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Part I: T -dual to maximum multiflow problems
Main message:

• Multiflow combinatorial duality theorems can be derived from T -dual.

Tµ

• Geometry of Tµ rules discreteness of multiflow potential.
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Notation

G = (V, E): an undirected graph with nonnegative capasity c : E → R+

S: the set of terminals S ⊆ V

P: the set of paths in G whose ends belong to S.

Definition. f : P → R+ is a multiflow (w.r.t (G, c;S)) if∑
P∈P:e∈P

f(P ) ≤ c(e) (e ∈ E).
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Maxmimization problem

µ-max problem:

Given µ : S × S → R+ with µ(s, t) = µ(t, s) and µ(s, s) = 0,

Maximize
∑

P∈P
µ(sP , tP )f(P )

Subject to f : a multiflow for (G, c;S),

where sP , tP : endpoints of P .

Philosophy: we shall regard µ as a distance on S

Problem of the bounded fractionality (Karzanov)

When does µ-max problem have integer, half-integer, quarter-integer, or

1/k-integer (fixed k) optimal flow for ∀G = (V, E) with integer c and

S ⊆ V ?
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Some nice examples

• S = {s, t} ⇒ single commodity flow

Maxflow-Mincut Theorem (Ford-Fulkerson 54)

Max flow value = s-t mincut value,

∃ integer optimal flow if c is integer.

• S = {s, s′, t, t′}, µ(s, t) = µ(s′, t′) = 1 and zero otherwise

⇒ two commodity flow

Maxbiflow-Mincut Theorem (Hu 63)

Max flow value = Min (ss′-tt′ mincut, st′-ts′ mincut),

∃ half-integer optimal flow if c is integer.
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• µ(s, t) = 1 ∀s, t with s 6= t ⇒ free multiflow problem

Theorem (Lovasz 76, Cherkassky 77)

Max flow value =
1

2

∑
t∈S

t-S \ t mincut,

∃ half-integer optimal flow if c is integer.

Notation: If µ is 0-1, the commodity graph Hµ = (S, Rµ) is defined by

st ∈ Rµ
def⇐⇒ µ(s, t) = 1.

Remark: Hµ = K2: single commodity, Hµ = K2 + K2: two commodity,

Hµ = Kn: free multiflow,
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Assume Hµ has no isolated point and c is integer.

Theorem (Karzanov-Lomonosov 1978)

If the intersection graph Γ of the maximal stable sets in Hµ has no triangle,

there exists a quarter-integer optimal flow.

If Γ is bipartite, there exists a half-integer optimal flow.

Rem: ∃ combinatorial duality theorem.

Rem: A polymatroidal proof (Frank, Karzanov, and Sebö 1994).
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Beyond 0-1 weights

Multiflow Locking Theorem (Karzanov-Lomonosov 1978)

A: 3-cross free family on S

µ =
∑

A∈A
δA: sum of cut metrics of A

Max flow value =
∑

A∈A
A-S \ A mincut,

∃ half-integer optimal flow

Theorem (Karzanov & Manoussakis 1996)

(S, µ): the graph metric of K2,n

∃ half-integer optimal flow (+ combinatrial duality theorem)

Where do these small fractionality phenomena come from ?
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LP-dual to µ-max problem

Minimize 〈c, d〉E
Subject to d: metric on V ,

d(s, t) ≥ µ(s, t) (s, t ∈ S)

Remark: If µ-max problem has a 1/k-integer optimal flow for ∀(G, c) with

c ∈ ZE
+ and µ is integral, the polyhedron

Pµ,V = {d : metric on V | d(s, t) ≥ µ(s, t)(s, t ∈ S)} + RV
+

is 1/k-integral (by standard TDI argument).

Remark: This gives a necessary condition for the existence of 1/k-integral

optimal flows
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Assume µ is 0-1 distance and Hµ has no isolated point.

Theorem (Karzanov 1989)

(1) If Hµ satisfies:

(P) three pairwise intersecting maximal stable sets A1, A2, A3 in Hµ

satisfies A1 ∩ A2 = A2 ∩ A3 = A3 ∩ A1,

then Pµ,V is quarter-integral for ∀V with S ⊆ V .

(2) If Hµ violates (P), then there is no integer k such that Pµ,V is 1/k-

integral for ∀V with S ⊆ V .

A. V. Karzanov: Polyhedra related to undirected multicommodity flows, Linear Algebra
and Its Applications 114/115 (1989) 293–328.
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Karzanov Conjecture (ICM, Kyoto, 1990)

(1) If Hµ satisfies (P), then there is k ∈ Z+ such that µ-max problem has

1/k-integer optimal flow for ∀G = (V, E) with c ∈ ZE and S ⊆ V .

(2) k = 4 will do.

Some special cases beyond Karzanov-Lomonosov Theorem (1978)

• If Hµ = K2 + K3, ∃ half-integer optimal flow (Karzanov 1998).

• If Hµ = K2 + Kr, ∃ quarter-integer optimal flow (Lomonosov 2004).
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µ: an integral metric

Pµ := {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)}
Tµ := the set of minimal elements of Pµ (tight span of µ)

Theorem (Karzanov 1998)

(1) If dimTµ ≤ 2, then Pµ,V is quarter-integral for ∀V with S ⊆ V .

(2) If dimTµ ≥ 3, then then there is no k such that Pµ,V is 1/k-integral

for ∀V with S ⊆ V .

A. V. Karzanov:
Minimum 0-extensions of graph metrics, European J. Combin. 19 (1998) 71–101.
Metrics with finite sets of primitive extensions, Ann. Combin. 2 (1998) 211–241.
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µ: an integral distance

Main Theorem (H.07)

(1) If dimTµ ≤ 2, then Pµ,V is quarter-integral for every V with S ⊆ V .

(2) If dimTµ ≥ 3, then then there is no k such that Pµ,V is 1/k-integral

for every V with S ⊆ V .

Remark (H.07): Karzanov condition (P) ⇔ dimTµ ≤ 2 for 0-1 distance µ.

Generalized Karzanov Conjecture:

If dimTµ ≤ 2, there is k ∈ Z such that µ-max problem has a 1/k-integral

optimal flow for ∀G = (V, E) with c ∈ ZE
+ and S ⊆ V .

Now I’m trying to solve it !
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Tµ: the tight span, the injective hull, or the TX-space

Tµ is not so common in combinatrial optimization.

Q1. What is Tµ ?

Q2. Why does Tµ arise in multiflow problem ?

(→ T -dual)

Q3. Why is dimTµ ≤ 2 crucial ?

(→ l∞-plane ' l1-plane)
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What is Tµ ? (some history)

1964 Isbell (injective hull)

1984 Dress (phylogenetic tree reconstruction)

1994 Chrobak & Larmore (online algorithm)

2006 Hirai (the tight span of nonmetric distances)

Relation to multiflow theory

1997 Chepoi (TX-proof to cut packing theorem)

1998 Karzanov (relaxation of 0-extension problem)
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Some interesting properties of Tµ

• µ is isometrically embeded into (Tµ, l∞) (Dress 84, H. 06)

• metric µ is a tree metric if and only if Tµ is a tree (Dress 84), and

more...

Tµ,s

Tµ,t

Tµ,u
Tµ,v

Tµ,w

Tµ

Pµ = {p ∈ R
S | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)}

Tµ = Minimal Pµ

Tµ,s = {p ∈ R
S | p(s) = 0}

µ =

s t u v w

s 0 2 3 4 2

t 2 0 3 3 3

u 3 3 0 1 3

v 4 3 1 0 1

w 2 3 3 1 0
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Why does Tµ arise in multiflow problem ?

Pµ := {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)}
Tµ := the set of minimal elements of Pµ

Tµ,s := {p ∈ Tµ | p(s) = 0} (s ∈ S) (the terminal region of s)

T -dual to µ-max problem:

Theorem (H. 07)

Minimize 〈c, d〉E
Subject to d: metric on V ,

d(s, t) ≥ µ(s, t) (s, t ∈ S)

' Minimize
∑

xy∈E

c(xy)‖ρ(x) − ρ(y)‖∞

Subject to ρ : V → Tµ

ρ(s) ∈ Tµ,s (s ∈ S)
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ρ is an analogue of the potential

‖ρ(x) − ρ(y)‖∞ is the potential difference

(V, E, c; S)

ρ

x

y c(xy)‖ρ(x)− ρ(y)‖∞

c(xy)
ρ(x)

ρ(y)

Tµ ⊆ R
S

∑

xy∈E

c(xy)‖ρ(x) − ρ(y)‖∞

ρ : V → Tµ

ρ(s) ∈ Tµ,s (s ∈ S)

Minimize

Subject to

Multifacility location problem (a variation of p-median problems)
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Proof of T -dual

Pµ = {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)}
Pµ,s := {s ∈ Pµ | p(s) = 0} (s ∈ S)

Lemma: LP-dual of µ-max problem is equivalent to

Minimize
∑

xy∈E

c(xy)‖ρ(x) − ρ(y)‖∞

Subject to ρ : V → Pµ

ρ(s) ∈ Pµ,s (s ∈ S)

Proof: For ρ : V → Pµ define metric d by

d(x, y) := ‖ρ(x) − ρ(y)‖∞ (x, y ∈ V ).

Then

d(s, t) = ‖ρ(s) − ρ(t)‖∞ ≥ ρ(t)(s) − ρ(s)(s) = ρ(t)(t) + ρ(t)(s) ≥ µ(s, t).
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Conversely, for metric d with d|S ≥ µ, define ρ : V → RS by

(ρ(x))(s) := d(x, s) (s ∈ S).

Then we have

ρ(x)(s) + ρ(x)(t) = d(x, s) + d(x, t) ≥ d(s, t) ≥ µ(s, t) ⇒ ρ(x) ∈ Pµ,

ρ(s)(s) = d(s, s) = 0 ⇒ ρ(s) ∈ Pµ,s.

Moreover,

‖ρ(x) − ρ(y)‖ = |d(x, s) − d(y, s)| ≤ d(x, y).

d =

S

S

V

x ρ(x)

≥

d(x, y) ‖ρ(x), ρ(y)‖



Lemma (Dress 84)

There is φ : Pµ → Tµ such that

• φ(p) ≤ p for p ∈ Pµ (, and thus φ(p) = p for p ∈ Tµ),

• ‖φ(p) − φ(q)‖∞ ≤ ‖p − q‖∞ for p, q ∈ Pµ.

A. W. M. Dress: Trees, tight extensions of metric spaces, and the cohomological dimen-
sion of certain groups: a note on combinatorial properties of metric spaces. Advances
in Mathematics 53 (1984), 321–402.
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Ford-Fulkerson reconsidered (S = {s, t})

The tight span is a segment

Tµ

O

Tµ,s

Tµ,t

p(s)

p(t)

Pµ

p(s) + p(t) ≥ 1

p(s) ≥ 0

p(t) ≥ 0
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ρ

ρ(s)

ρ(t)

ρ(x)
=

1

2

ρ′(x)
ρ′′(x)

ρ′ ρ′′

+
1

2

dρ = 1/2(dρ′ + dρ′′)

dρ(x, y) := ‖ρ(x) − ρ(y)‖∞

⇒ T -dual is equivalent to

Subject toMinimize
∑

xy∈E

c(xy)dist (ρ(x), ρ(y)) ρ : V →

ρ(s) = ρ(t) =

⇒ finding s-t mincut.
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Lovasz-Cherkassky reconsidered (Hµ = Kn)

The tight span is a star

Pµ

Tµ

p(s)

p(t)

p(u)

Tµ,u Tµ,t

Tµ,s

Tµ,s

S = {s, t, u}

Tµ,t

t-S \ t mincut

1/2

µ =

s t u

s 0 1 1

t 1 0 1

u 1 1 0
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⇒ T -dual is equivalent to

Subject to

Minimize
∑

xy∈E

c(xy)dist (ρ(x), ρ(y))

1/2

ρ : V →

ρ(s) =
ρ(t) =

ρ(u) =

⇒
1

2

∑
t∈S

t-S \ t mincut.
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Two-commodity reconsidered (S = {s, t, s′, t′})

The tight span is a square in l∞-plane.

TµTµ,s

Tµ,t

Tµ,s′

Tµ,t′

45 degree rotation
l1

(R{s,s′}, l∞)

Rem: (x1, x2) 7→
(

x1 + x2

2
,
x1 − x2

2

)
.
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T -dual is equivalent to

Subject to

Minimize

ρ(s)
ρ(t)

=
=

or
or

ρ(s′)

ρ(t′)

=
= or

or

∑

xy∈E

c(xy)dist (ρ(x), ρ(y))

1/2

ρ : V →

27



+

3

4
ρ
′

1

4
ρ
′′

⇒

=

ρ

⇒

dρ =
3

4
dρ′ +

1

4
dρ′′
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One more step to maxbiflow-mincut (left to audience)

1/2

ρ : V →

〈c, dρ〉

Subject to

Minimize

ρ(s)
ρ(t)

=
=

or
or

ρ(s′)

ρ(t′)

=
= or

or

=
Minimize 〈c, dρ〉

Subject to ρ : V → or

ρ(s) = ρ(s′) =

ρ(t) = ρ(t′) =
ρ(s) = ρ(t′) =
ρ(t) = ρ(s′) =
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Lemma [H.07] 2-face of Tµ is isomorphic to

45-degree

rotation

(R{s,t}, l∞) ∃s, t ∈ S

l1

Lemma [H.07] 2-faces of Tµ are gluing nicely.

does not occur !

F1

F2

F3
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An l1-grid on Tµ.

polyhedral subdivision into

Lemma [H. 07]

The graph of an l1-grid is an isometric subspace of (Tµ, l∞).
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µ: a rational 2-dim distance on S.

Γ : the graph of an orientable l1-grid on Tµ.

Γs: the subgraph of Γ induced by Tµ,s (s ∈ S).

Theorem (H. 07)

T -dual is equivalent to

Minimize
∑

xy∈E

c(xy)distΓ (ρ(x), ρ(y))

Subject to ρ : V → V Γ,

ρ(s) ∈ V Γs (s ∈ S)

• { the vertices of Pµ,V } ⊆ {dρ | ρ : above},
where dρ(x, y) := distΓ (ρ(x), ρ(y)).
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Orientablity is important.
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Tµ

1/2

not orientable

1/4

Hµ =

orientable
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Nonorientablity
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Proposition [H.07]

If µ is 2-dim 0-1 distance, then

Tµ ' one-point join of

the clique-vertex incidence graph of

the intersection graph of the maximal stable sets of Hµ.

• Karzanov-Lomonosov condition (1978) ⇔ ∃ 1/2-l1-grids.

• Tµ ' one-point join of

the intersection graph of maximal stable sets of Hµ

• bipartiteness ⇔ orientability
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1/4

Hµ = K3 + K3
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Theorem (H.07)

If µ is integral, then there is an orientable 1/4-l1-grid, and consequently

Pµ,V is 1/4-integral.

• The existence of an 1/4-l1-grid is easy.

• Pµ is half-integral and (x1, x2) 7→
(

x1 + x2

2
,
x1 − x2

2

)
.

• The most difficult part is to prove that this 1/4-l1-grid is orientable.

39



Why is dimTµ ≥ 3 bad ?

• In (R3, l∞), there exists an infinite family of finite sets Pi(i = 1,2, . . .)

such that dPi,l∞ (i = 1,2, . . .) lie on all distinct extreme rays of the metric

cone.

(0,0,0)

(1,1,-1)

(2,0,0)(2,-2,0)

(1,-1,-1)

(1,-1,1)
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Karzanov’s original approach (1998)

0-extension problem (metric labeling problem):

Given G = (V, E), c ∈ RE
+, and Γ with V Γ ⊆ V

Minimize
∑

xy∈E

c(xy)distΓ (ρ(x), ρ(y))

Subject to ρ : V → V Γ,

ρ|V Γ = idV Γ

⇒ NP-hard ( 3-terminal cut problem if Γ = K3)

A relaxation problem:

Minimize
∑

xy∈E

c(xy)d(x, y)

Subject to d: metric on V

d|V Γ = distΓ

(This is LP-dual of µ-max problem for µ = distΓ !)
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Theorem (Karzanov 98)

Two problems are equivalent if and only if Γ is bipartite without isometric

k-cycle for k ≥ 6, and orientable.

⇒ a combinatorial characterization of 2-dim tight span (of metrics).

Karzanov’s approach: graph theoretical, Tµ implicit.

Our approach: polyhedral geometry of Tµ.
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Summary:

The tight span is very powerfull, and gives a unified understanding to

multiflow problems.
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Future works (for part I):

• Toward the generalized Karzanov conjecture (in preparation).

• Directed multiflows (in preparation, joint with Shungo Koichi).

Pµ = {(p, q) ∈ RS
+ × RS

+ | p(s) + q(t) ≥ µ(s, t) (s, t ∈ S)}
Tµ = the set of minimal elements of Pµ

• Discrete convex analysis for multiflows.

– Network flow + convex analysis + discreteness (Iri 69, Rockafellar 84)

⇒ Discrete convex analysis (Murota 98) afternoon today !

– Multiflow + convex analysis + T -dual + discrete metrics ⇒ ??
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Part II: Metric packing for K3 + K3.
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Multiflow feasiblity problem

G = (V, E): an undirected graph with nonnegative capasity c ∈ RE
+

H = (S, R): a demand graph S ⊆ V

Given a demand q : R → R+, find a multiflow f : P → R+ such that∑
{f(P ) | P ∈ P : P is st-path} = q(st) (st ∈ R).
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Japanese Theorem (Onaga-Kakusho 71, Iri 71)

There exists a feasible multiflow if and only if

〈c, d〉E ≥ 〈q, d〉R (∀d: metric on V ).

Cut condition:

〈c, δA〉E ≥ 〈q, δA〉R (S ⊆ V )
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When is the cut condition sufficient ?

Theorem (Papernov 76)

The cut condition is sufficient if and only if H = K4, C5 or the union of

two star.

Theorem (Hu 63, Rothchild-Winston 66, Lomonosov 76, 85, Seymour 80)

If H is above and G + H is Eulerian, then the cut condition implies an

integer multiflow.

48



Polarity

Lemma (Seymour 79, Karzanov 84)

The cut condition is sufficient if and only if for any l ∈ RE
+ there are a

familiy of cuts {δAi
}i and its nonnegative weight {λi}i such that∑

i

λiδAi
(x, y) ≤ distG,l(x, y) (xy ∈ E),∑

i

λiδAi
(s, t) = distG,l(s, t) (st ∈ R)

Such a (δAi
, λi) is called an H-packing

Theorem (Seymour 80 for H = K2 + K2, Karzanov 85)

If H is above and G is bipartite, then there exists an integral H-packing

by cut metrics.
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Beyond the cut condition

Γ : undirected graph

Definition A metric d on V is called a Γ -metric if there is φ : V → V Γ

such that

d(x, y) = distΓ (φ(x), φ(y)) (x, y ∈ V ).

Remark: cut metric ' K2-metric.

Lemma: For a set G of graphs, G-metric condition is sufficient if and
only if for l ∈ RE

+ there are familiy of G-metrics {di}i and its nonnegative
weight {λi}i such that∑

i

λidi(x, y) ≤ distG,l(x, y) (xy ∈ E)∑
i

λidi(s, t) = distG,l(s, t) (st ∈ R)
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multiflow for
G + H:Eulerian

feasibility

condition

H-packing
for G: bipartite

K4, C5,
star + star

K5,
K3+star K3 + K3

K2

cut condition
K2, K2,3

(Karzanov 87)
K2, K2,3, Γ3,3

(Karzanov 89)

integer flow integer flow
(Karzanov 87)

∃k, 1/k-flow
conjectured
(Karzanov 90)

integer
packing

integer
packing
(Karzanov 90)

other classes:
H has 3-matching

no fixed integer k,
1/k-flow
(Lomonosov 85)

infinite family
of graphs
(Karzanov 90)

demand graph H

half-integer packing
conjectured
(Karzanov 90)

K2 K2,3 K3,3 Γ,
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Main result

Theorem [H. 07]

If H = K3 + K3 and G is bipartite, then there is an integral H-packing by

cut, K2,3, K3,3, and Γ3,3-metrics
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Chepoi’s approach (1997) with a modification by (H. 07)

µ: a bipartite metric on S (
def⇐⇒ µ(C) is even for cycle C)

L: a lattice on ZS defined by

L = {p ∈ ZS | p(s) + p(t) = 0 mod 2 (s, t ∈ S)}

Aµ: an affine lattice defined by

Aµ = µs + L,

where µs is a s-th row vector of µ (well-defined).
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Lemma (Chepoi 97, H. 07)

For a finite subset Q ⊆ Pµ ∩ Aµ, there is a map φ : Q → Tµ ∩ Aµ such that

(1) φ(p) ≤ p for p ∈ Q (, and thus φ(p) = p if p ∈ Tµ)

(2) ‖φ(p) − φ(q)‖∞ ≤ ‖p − q‖∞ for p, q ∈ Q.

This is a discrete version of Dress’ lemma.
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H = (S, R): a commodity graph
G = (V, E): a bipartite graph and S ⊆ V

⇒ distG is a bipartite metric on V

Define a (bipartite) metric µ on S by

µ := distG|S.

Define a point px ∈ RS for x ∈ V by

px(s) = distG(s, x) (s ∈ S).

Lemma:

• px ∈ Pµ ∩ Aµ for x ∈ V , and ps ∈ Tµ ∩ Aµ for s ∈ S.

• ‖px − py‖ ≤ distG(x, y).

• ‖ps − pt‖ = distG(s, t) = µ(s, t) for s, t ∈ S

integral H-packing ⇒ decomposing (Tµ ∩ Aµ, l∞)
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Chepoi proved Karzanov’s K2, K2,3-packing theorems by using the classi-

fication result of tight spans of five point metrics (Dress 84).

Remark. dimTµ ≤ #S/2

Unfortunately, this approach cannot be applied to six-vertex commodity

graph K3 + K3.
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Definition A metric µ is called an H-minimal if there is no metric µ′ 6= µ

with µ′ ≤ µ such that

µ′(s, t) = µ(s, t) (s, t ∈ R).

In the process above, we can replace µ by H-minimal bipartite metric µ′

with µ(s, t) = µ′(s, t) for st ∈ R.

Lemma [H. 07] If H has no 3-matching, then any H-minimal metric µ is

dimTµ ≤ 2.
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Consider the graph Γ of Tµ ∩ Aµ connecting p, q by edge if ‖p − q‖∞ = 1

Proposition [H. 07] If H has no 3-matching and µ is H-minimal, the

connected components of the closure of Tµ \ Γ are

square K2,3-folder K3,3-folder
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Future works (for part II):

• A unified understanding to planer multiflows and some variations:

– planar multiflows with demand edges on k holes (k = 1: Okamura-

Seymour 81, k = 2: Okamura 83, k = 3,4: Karzanov 94,95)

– graph having no K5-minor (Seymour 81), signed graph having no

odd K5-minor (Geelen-Guenin 01)
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