Action of mapping class group on extended Bers slice

東京工業大学 系 健太郎（Kentaro Ito）

1 Introduction

Let S be an oriented closed surface of genus $g \geq 2$ ．Put

$$
V(S)=\operatorname{Hom}\left(\pi_{1}(S), \mathrm{PSL}_{2}(\mathbf{C})\right) / \mathrm{PSL}_{2}(\mathbf{C})
$$

Let X be an element of Teichüller space $\operatorname{Teich}(S)$ of S and C_{X} be the subset of $V(S)$ consisting of function groups which uniformize X ．We define the action of mapping class group $\operatorname{Mod}(S)$ on C_{X} and investigate the distribution of elements of C_{X} ．

2 Preliminaries

A compact 3－manifold M is called compression body if it is constructed as follows： Let S_{1}, \ldots, S_{n} be oriented closed surfaces of genus ≥ 1（possibly $n=0$ ）．Let $I=[0,1]$ be a closed interval．M is obtained from $S_{1} \times I, \ldots, S_{n} \times I$ and a 3－ball B^{3} by glueing a disk of $S_{j} \times\{0\}$ to a disk of ∂B^{3} or a disk of ∂B^{3} to a disk of ∂B^{3} orientation reversingly．A component of ∂M which intersects ∂B^{3} is denoted by $\partial_{0} M$ and is called the exterior boundary of M ．

A Kleinian group is a discrete subgroup of $\mathrm{PSL}_{2}(\mathbf{C})=\operatorname{Isom}{ }^{+} \mathbf{H}^{3}=\operatorname{Aut}(\widehat{\mathbf{C}})$ ．We always assume that a Kleinian group is torsion－free and finitely generated．We denote by $\Omega(G)$ the region of giscontinuity of a Kleinian group G ．For a Kleinian group $G, \mathbf{H}^{3} / G$ is a hyperbolic 3－manifold and each component of $\Omega(G) / G$ is a Riemann surface．$N_{G}:=\mathbf{H}^{3} \cup \Omega(G) / G$ is called a Kleinian manifold．

A Kleinian group G is called a function group if there is a G－invariant component $\Omega_{0}(G)$ of $\Omega(G)$ ．A function group G is called a quasi－Fuchsian group if there are two G－invariant component of $\Omega(G)$ ．A Kleinian group G is called geometrically finite if it has a finite sided convex polyhedron in \mathbf{H}^{3} ．

Let S be a oriented closed surface of genus $g \geq 2$ ．Put

$$
C B(S)=\left\{M \mid M \text { is a compression body s.t. } \partial_{0} M \cong S\right\} .
$$

If G is a function group with invariant component $\Omega_{0}(G)$ such that $\Omega_{0}(G) / G \cong$ S ，then \mathbf{H}^{3} / G is homeomorphic to the interior $\operatorname{int} M$ of some $M \in C B(S)$（i．e． function group is topologically tame）．

If G is a quasi-Fuchsian group such that each component of $\Omega(G) / G$ is homeomorphic to S, then $N_{G}=\mathbf{H}^{3} \cup \Omega(G) / G \cong S \times I$.

Let $M \in C B(S)$. Let

$$
V(M)=\operatorname{Hom}\left(\pi_{1}(M), \mathrm{PSL}_{2}(\mathbf{C})\right) / \mathrm{PSL}_{2}(\mathbf{C})
$$

be the representation space equipped with algebraic topology. We denote the conjugacy class of $\rho: \pi_{1}(M) \rightarrow G \subset \mathrm{PSL}_{2}(\mathbf{C})$ by $[\rho, G]$ or $[\rho]$. Let

$$
A H(M)=\{[\rho] \in V(M) \mid \rho \text { is discrete and faithful }\}
$$

and $M P(M)=\operatorname{int} A H(M)$. Any element $[\rho, G] \in M P(M)$ is geometrically finite and minimally palabolic, that is, any parabolic element $\gamma \in G$ is contained in $\rho\left(\pi_{1}(T)\right)$ for some torus component T of ∂M.

Remark. - It is conjectured that $\overline{M P(M)}=A H(M)$ (Bers-Thurston conjecture).

- If $M \in C B(S), M P(M)$ is connected.

Put

$$
V(S)=\operatorname{Hom}\left(\pi_{1}(S), \mathrm{PSL}_{2}(\mathbf{C})\right) / \mathrm{PSL}_{2}(\mathbf{C})
$$

Then $M P(S \times I) \subset A H(S \times I) \subset V(S)$. For any $[\rho, G] \in M P(S \times I), G$ is a quasi-Fuchsian group. $M P(S \times I)$ is called the quasi-Fuchsian space.

Let $M \in C B(S)$. If an embedding $f: S \hookrightarrow M$ is homotopic to an orientation preserving homeomorphism $S \rightarrow \partial_{0} M, f$ is called an admissible embedding. For an admissible embedding $f: S \hookrightarrow M$, the map

$$
f^{*}: V(M) \rightarrow V(S)
$$

defined by $[\rho] \mapsto[\rho] \circ f_{*}$ is a proper embedding.
Let $M_{1}, M_{2} \in C B(S)$ and $f_{j}: S \hookrightarrow M_{j}(j=1,2)$ be admissible embeddings. Then the following holds:

- $\operatorname{ker}\left(f_{1}\right)_{*}=\operatorname{ker}\left(f_{2}\right)_{*} \Leftrightarrow\left(f_{1}\right)^{*}\left(A H\left(M_{1}\right)\right)=\left(f_{2}\right)^{*}\left(A H\left(M_{2}\right)\right)$,
- $\operatorname{ker}\left(f_{1}\right)_{*} \neq \operatorname{ker}\left(f_{2}\right)_{*} \Leftrightarrow\left(f_{1}\right)^{*}\left(A H\left(M_{1}\right)\right) \cap\left(f_{2}\right)^{*}\left(A H\left(M_{2}\right)\right)=\emptyset$.

Let $M \in C B(S)$. Put

$$
\begin{aligned}
\mathcal{A H}(M) & =\bigcup_{f} f^{*}(A H(M)) \subset V(S) \\
\cup & \\
\mathcal{M P}(M) & =\bigcup_{f} f^{*}(M P(M)) \subset V(S),
\end{aligned}
$$

where the union is taken over all admissible embeddings $f: S \hookrightarrow M$.

Remark. In general, $\mathcal{M} \mathcal{P}(M)$ consists of infinitely many connected components. On the other hand, $\mathcal{M P}(S \times I)=M P(S \times I)$ is connected.

Let Teich (S) be the Teichmüller space of S. Then

$$
\mathcal{M P}(S \times I)=\operatorname{Teich}(S) \times \operatorname{Teich}(S)
$$

We always fix $X \in \operatorname{Teich}(S)$ in the following. Let

$$
C_{X}=\left\{[\rho, G] \mid G \text { is a function group s.t. } \Omega_{0}(G) / G \cong X\right\} .
$$

More precisely, if $\rho: \pi_{1}(S) \rightarrow G \cong \pi_{1}\left(N_{G}\right)$ is induced by $S \rightarrow X \cong \Omega_{0}(G) / G \hookrightarrow$ N_{G} for some function group G, then $[\rho, G]$ is an element of $C_{X} . C_{X}$ is called an extended Bers slice.

Lemma 1. C_{X} is compact.
Put

$$
\begin{array}{cl}
\mathcal{A H}_{X}(M) & :=\mathcal{A H}(M) \cap C_{X} \\
\cup & \\
\mathcal{M P}_{X}(M) & :=\mathcal{M P}(M) \cap C_{X} .
\end{array}
$$

$B_{X}:=\mathcal{M} \mathcal{P}_{X}(S \times I)=\mathcal{M} \mathcal{P}(S \times I) \cap C_{X}$ is called a Bers slice. Obviously

$$
C_{X}=\bigcup_{M \in C B(S)} \mathcal{A} \mathcal{H}_{X}(M) .
$$

3 Action of $\operatorname{Mod}(S)$ on C_{X}

Let $\operatorname{Mod}(S)$ denote the mapping class group of S. Let $[\rho, G] \in C_{X}$. Let Belt $(X)_{1}$ denote the set of Beltrami differentials $\mu=\mu(z) \overline{d z} / d z$ on X such that $\|\mu\|_{\infty}<1$.

$Q C_{0}(\rho)$ consists of the qc-deformations of $[\rho, G]$ whose Beltrami differentials are supported on $\Omega_{0}(G)$.

The action of $\sigma \in \operatorname{Mod}(S)$ on C_{X} is defined by

$$
[\rho] \mapsto[\rho]^{\sigma}:=\Psi_{\rho}\left(\sigma^{-1} X\right) \circ \sigma_{*}^{-1},
$$

where σ_{*} is the group automorphism of $\pi_{1}(S)$ induced by σ.

4 Continuity of the action

Theorem 2. Let $[\rho, G] \in C_{X}$. If all components of $\Omega(G) / G$ except for $X=$ $\Omega_{0}(G) / G$ are thrice-punctured spheres, then the action of $\operatorname{Mod}(S)$ is continuous at $[\rho]$; that is, if $\left[\rho_{n}\right] \rightarrow[\rho]$ in C_{X} then $\left[\rho_{n}\right]^{\sigma} \rightarrow[\rho]^{\sigma}$ for all $\sigma \in \operatorname{Mod}(S)$.

Remark. In general, the action of $\operatorname{Mod}(S)$ is not continuous at $\partial B_{X}=\overline{B_{X}}-B_{X}$ (Kerckhoff-Thurston).

5 Maximal cusps

Put $\partial \mathcal{M} \mathcal{P}_{X}(M)=\overline{\mathcal{M} \mathcal{P}_{X}(M)}-\mathcal{M} \mathcal{P}_{X}(M)$.
Definition. An element $[\rho, G] \in \partial \mathcal{M} \mathcal{P}_{X}(M)$ is called a maximal cusp if G is geometrically finite and all components of $\Omega(G) / G$ except for $X=\Omega_{0}(G) / G$ are thrice-punctured spheres.

Theorem 3 (McMullen). The set of maximal cusps is dense in ∂B_{X}.
Proposition 4. For any $M \in C B(S)$, the set of maximal cusps is dense in $\partial \mathcal{M} \mathcal{P}_{X}(M)$.

The set of maximal cusps in $\partial \mathcal{M} \mathcal{P}_{X}(M)$ decomposes into finitely many orbit. The following theorem implies that "each" orbit is dense in $\partial \mathcal{M} \mathcal{P}_{X}(M)$.

Theorem 5. For any maximal cusp $[\rho] \in \partial \mathcal{M} \mathcal{P}_{X}(M)$, its orbit $\left\{[\rho]^{\sigma}\right\}_{\sigma \in \operatorname{Mod}(S)}$ is dense in $\partial \mathcal{M} \mathcal{P}_{X}(M)$.

6 Statement of main thorem

Let $M_{1}, M_{2} \in C B(S)$. An embedding $f: M_{1} \hookrightarrow M_{2}$ is seid to be admissible if f is homotopic to an embedding $g: M_{1} \hookrightarrow M_{2}$ such that $g \mid \partial M_{1}: \partial M_{1} \hookrightarrow M_{2}$ is a homeomorphism.

Theorem 6. Let $M \in C B(S)$ and $\left\{M_{n}\right\} \subset C B(S)$. If $\left\{\left[\rho_{n}\right] \in \mathcal{A H}_{X}\left(M_{n}\right)\right\}$ converges algebraically to $\left[\rho_{\infty}\right] \in \mathcal{A H}_{X}(M)$, then for large enough n there exist admissible embeddings $f_{n}: M \hookrightarrow M_{n}$.

This can be easily seen from the fact that $\operatorname{ker} \rho_{n} \supseteq \operatorname{ker} \rho_{\infty}$ for large enough n.
Lemma 7. Let $M_{1}, M_{2} \in C B(S)$ and $[\rho] \in A H\left(M_{2}\right)$. If there is a sequence $\left\{\sigma_{n}\right\}$ of $\operatorname{Mod}(S)$ such that $[\rho]^{\sigma_{n}}$ converges algebraically to $\left[\rho_{\infty}\right] \in \mathcal{A H}_{X}\left(M_{1}\right)$, then there exist an admissible embedding $f: M_{1} \hookrightarrow M_{2}$.

Conversely, the following holds.
Theorem 8. Let $M_{1}, M_{2} \in C B(S)$. Suppose that there exists an admissible embedding $f: M_{1} \hookrightarrow M_{2}$. Then for any geometrically finite element $[\rho] \in \mathcal{A H}_{X}\left(M_{2}\right)$, the set of accumulation points of $\left\{[\rho]^{\sigma}\right\}_{\sigma \in \operatorname{Mod}(S)}$ contains $\partial \mathcal{M} \mathcal{P}_{X}\left(M_{1}\right)$.

Recall that S is a closed surface of genus $g \geq 2$. Let H_{g} be a handle body of genus g. Note that for any $M \in C B(S)$, there are embeddings

$$
S \times I \hookrightarrow M, M \hookrightarrow H_{g}
$$

which preserve the exterior bounbaries.
Corollary 9. (1) For any $[\rho] \in \mathcal{A H}_{X}\left(H_{g}\right)$, the set of accumulation points of $\left\{[\rho]^{\sigma}\right\}_{\sigma \in \operatorname{Mod}(S)}$ contains $\bigcup_{M \in C B(S)} \partial \mathcal{M} \mathcal{P}_{X}(M)$.
(2) For any $M \in C B(S)$ and any geometrically finite $[\rho] \in \mathcal{A H}_{X}(M)$, the set of accumulation points of $\left\{[\rho]^{\sigma}\right\}_{\sigma \in \operatorname{Mod}(S)}$ contains $\partial B_{X}=\partial \mathcal{M} \mathcal{P}_{X}(S \times I)$.

Remark (Hejhal,Matsuzaki). Let $[\rho] \in C_{X} .[\rho] \in \mathcal{A H}_{X}\left(H_{g}\right)$ if and only if $[\rho]$ is geometrically finite and isolated in C_{X}.

