇒ d 6= 1, else d = 1)

Q(3A)k
2:

•
β // •
γ
oo

δ // •
η
oo

βγβ = (βδηγ)k−1βδη

γβγ = (δηγβ)k−1δηγ

ηδη = (ηγβδ)k−1ηγβ

δηδ = (γβδη)k−1γβδ
βγβδ = 0, ηδηγ = 0

k ≥ 2

Q(3B)k ,s:

•α
�� β // •

γ
oo

δ // •
η
oo

βγ = αs−1

αβ = (βδηγ)k−1βδη

γα = (δηγβ)k−1δηγ

ηδη = (ηγβδ)k−1ηγβ

δηδ = (γβδη)k−1γβδ

α2β = 0, βδηδ = 0
k ≥ 1, s ≥ 3

Q(3C)k ,s:

•
β // •
γ
oo

%

xx δ // •
η
oo

β% = 0, %γ = 0, η%2 = 0
%2δ = 0

δη − γβ = %s−1, η% = (ηδ)k−1η

%δ = (δη)k−1δ, (βγ)k−1βδ = 0
(ηδ)k−1ηγ = 0

k ≥ 2, s ≥ 3

Q(3D)k ,s,t :

•α
�� β // •

γ
oo

δ // •
η
oo ξ

��

βγ = αs−1

γα = (δηγβ)k−1δηγ

αβ = (βδηγ)k−1βδη

ηδ = ξt−1

δξ = (γβδη)k−1γβδ

ξη = (ηγβδ)k−1ηγβ

α2β = 0, δηδ = 0
k ≥ 1, s, t ≥ 3

Q(3K)a,b,c :

•
β //

κ

��

•
γ

oo

δ

��•
λ

[[
η

CC

βδ = (κλ)a−1κ, ηγ = (λκ)a−1λ

δλ = (γβ)b−1γ, κη = (βγ)b−1β

λβ = (ηδ)c−1η, γκ = (δη)c−1δ
γβδ = 0, δηγ = 0, λκη = 0

a, b, c ≥ 1 (at most one equal 1)
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Theorem (Dugas, 2010)

Let A be a nonsimple, indecomposable, selfinjective algebra of finite type.
Then A is a periodic algebra.
Special cases: Erdmann-Holm-Snashall (1999, 2002) Dynkin type An

Brenner-Butler-King (2002): the trivial extension algebras
T(B) = B n D(B) of titled algebras B of Dynkin type
Erdmann-Skowroński (2008): almost all standard
selfinjective algebras of finite type

standard algebras (admit simply
connected Galois coverings)Basic, nonsimple, inde-

composable, selfinjective
algebras of finite type

11

--
Riedtmann, Waschbüsch (1980–1983)

nonstandard algebras
(occur only in characteristic 2)

Periodicity of standard selfinjective algebras of finite type follows from the
periodicity of preprojective algebras of Dynkin type (Brenner-Butler-King,
Dugas)

Periodicity of nonstandard selfinjective algebras of finite type follows from the
periodicity of a family of Brauer tree algebras (Dugas)
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Λ basic, indecomposable algebra

1Λ = e1 + · · ·+ en,
e1, . . . ,en pairwise orthogonal primitive idempotents of Λ

G a finite subgroup of AutK (Λ) acting freely on the chosen set
e1, . . . ,en of primitive idempotents

Then we have a finite Galois covering Λ→ Λ/G where Λ/G is
the orbit algebra of Λ with respect to G

In fact, we have an isomorphism of K -algebras
Λ/G ∼= ΛG = {λ ∈ Λ |g(λ) = λ for all g ∈ G} invariant algebra

(Auslander-Reiten-Smalø, 1989)

Theorem (Dugas, 2010)
Let A and Λ be basic indecomposable algebras related by a
finite Galois covering Λ→ A = Λ/G. Then

Λ is a periodic algebra ⇐⇒ A is a periodic algebra
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Selfinjective algebras of polynomial growth

Theorem (Skowroński, 1989, 2006)
Let A be a basic, indecomposable, selfinjective algebra over an
algebraically closed field K . Then

1 A is representation-infinite domestic ⇐⇒ A is socle
equivalent to an orbit algebra B̂/G, where B is a tilted
algebra of Euclidean type and G is an admissible infinite
cyclic group of automorphisms of B̂.

2 A is nondomestic of polynomial growth ⇐⇒ A is socle
equivalent to an orbit algebra B̂/G, where B is a tubular
algebra and G is an admissible infinite cyclic group of
automorphisms of B̂.

Two selfinjective algebras A and Λ are socle equivalent if the
quotient algebras A/ soc(A) and Λ/ soc(Λ) are isomorphic
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Riedtmann’s classification of selfinjective algebras of finite type
can be presented as follows

Theorem
Let A be a basic, nonsimple, indecomposable, selfinjective
algebra over an algebraically closed field. Then A is of finite
type ⇐⇒ A is socle equivalent to an orbit algebra B̂/G, where
B is a tilted algebra of Dynkin type and G is an admissible
infinite cyclic group of automorphisms of B̂.
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THEOREM (Białkowski-Erdmann-Skowroński, 2013)
Let A be a basic, indecomposable, representation-infinite selfinjective
algebra of polynomial growth. The following statements are equivalent.

1 All simple modules in mod A are periodic.
2 A is a periodic algebra.
3 A is socle equivalent to an orbit algebra B̂/G, where B is a tubular

algebra and G is an admissible infinite cyclic group of
automorphisms of the repetitive category B̂ of B.

2 ⇒ 1 Known
1 ⇒ 3 A socle equivalent to B̂/G, B tilted algebra of Euclidean type,

then ΓA admits an acyclic component C (with the stable part
Cs =Z∆ for a Euclidean quiver ∆) containing a simple module S.
But then S is not periodic, because for simple modules the pe-
riodicity is equivalent to τA-periodicity.

3 ⇒ 2 New (difficult) part.
We will present the main ingredients of our proof of this
implication.
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Tubular algebras

A tubular algebra B is a tubular (branch) extension of a tame
concealed algebra of one of the tubular types (2,2,2,2),
(3,3,3), (2,4,4), or (2,3,6) (Ringel, 1984)

gl.dim B = 2
rk K0(B) = 6, 8, 9, or 10
B is triangular nondomestic of polynomial growth
The Auslander-Reiten quiver ΓB of B is of the form

PB T B
0

∨
q∈Q+

T B
q T B

∞ QB

preprojective
component of
Euclidean type

P1(K )-family
of ray tubes

P1(K )-family
of stable tubes

P1(K )-family
of coray tubes

preinjective
component of
Euclidean type
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Canonical tubular algebras

Λ(2,2,2,2, λ), λ ∈ K \ {0,1}, given by the quiver
•

α1

||
•β1

tt• •

α2

bb

β2jj

γ2
tt

δ2||

•γ1

jj

•
δ1

bb

and the relations α2α1 + β2β1 + γ2γ1 = 0, α2α1 + λβ2β1 + δ2δ1 = 0.

Λ(p,q, r), (p,q, r) ∈ {(3,3,3), (2,4,4), (2,3,6)}, given by the quiver

•α1

yy

•α2oo · · ·oo •oo •
αp−1oo

• •β1oo •β2oo · · ·oo •oo •
βq−1oo •

αpee
βqoo

γryy•γ1

ee

•γ2
oo · · ·oo •oo •γr−1

oo

and the relation αp . . . α2α1 + βq . . . β2β1 + γr . . . γ2γ1 = 0.



Periodicity of selfinjective algebras of polynomial growth 20

Theorem (Ringel, 1984)
Let B be a basic, indecomposable algebra. Then

B is a tubular
algebra ⇐⇒

B = EndΛ(T ) for a canonical tubular
algebra Λ and a (multiplicity-free)

tilting module T in the additive
category of PΛ

0 ∪ T Λ
0 ∪

(⋃
q∈Q+ T Λ

q
)

Hence, any two tubular algebras B and C of the same tubular
type (p,q, r) ∈ {(3,3,3), (2,4,4), (2,3,6)} are derived
equivalent.

Similarly, every two tubular algebras B and C of tubular type
(2,2,2,2) given by the same canonical tubular algebra
Λ(2,2,2,2, λ) are derived equivalent.
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B tubular algebra, G admissible infinite cyclic group of automorphisms of B̂, A = B̂/G
Then ΓA = ΓB̂/G and has the following clock structure∨

q∈Qr−1
r
Tq ∗ ∗

∨
q∈Q0

1
Tq∗ ∗∗

··· ··· ··· ··· ··· ···T0 = Tr

∗ ∗∗ ∗∗ ∗Tr−1 T1∗ ∗ ∗

··· ··· ··· ··· ··· ···

• • •
•••

∨
q∈Qr−2

r−1
Tq

∨
q∈Q1

2
Tq

where ∗ denote projective modules, r ≥ 3, Qi−1
i = Q ∩ (i − 1, i) for any i ∈ {1, . . . , r},

and
1 for each i ∈ {0, 1, . . . , r − 1}, T A

i is a P1(K )-family of quasi-tubes (the stable parts
are stable tubes);

2 for each q ∈ Qi−1
i , i ∈ {1, . . . , r}, T A

q is a P1(K )-family of stable tubes;
3 all P1(K )-families T A

q , q ∈ Q ∩ [0, r ], have the same tubular type (2, 2, 2, 2),
(3, 3, 3), (2, 4, 4), or (2, 3, 6).
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For an algebra B and a positive integer r , we have the r -fold trivial
extension algebra of B

T(B)(r) = B̂/(νr
B̂

) =





b1 0 0
f2 b2 0
0 f3 b3

. . . . . .
0 fr−1 br−1 0

0 f1 b1


b1, . . . ,br−1 ∈ B, f1, . . . , fr−1 ∈ D(B)


T(B)(1) ∼= T(B) = B n D(B) the trivial extension algebra of B by the

injective cogenerator D(B) = HomB(B,K )

T(B)(r) is a symmetric algebra ⇐⇒ r = 1
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Standard selfinjective algebra of tubular type: a selfinjective
algebra of the form A = B̂/H, where B is a tubular algebra and H is
an admissible infinite cyclic group of automorphisms of B̂

Then A admits a simply connected Galois covering B̂ → B̂/H = A

Theorem
Let A be a basic, indecomposable algebra. The following statements
are equivalent.

1 A is a standard selfinjective algebra of tubular type.
2 A is isomorphic to an orbit algebra T(B)(r)/G, where B is a

tubular algebra, r a positive integer, and G an admissible finite
automorphism group of T(B)(r).

Białkowski-Skowroński (2002): tubular types (2,2,2,2), (3,3,3),
(2,4,4)

Lenzing-Skowroński (2000): tubular type (2,3,6)

Note that T(B)(r)/G ∼=
(

T(B)(r)
)G invariant algebra
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Theorem (Rickard, 1989)
Let B and C be derived equivalent algebras. Then the trivial
extension algebras T(B) and T(C) are derived equivalent.

We may consider the following scheme of finite Galois coverings

T(B)(r)

{{ $$

T(C)(s)

zz ##
T(B)(r)/G T(B)∼

der
T(C) T(C)(s)/H

where B and C are derived equivalent tubular algebras, r , s
positive integers, G, H admissible finite automorphism groups
of T(B)(r) and T(C)(s), respectively.
Then

T(B)(r)/G is a periodic algebra ⇐⇒ T(C)(s)/H is a periodic algebra
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Nonstandard nondomestic selfinjective algebras of polynomial growth
(socle deformations of standard selfinjective algebras of tubular type)

Occur only in characteristic 2 and 3

Λ nonstandard nondomestic selfinjective algebra of polynomial
growth

Then there exists a unique standard selfinjective algebra Λ′ of
tubular type such that

1 dimK Λ = dimK Λ′

2 Λ an Λ′ are socle equivalent (but Λ � Λ′)
3 Λ′ is a geometric degeneration of an Λ (belongs to the

closure GLK (d)Λ in the affine variety of K -algebras of
dimension d = dimK Λ = dimK Λ′)

Λ′ the standard form of Λ

The pairs Λ an Λ′ are described by the tables
(Białkowski-Skowroński, 2004)
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characteristic 3 2
tubular type (3,3,3) (2,2,2,2) (3,3,3) (2,3,6)

nonstandard
algebras

Λ1

•α
%% γ // •

β
oo

α2 = γβ,
βαγ = βα2γ,
βα2 = 0,
α2γ = 0

Λ2

•α
%% γ // •

β
oo

α2γ = 0,
βα2 = 0,
γβγ = 0,
βγβ = 0,
βγ = βαγ,
α3 = γβ

Λ3(λ), λ ∈ K \ {0,1}

•α
%% σ // •

γ
oo βee

α4 = 0, γα2 = 0,
α2σ = 0,

α2 = σγ + α3,
λβ2 = γσ, γα = βγ,

σβ = ασ

Λ9 •
γ

��
•

δ

OO

ε
&&

βxx•
α 88

•ξ

ff

βα + %γ + εξ = 0,
ξε = 0, γ% = 0,

αβα = 0, βαβ = 0,
αβ = α%γβ

Λ10

• µ

&&•
η 88

ξ
// •

γoo
σ

// •
δoo

βxx•α

ff

µβ = 0, αη = 0,
βα = δγ, ξσ = ηµ,
σδ = γξ + σδσδ,
δσδσδ = 0,
σδσδσ = 0,
ξσδσδ = 0,
σδσδγ = 0

standard
algebras

Λ′1

•α
%% γ // •

β
oo

α2 = γβ,
βαγ = 0

Λ′2

•α
%% γ // •

β
oo

α2γ = 0,
βα2 = 0,
βγ = 0,
α3 = γβ

Λ′3(λ), λ ∈ K \ {0,1}

•α
%% σ // •

γ
oo βee

α2 = σγ, λβ2 = γσ,
γα = βγ, σβ = ασ

Λ′9 •
γ

��
•

δ

OO

ε
&&

βxx•
α 88

•ξ

ff

βα + %γ + εξ = 0,
αβ = 0, ξε = 0,

γ% = 0

Λ′10
• µ

&&•
η 88

ξ
// •

γoo
σ

// •
δoo

βxx•α

ff

µβ = 0, αη = 0,
βα = δγ, ξσ = ηµ,

σδ = γξ
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characteristic 2
tubular type (2,4,4)

nonstandard
algebras

Λ4
•

γ

��
•

α
DD

δ // •
β

oo

δβδ = αγ,
(βδ)3β = 0,
γβαγ = 0,
αγβα = 0,

γβα = γβδβα

Λ5

•
α // •

α

��

β
oo

δ // •
γ
oo

α2 = γβ, α3 = δσ,
βδ = 0, σγ = 0,
αδ = 0, σα = 0,
γβγ = 0, βγβ = 0,

βγ = βαγ

Λ6

•
α // •
β
oo

δ // •
γ
oo

αδγδ = 0,
γδγβ = 0,
αβα = 0,
βαβ = 0,
αβ = αδγβ,
βα = δγδγ

Λ7 •
γ

��
•α
%%
σ
DD

δ // •
β

oo

βδ = βαδ, ασ = 0,
αδ = σγ, γβα = 0,
α2 = δβ, γβδ = 0,
βδβ = 0, δβδ = 0

Λ8 • ZZ
γ

•α
%% ��
σ

oo δ
•//

β

δβ = δαβ, σα = 0,
δα = γσ, αβγ = 0,
α2 = βδ, δβγ = 0,
βδβ = 0, δβδ = 0

standard
algebras

Λ′4
•

γ

��
•

α
DD

δ // •
β

oo

δβδ = αγ,
(βδ)3β = 0,
γβα = 0

Λ′5

•
α // •

α

��

β
oo

δ // •
γ
oo

α2 = γβ, α3 = δσ,
βδ = 0, σγ = 0,
αδ = 0, σα = 0,

βγ = 0

Λ′6

•
α // •
β
oo

δ // •
γ
oo

αδγδ = 0,
γδγβ = 0, αβ = 0,

βα = δγδγ

Λ′7 •
γ

��
•α
%%
σ
DD

δ // •
β

oo

βδ = 0, ασ = 0,
αδ = σγ, γβα = 0,

α2 = δβ

Λ′8 • ZZ
γ

•α
%% ��
σ

oo δ
•//

β

δβ = 0, σα = 0,
δα = γσ, αβγ = 0,

α2 = βδ
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Theorem (Białkowski-Holm-Skowroński, 2003)
1 Λ1 and Λ2 are derived equivalent (char K = 3)
2 Λ′1 and Λ′2 are derived equivalent (char K arbitrary)
3 Λ4, Λ5, Λ6, Λ7, Λ8 are derived equivalent (char K = 2)
4 Λ′4, Λ′5, Λ′6, Λ′7, Λ′8 are derived equivalent (char K arbitrary)

Λi and Λ′i , i ∈ {1, . . . ,8} are symmetric algebras
Λ9 (char K = 2) is weakly symmetric but not symmetric
Λ′9 (char K = 2) is symmetric
Λ′9 (char K 6= 2) is weakly symmetric but not symmetric
Λ10 and Λ′10 are not weakly symmetric
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THEOREM
Λ1 (char K = 3) periodic algebra of period 6
Λ′1 (char K arbitrary) periodic algebra of period 6
Λ3(λ) (char K = 2) periodic algebra of period 4
Λ′3(λ) (char K arbitrary) periodic algebra of period 4
Λ6 (char K = 2) periodic algebra of period 8
Λ′6 (char K arbitrary) periodic algebra of period 8
Λ9 (char K = 2) periodic algebra of period 6

Λ′9 periodic algebra of period =

{
3 char K = 2
6 char K 6= 2

Λ10 (char K = 2) periodic algebra of period 6

Λ′10 periodic algebra of period =

{
3 char K = 2
6 char K 6= 2

Hard work



Periodicity of selfinjective algebras of polynomial growth 30

Λ basic, indecomposable, finite dimensional algebra, K algebraically closed

1A = e1 + · · ·+ en, e1, . . . ,en pairwise orthogonal primitive idempotents of A

ei⊗ej , i , j∈{1, . . . ,n}, pairwise orthogonal primitive idempotents of Ae =Aop⊗K A

1Ae =
∑

1≤i,j≤n ei ⊗ ej

P(i , j) = (ei ⊗ ej )Ae = Aei ⊗ ejA, i , j ∈ {1, . . . ,n}, complete set of pairwise
nonisomorphic indecomposable projective modules in mod Ae = bimod A

Si = eiA/ei rad A, i ∈ {1, . . . ,n}, complete set of pairwise nonisomorphic
simple modules in mod A

The following theorem describes the terms of a minimal projective bimodule
resolution of A.

Theorem (Happel, 1989)

A admits a minimal projective resolution in mod Ae of the form

· · · −→ Pr
dr−→ Pr−1 −→ · · · −→ P1

d1−→ P0
d0−→ A −→ 0,

where
Pr =

⊕
0≤i,j≤n

P(i , j)dimK ExtrA(Si ,Sj ).
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Theorem (Białkowski–Erdmann–Skowroński, 2013)
Let A and Λ be representation-infinite periodic algebras of
polynomial growth such that Λ is a nonstandard algebra and A
a standard algebra.
Then A and Λ are not derived equivalent.

Symmetric algebras case Holm-Skowroński (2011), using
Külshammer ideals

A similar result holds for representation-finite selfinjective
algebras Asashiba (1999)

Holm-Skowroński (2006): different proof using Külshammer
ideals


