T_{X}-approaches to multiflows and metrics

Hiroshi Hirai
RIMS, Kyoto Univ.
hirai@kurims.kyoto-u.ac.jp

June 10, 2008
Kyoto

Contents:

Part I: T-dual to maximum multiflow problems
H. Hirai, Tight extentions of distance spaces and the dual fractionality of undirected multiflow problems, RIMS Preprint-1606, 2007.
http://www.kurims.kyoto-u.ac.jp/preprint/RIMS1606.pdf

Part II: Metric packing for $K_{3}+K_{3}$ (option)
H. Hirai, Metric packing for $K_{3}+K_{3}$, RIMS-preprent 1608, 2007.
http://www.kurims.kyoto-u.ac.jp/preprint/RIMS1608.pdf

Part I: T-dual to maximum multiflow problems

 Main message:- Multiflow combinatorial duality theorems can be derived from T-dual.

- Geometry of T_{μ} rules discreteness of multiflow potential.

Notation

$G=(V, E):$ an undirected graph with nonnegative capasity $c: E \rightarrow \mathbf{R}_{+}$ S : the set of terminals $S \subseteq V$
\mathcal{P} : the set of paths in G whose ends belong to S.

Definition. $f: \mathcal{P} \rightarrow \mathbf{R}_{+}$is a multiflow (w.r.t $(G, c ; S)$) if

$$
\sum_{P \in \mathcal{P}: e \in P} f(P) \leq c(e) \quad(e \in E)
$$

Maxmimization problem

μ-max problem:
Given $\mu: S \times S \rightarrow \mathbf{R}_{+}$with $\mu(s, t)=\mu(t, s)$ and $\mu(s, s)=0$,

$$
\begin{array}{ll}
\text { Maximize } & \sum_{P \in \mathcal{P}} \mu\left(s_{P}, t_{P}\right) f(P) \\
\text { Subject to } & f: \text { a multiflow for }(G, c ; S)
\end{array}
$$

where s_{P}, t_{P} : endpoints of P.

Philosophy: we shall regard μ as a distance on S

Problem of the bounded fractionality (Karzanov)
When does μ-max problem have integer, half-integer, quarter-integer, or $1 / k$-integer (fixed k) optimal flow for $\forall G=(V, E)$ with integer c and $S \subseteq V ?$

Some nice examples

- $S=\{s, t\} \Rightarrow$ single commodity flow

Maxflow-Mincut Theorem (Ford-Fulkerson 54)
Max flow value $=s-t$ mincut value,
\exists integer optimal flow if c is integer.

- $S=\left\{s, s^{\prime}, t, t^{\prime}\right\}, \mu(s, t)=\mu\left(s^{\prime}, t^{\prime}\right)=1$ and zero otherwise
\Rightarrow two commodity flow

Maxbiflow-Mincut Theorem (Hu 63)
Max flow value $=$ Min ($s s^{\prime}-t t^{\prime}$ mincut, $s t^{\prime}-t s^{\prime}$ mincut), \exists half-integer optimal flow if c is integer.

- $\mu(s, t)=1 \forall s, t$ with $s \neq t \Rightarrow$ free multiflow problem

Theorem (Lovasz 76, Cherkassky 77)
Max flow value $=\frac{1}{2} \sum_{t \in S} t-S \backslash t$ mincut,
\exists half-integer optimal flow if c is integer.

Notation: If μ is $0-1$, the commodity graph $H_{\mu}=\left(S, R_{\mu}\right)$ is defined by $s t \in R_{\mu} \stackrel{\text { def }}{\Longleftrightarrow} \mu(s, t)=1$.

Remark: $H_{\mu}=K_{2}$: single commodity, $H_{\mu}=K_{2}+K_{2}$: two commodity, $H_{\mu}=K_{n}$: free multiflow,

Assume H_{μ} has no isolated point and c is integer.

Theorem (Karzanov-Lomonosov 1978)
If the intersection graph Γ of the maximal stable sets in H_{μ} has no triangle, there exists a quarter-integer optimal flow.

If Γ is bipartite, there exists a half-integer optimal flow.

Rem: \exists combinatorial duality theorem.

Rem: A polymatroidal proof (Frank, Karzanov, and Sebö 1994).

Beyond 0-1 weights

Multiflow Locking Theorem (Karzanov-Lomonosov 1978)
\mathcal{A} : 3-cross free family on S
$\mu=\sum_{A \in \mathcal{A}} \delta_{A}$: sum of cut metrics of \mathcal{A}

Max flow value $=\sum_{A \in \mathcal{A}} A-S \backslash A$ mincut,
\exists half-integer optimal flow

Theorem (Karzanov \& Manoussakis 1996)
(S, μ) : the graph metric of $K_{2, n}$
\exists half-integer optimal flow (+ combinatrial duality theorem)

Where do these small fractionality phenomena come from ?

LP-dual to μ-max problem

$$
\begin{aligned}
\text { Minimize } & \langle c, d\rangle_{E} \\
\text { Subject to } & d: \text { metric on } V, \\
& d(s, t) \geq \mu(s, t) \quad(s, t \in S)
\end{aligned}
$$

Remark: If μ-max problem has a $1 / k$-integer optimal flow for $\forall(G, c)$ with $c \in \mathbf{Z}_{+}^{E}$ and μ is integral, the polyhedron

$$
\mathcal{P}_{\mu, V}=\{d: \text { metric on } V \mid d(s, t) \geq \mu(s, t)(s, t \in S)\}+\mathbf{R}_{+}^{V}
$$

is $1 / k$-integral (by standard TDI argument).

Remark: This gives a necessary condition for the existence of $1 / k$-integral optimal flows

Assume μ is 0-1 distance and H_{μ} has no isolated point.

Theorem (Karzanov 1989)
(1) If H_{μ} satisfies:
(P) three pairwise intersecting maximal stable sets A_{1}, A_{2}, A_{3} in H_{μ} satisfies $A_{1} \cap A_{2}=A_{2} \cap A_{3}=A_{3} \cap A_{1}$, then $\mathcal{P}_{\mu, V}$ is quarter-integral for $\forall V$ with $S \subseteq V$.
(2) If H_{μ} violates (P), then there is no integer k such that $\mathcal{P}_{\mu, V}$ is $1 / k$ integral for $\forall V$ with $S \subseteq V$.
A. V. Karzanov: Polyhedra related to undirected multicommodity flows, Linear Algebra and Its Applications 114/115 (1989) 293-328.

Karzanov Conjecture (ICM, Kyoto, 1990)
(1) If H_{μ} satisfies (P), then there is $k \in \mathbf{Z}_{+}$such that μ-max problem has $1 / k$-integer optimal flow for $\forall G=(V, E)$ with $c \in \mathbf{Z}^{E}$ and $S \subseteq V$.
(2) $k=4$ will do.

Some special cases beyond Karzanov-Lomonosov Theorem (1978)

- If $H_{\mu}=K_{2}+K_{3}, \exists$ half-integer optimal flow (Karzanov 1998).
- If $H_{\mu}=K_{2}+K_{r}, \exists$ quarter-integer optimal flow (Lomonosov 2004).
μ : an integral metric
$P_{\mu}:=\left\{p \in \mathbf{R}^{S} \mid p(s)+p(t) \geq \mu(s, t)(s, t \in S)\right\}$
$T_{\mu}:=$ the set of minimal elements of P_{μ} (tight span of μ)

Theorem (Karzanov 1998)
(1) If $\operatorname{dim} T_{\mu} \leq 2$, then $\mathcal{P}_{\mu, V}$ is quarter-integral for $\forall V$ with $S \subseteq V$.
(2) If $\operatorname{dim} T_{\mu} \geq 3$, then then there is no k such that $\mathcal{P}_{\mu, V}$ is $1 / k$-integral for $\forall V$ with $S \subseteq V$.
A. V. Karzanov:

Minimum 0-extensions of graph metrics, European J. Combin. 19 (1998) 71-101. Metrics with finite sets of primitive extensions, Ann. Combin. 2 (1998) 211-241.
μ : an integral distance

Main Theorem (H.07)
(1) If $\operatorname{dim} T_{\mu} \leq 2$, then $\mathcal{P}_{\mu, V}$ is quarter-integral for every V with $S \subseteq V$.
(2) If $\operatorname{dim} T_{\mu} \geq 3$, then then there is no k such that $\mathcal{P}_{\mu, V}$ is $1 / k$-integral for every V with $S \subseteq V$.

Remark (H.07): Karzanov condition $(\mathrm{P}) \Leftrightarrow \operatorname{dim} T_{\mu} \leq 2$ for 0-1 distance μ.

Generalized Karzanov Conjecture:
If $\operatorname{dim} T_{\mu} \leq 2$, there is $k \in \mathbf{Z}$ such that μ-max problem has a $1 / k$-integral optimal flow for $\forall G=(V, E)$ with $c \in \mathbf{Z}_{+}^{E}$ and $S \subseteq V$.

Now I'm trying to solve it !
T_{μ} : the tight span, the injective hull, or the T_{X}-space
T_{μ} is not so common in combinatrial optimization.

Q1. What is T_{μ} ?
Q2. Why does T_{μ} arise in multiflow problem ?
($\rightarrow T$-dual)
Q3. Why is $\operatorname{dim} T_{\mu} \leq 2$ crucial ?
$\left(\rightarrow l_{\infty}\right.$-plane $\simeq l_{1}$-plane)

What is T_{μ} ? (some history)
1964 Isbell (injective hull)
1984 Dress (phylogenetic tree reconstruction)
1994 Chrobak \& Larmore (online algorithm)
2006 Hirai (the tight span of nonmetric distances)

Relation to multiflow theory
1997 Chepoi (T_{X}-proof to cut packing theorem)
1998 Karzanov (relaxation of 0-extension problem)

Some interesting properties of T_{μ}

- μ is isometrically embeded into (T_{μ}, l_{∞}) (Dress $84, \mathrm{H} .06$)
- metric μ is a tree metric if and only if T_{μ} is a tree (Dress 84), and more...

$$
\begin{aligned}
& P_{\mu}=\left\{p \in \mathbf{R}^{S} \mid p(s)+p(t) \geq \mu(s, t)(s, t \in S)\right\} \\
& T_{\mu}=\operatorname{Minimal} P_{\mu} \\
& T_{\mu, s}=\left\{p \in \mathbf{R}^{S} \mid p(s)=0\right\} \\
& \left.\mu=\begin{array}{|c||ccccc|}
\hline s & s & t & u & v & w \\
t & 0 & 2 & 3 & 4 & 2 \\
u & 2 & 0 & 3 & 3 & 3 \\
3 & 3 & 0 & 1 & 3 \\
4 & 3 & 1 & 0 & 1 \\
w & 2 & 3 & 3 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Why does T_{μ} arise in multiflow problem ?
$P_{\mu}:=\left\{p \in \mathbf{R}^{S} \mid p(s)+p(t) \geq \mu(s, t)(s, t \in S)\right\}$
$T_{\mu}:=$ the set of minimal elements of P_{μ}
$T_{\mu, s}:=\left\{p \in T_{\mu} \mid p(s)=0\right\} \quad(s \in S)$ (the terminal region of $\left.s\right)$
T-dual to μ-max problem:
Theorem (H. 07)

$$
\begin{aligned}
\text { Minimize } & \langle c, d\rangle_{E} \\
\text { Subject to } & d: \text { metric on } V, \\
& d(s, t) \geq \mu(s, t) \quad(s, t \in S) \\
\simeq \text { Minimize } & \sum_{x y \in E} c(x y)\|\rho(x)-\rho(y)\|_{\infty} \\
\text { Subject to } \quad & \rho: V \rightarrow T_{\mu} \\
& \rho(s) \in T_{\mu, s} \quad(s \in S)
\end{aligned}
$$

ρ is an analogue of the potential
$\|\rho(x)-\rho(y)\|_{\infty}$ is the potential difference

Multifacility location problem (a variation of p-median problems)

Proof of T-dual

$$
\begin{aligned}
& P_{\mu}=\left\{p \in \mathbf{R}^{S} \mid p(s)+p(t) \geq \mu(s, t)(s, t \in S)\right\} \\
& P_{\mu, s}:=\left\{s \in P_{\mu} \mid p(s)=0\right\}(s \in S)
\end{aligned}
$$

Lemma: LP-dual of μ-max problem is equivalent to

$$
\begin{aligned}
\text { Minimize } & \sum_{x y \in E} c(x y)\|\rho(x)-\rho(y)\|_{\infty} \\
\text { Subject to } & \rho: V \rightarrow P_{\mu} \\
& \rho(s) \in P_{\mu, s} \quad(s \in S)
\end{aligned}
$$

Proof: For $\rho: V \rightarrow P_{\mu}$ define metric d by

$$
d(x, y):=\|\rho(x)-\rho(y)\|_{\infty} \quad(x, y \in V)
$$

Then

$$
d(s, t)=\|\rho(s)-\rho(t)\|_{\infty} \geq \rho(t)(s)-\rho(s)(s)=\rho(t)(t)+\rho(t)(s) \geq \mu(s, t)
$$

Conversely, for metric d with $\left.d\right|_{S} \geq \mu$, define $\rho: V \rightarrow \mathbf{R}^{S}$ by

$$
(\rho(x))(s):=d(x, s) \quad(s \in S) .
$$

Then we have

$$
\begin{aligned}
& \rho(x)(s)+\rho(x)(t)=d(x, s)+d(x, t) \geq d(s, t) \geq \mu(s, t) \Rightarrow \rho(x) \in P_{\mu}, \\
& \rho(s)(s)=d(s, s)=0 \Rightarrow \rho(s) \in P_{\mu, s} .
\end{aligned}
$$

Moreover,

$$
\|\rho(x)-\rho(y)\|=|d(x, s)-d(y, s)| \leq d(x, y)
$$

Lemma (Dress 84)

There is $\phi: P_{\mu} \rightarrow T_{\mu}$ such that

- $\phi(p) \leq p$ for $p \in P_{\mu}$ (, and thus $\phi(p)=p$ for $\left.p \in T_{\mu}\right)$,
- $\|\phi(p)-\phi(q)\|_{\infty} \leq\|p-q\|_{\infty}$ for $p, q \in P_{\mu}$.
A. W. M. Dress: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Advances in Mathematics 53 (1984), 321-402.

Ford-Fulkerson reconsidered $(S=\{s, t\})$

The tight span is a segment

$$
\begin{aligned}
& \rho(s) \\
& d^{\rho}=1 / 2\left(d^{\rho^{\prime}}+d^{\rho^{\prime \prime}}\right) \\
& d^{\rho}(x, y)=\|\rho(x)-\rho(y)\|_{\infty}
\end{aligned}
$$

$\Rightarrow T$-dual is equivalent to

Minimize $\quad \sum_{x y \in E} c(x y) \operatorname{dist}(\rho(x), \rho(y)) \quad$ Subject to $\quad \rho: V \rightarrow$

$$
\rho(s)=\quad \rho(t)=
$$

\Rightarrow finding $s-t$ mincut.

Lovasz-Cherkassky reconsidered ($H_{\mu}=K_{n}$)

The tight span is a star

$\Rightarrow T$-dual is equivalent to

Minimize

$$
\sum_{x y \in E} c(x y) \operatorname{dist}_{\hat{\mathbf{R}}}(\rho(x), \rho(y))
$$

Subject to

$$
\begin{aligned}
& \rho: V \rightarrow \\
& \rho(s)= \\
& \rho(t)= \\
& \rho(u)=
\end{aligned}
$$

$\Rightarrow \frac{1}{2} \sum_{t \in S} t-S \backslash t$ mincut.

Two-commodity reconsidered ($S=\left\{s, t, s^{\prime}, t^{\prime}\right\}$)

The tight span is a square in l_{∞}-plane.

Rem: $\left(x_{1}, x_{2}\right) \mapsto\left(\frac{x_{1}+x_{2}}{2}, \frac{x_{1}-x_{2}}{2}\right)$.
T-dual is equivalent to

Minimize $\sum_{x y \in E} c(x y) \operatorname{dist}_{\substack{ \\\bullet}}(\rho(x), \rho(y))$
Subject to

$$
\begin{aligned}
& \rho: V \rightarrow \\
& \rho(s)=\text { or } \quad \rho\left(s^{\prime}\right)=\text { or } \bullet \\
& \rho(t)=\text { or } \bullet \rho\left(t^{\prime}\right)=\text { or } \bullet
\end{aligned}
$$

$$
d^{\rho}=\frac{3}{4} d^{\rho^{\prime}}+\frac{1}{4} d^{\rho^{\prime \prime}}
$$

One more step to maxbiflow-mincut (left to audience)

Lemma [H.07] 2-face of T_{μ} is isomorphic to

Lemma [H.07] 2-faces of T_{μ} are gluing nicely.

An l_{1}-grid on T_{μ}.

Lemma [H. 07]
The graph of an l_{1}-grid is an isometric subspace of $\left(T_{\mu}, l_{\infty}\right)$.
μ : a rational 2-dim distance on S.
Γ : the graph of an orientable l_{1}-grid on T_{μ}.
Γ_{s} : the subgraph of Γ induced by $T_{\mu, s}(s \in S)$.

Theorem (H. 07)
T-dual is equivalent to

$$
\begin{aligned}
\text { Minimize } & \sum_{x y \in E} c(x y) \operatorname{dist}_{\Gamma}(\rho(x), \rho(y)) \\
\text { Subject to } & \rho: V \rightarrow V \Gamma, \\
& \rho(s) \in V \Gamma_{s}(s \in S)
\end{aligned}
$$

- $\left\{\right.$ the vertices of $\left.\mathcal{P}_{\mu, V}\right\} \subseteq\left\{d^{\rho} \mid \rho:\right.$ above $\}$, where $d^{\rho}(x, y):=\operatorname{dist}_{\Gamma}(\rho(x), \rho(y))$.

Orientablity is important.

Nonorientablity

Proposition [H.07]

If μ is $2-\operatorname{dim} 0-1$ distance, then
$T_{\mu} \simeq$ one-point join of
the clique-vertex incidence graph of
the intersection graph of the maximal stable sets of H_{μ}.

- Karzanov-Lomonosov condition (1978) $\Leftrightarrow \exists 1 / 2$ - l_{1}-grids.
- $T_{\mu} \simeq$ one-point join of
the intersection graph of maximal stable sets of H_{μ}
- bipartiteness \Leftrightarrow orientability

Theorem (H.07)
If μ is integral, then there is an orientable $1 / 4-l_{1}$-grid, and consequently $\mathcal{P}_{\mu, V}$ is $1 / 4$-integral.

- The existence of an $1 / 4-l_{1}$-grid is easy.
- P_{μ} is half-integral and $\left(x_{1}, x_{2}\right) \mapsto\left(\frac{x_{1}+x_{2}}{2}, \frac{x_{1}-x_{2}}{2}\right)$.
- The most difficult part is to prove that this $1 / 4-l_{1}$-grid is orientable.

Why is $\operatorname{dim} T_{\mu} \geq 3$ bad ?

- In $\left(\mathbf{R}^{3}, l_{\infty}\right)$, there exists an infinite family of finite sets $P_{i}(i=1,2, \ldots)$ such that $d_{P_{i}, l_{\infty}}(i=1,2, \ldots)$ lie on all distinct extreme rays of the metric cone.

Karzanov's original approach (1998)
0-extension problem (metric labeling problem):
Given $G=(V, E), c \in \mathbf{R}_{+}^{E}$, and Γ with $V \Gamma \subseteq V$

$$
\begin{aligned}
\text { Minimize } & \sum_{x y \in E} c(x y) \operatorname{dist}_{\Gamma}(\rho(x), \rho(y)) \\
\text { Subject to } & \rho: V \rightarrow V \Gamma \\
& \left.\rho\right|_{V \Gamma}=\operatorname{id}_{V \Gamma}
\end{aligned}
$$

\Rightarrow NP-hard (3-terminal cut problem if $\Gamma=K_{3}$)
A relaxation problem:

$$
\begin{aligned}
\text { Minimize } & \sum_{x y \in E} c(x y) d(x, y) \\
\text { Subject to } & d: \text { metric on } V \\
& \left.d\right|_{V \Gamma}=\operatorname{dist}_{\Gamma}
\end{aligned}
$$

(This is LP-dual of μ-max problem for $\mu=\operatorname{dist}_{\Gamma}$!)

Theorem (Karzanov 98)
Two problems are equivalent if and only if Γ is bipartite without isometric k-cycle for $k \geq 6$, and orientable.
\Rightarrow a combinatorial characterization of 2-dim tight span (of metrics).

Karzanov's approach: graph theoretical, T_{μ} implicit.
Our approach: polyhedral geometry of T_{μ}.

Summary:

The tight span is very powerfull, and gives a unified understanding to multiflow problems.

Future works (for part I):

- Toward the generalized Karzanov conjecture (in preparation).
- Directed multiflows (in preparation, joint with Shungo Koichi).

$$
\begin{aligned}
& P_{\mu}=\left\{(p, q) \in \mathbf{R}_{+}^{S} \times \mathbf{R}_{+}^{S} \mid p(s)+q(t) \geq \mu(s, t)(s, t \in S)\right\} \\
& T_{\mu}=\text { the set of minimal elements of } P_{\mu}
\end{aligned}
$$

- Discrete convex analysis for multiflows.
- Network flow + convex analysis + discreteness (Iri 69, Rockafellar 84) \Rightarrow Discrete convex analysis (Murota 98) afternoon today !
- Multiflow + convex analysis $+T$-dual + discrete metrics \Rightarrow ??

Part II: Metric packing for $K_{3}+K_{3}$.

Multiflow feasiblity problem

$G=(V, E)$: an undirected graph with nonnegative capasity $c \in \mathbf{R}_{+}^{E}$ $H=(S, R):$ a demand graph $S \subseteq V$

Given a demand $q: R \rightarrow \mathbf{R}_{+}$, find a multiflow $f: \mathcal{P} \rightarrow \mathbf{R}_{+}$such that

$$
\sum\{f(P) \mid P \in \mathcal{P}: P \text { is st-path }\}=q(s t) \quad(s t \in R)
$$

Japanese Theorem (Onaga-Kakusho 71, Iri 71)

There exists a feasible multiflow if and only if

$$
\langle c, d\rangle_{E} \geq\langle q, d\rangle_{R} \quad(\forall d: \text { metric on } V)
$$

Cut condition:

$$
\left\langle c, \delta_{A}\right\rangle_{E} \geq\left\langle q, \delta_{A}\right\rangle_{R} \quad(S \subseteq V)
$$

When is the cut condition sufficient ?

Theorem (Papernov 76)
The cut condition is sufficient if and only if $H=K_{4}, C_{5}$ or the union of two star.

Theorem (Hu 63, Rothchild-Winston 66, Lomonosov 76, 85, Seymour 80)
If H is above and $G+H$ is Eulerian, then the cut condition implies an integer multiflow.

Polarity

Lemma (Seymour 79, Karzanov 84)
The cut condition is sufficient if and only if for any $l \in \mathbf{R}_{+}^{E}$ there are a familiy of cuts $\left\{\delta_{A_{i}}\right\}_{i}$ and its nonnegative weight $\left\{\lambda_{i}\right\}_{i}$ such that

$$
\begin{aligned}
\sum_{i} \lambda_{i} \delta_{A_{i}}(x, y) & \leq \operatorname{dist}_{G, l}(x, y) \quad(x y \in E) \\
\sum_{i} \lambda_{i} \delta_{A_{i}}(s, t) & =\operatorname{dist}_{G, l}(s, t) \quad(s t \in R)
\end{aligned}
$$

Such a $\left(\delta_{A_{i}}, \lambda_{i}\right)$ is called an H-packing

Theorem (Seymour 80 for $H=K_{2}+K_{2}$, Karzanov 85)
If H is above and G is bipartite, then there exists an integral H-packing by cut metrics.

Beyond the cut condition

Γ : undirected graph
Definition A metric d on V is called a Γ-metric if there is $\phi: V \rightarrow V \Gamma$ such that

$$
d(x, y)=\operatorname{dist}_{\Gamma}(\phi(x), \phi(y)) \quad(x, y \in V)
$$

Remark: cut metric $\simeq K_{2}$-metric.
Lemma: For a set \mathcal{G} of graphs, \mathcal{G}-metric condition is sufficient if and only if for $l \in \mathbf{R}_{+}^{E}$ there are familiy of \mathcal{G}-metrics $\left\{d_{i}\right\}_{i}$ and its nonnegative weight $\left\{\lambda_{i}\right\}_{i}$ such that

$$
\begin{aligned}
& \sum_{i} \lambda_{i} d_{i}(x, y) \leq \operatorname{dist}_{G, l}(x, y) \quad(x y \in E) \\
& \sum_{i} \lambda_{i} d_{i}(s, t)=\operatorname{dist}_{G, l}(s, t) \quad(s t \in R)
\end{aligned}
$$

demand graph H	$\begin{aligned} & K_{4}, C_{5} \\ & \text { star }+ \text { star } \end{aligned}$	$\begin{aligned} & K_{5}, \\ & K_{3}+\text { star } \end{aligned}$	$K_{3}+K_{3}$	other classes: H has 3-matching
multiflow for $G+H$:Eulerian	integer flow	integer flow (Karzanov 87)	$\begin{aligned} & \hline \exists k, 1 / k \text {-flow } \\ & \text { conjectured } \\ & \text { (Karzanov 90) } \end{aligned}$	no fixed integer k, $1 / k$-flow (Lomonosov 85)
feasibility condition	$\begin{aligned} & K_{2} \\ & \text { cut condition } \end{aligned}$	$K_{2}, K_{2,3}$ (Karzanov 87)	$\begin{aligned} & K_{2}, K_{2,3}, \Gamma_{3,3} \\ & \text { (Karzanov } 89 \text {) } \end{aligned}$	infinite family of graphs (Karzanov 90)
H-packing for G : bipartite	integer packing	integer packing (Karzanov 90)	half-integer packing conjectured (Karzanov 90)	
0 $K_{2,3}$ $K_{3,3}$				

Main result

Theorem [H. 07]
If $H=K_{3}+K_{3}$ and G is bipartite, then there is an integral H-packing by cut, $K_{2,3}, K_{3,3}$, and $\Gamma_{3,3}$-metrics

Chepoi's approach (1997) with a modification by (H. 07)
μ : a bipartite metric on $S(\stackrel{\text { def }}{\Longleftrightarrow} \mu(C)$ is even for cycle $C)$
L : a lattice on Z^{S} defined by

$$
L=\left\{p \in \mathbf{Z}^{S} \mid p(s)+p(t)=0 \quad \bmod 2 \quad(s, t \in S)\right\}
$$

A_{μ} : an affine lattice defined by

$$
A_{\mu}=\mu_{s}+L
$$

where μ_{s} is a s-th row vector of μ (well-defined).

Lemma (Chepoi 97, H. 07)
For a finite subset $Q \subseteq P_{\mu} \cap A_{\mu}$, there is a map $\phi: Q \rightarrow T_{\mu} \cap A_{\mu}$ such that
(1) $\phi(p) \leq p$ for $p \in Q$ (, and thus $\phi(p)=p$ if $\left.p \in T_{\mu}\right)$
(2) $\|\phi(p)-\phi(q)\|_{\infty} \leq\|p-q\|_{\infty}$ for $p, q \in Q$.

This is a discrete version of Dress' lemma.
$H=(S, R)$: a commodity graph
$G=(V, E)$: a bipartite graph and $S \subseteq V$
$\Rightarrow \operatorname{dist}_{G}$ is a bipartite metric on V
Define a (bipartite) metric μ on S by

$$
\mu:=\operatorname{dist}_{G} \mid S .
$$

Define a point $p^{x} \in \mathbf{R}^{S}$ for $x \in V$ by

$$
p^{x}(s)=\operatorname{dist}_{G}(s, x) \quad(s \in S) .
$$

Lemma:

- $p^{x} \in P_{\mu} \cap A_{\mu}$ for $x \in V$, and $p^{s} \in T_{\mu} \cap A_{\mu}$ for $s \in S$.
- $\left\|p^{x}-p^{y}\right\| \leq \operatorname{dist}_{G}(x, y)$.
- $\left\|p^{s}-p^{t}\right\|=\operatorname{dist}_{G}(s, t)=\mu(s, t)$ for $s, t \in S$
integral H-packing \Rightarrow decomposing $\left(T_{\mu} \cap A_{\mu}, l_{\infty}\right)$

Chepoi proved Karzanov's $K_{2}, K_{2,3}$-packing theorems by using the classification result of tight spans of five point metrics (Dress 84).

Remark. $\operatorname{dim} T_{\mu} \leq \# S / 2$

Unfortunately, this approach cannot be applied to six-vertex commodity graph $K_{3}+K_{3}$.

Definition A metric μ is called an H-minimal if there is no metric $\mu^{\prime} \neq \mu$ with $\mu^{\prime} \leq \mu$ such that

$$
\mu^{\prime}(s, t)=\mu(s, t) \quad(s, t \in R)
$$

In the process above, we can replace μ by H-minimal bipartite metric μ^{\prime} with $\mu(s, t)=\mu^{\prime}(s, t)$ for $s t \in R$.

Lemma [H. 07] If H has no 3-matching, then any H-minimal metric μ is $\operatorname{dim} T_{\mu} \leq 2$.

Consider the graph Γ of $T_{\mu} \cap A_{\mu}$ connecting p, q by edge if $\|p-q\|_{\infty}=1$
Proposition [H. 07] If H has no 3-matching and μ is H-minimal, the connected components of the closure of $T_{\mu} \backslash \Gamma$ are

square

$K_{2,3}$-folder

$K_{3,3}$-folder

Future works (for part II):

- A unified understanding to planer multiflows and some variations:
- planar multiflows with demand edges on k holes ($k=1$: OkamuraSeymour 81, $k=2$: Okamura 83, $k=3,4$: Karzanov 94,95)
- graph having no K_{5}-minor (Seymour 81), signed graph having no odd K_{5}-minor (Geelen-Guenin 01)

