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Part I. 7T-dual to maximum multiflow problems
Main message:
e Multiflow combinatorial duality theorems can be derived from 7T-dual.
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e Geometry of T, rules discreteness of multiflow potential.



Notation

G = (V, E): an undirected graph with nonnegative capasity c: £ — Ry
S: the set of terminals S CV

P:. the set of paths in G whose ends belong to S.
Definition. f:P — Ry is a multiflow (w.r.t (G,c;S)) if
Y f(P)<cle) (e€E).
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Maxmimization problem

pu-max problem:
Given p: S xS — Ry with u(s,t) = u(t,s) and u(s,s) =0,

Maximize > pu(sp,tp)f(P)
PeP
Subject to  f:a multiflow for (G,c; S),

where sp,tp: endpoints of P.
Philosophy: we shall regard p as a distance on §

Problem of the bounded fractionality (Karzanov)

When does u-max problem have integer, half-integer, quarter-integer, or
1/k-integer (fixed k) optimal flow for VG = (V,E) with integer ¢ and
SCV?



Some nice examples
o S={s,t} = single commodity flow

Maxflow-Mincut Theorem (Ford-Fulkerson 54)
Max flow value = s-t mincut value,
d integer optimal flow if c is integer.

o S={s,5,t,t'}, u(s,t) = u(s’,t’) = 1 and zero otherwise
= two commodity flow

Maxbiflow-Mincut Theorem (Hu 63)
Max flow value = Min (ss’-tt’ mincut, st’-ts’ mincut),
3 half-integer optimal flow if ¢ is integer.



o u(s,t) =1 Vs, t with s =2t = free multiflow problem

Theorem (Lovasz 76, Cherkassky 77)

1
Max flow value = 5 Y ¢S\ ¢t mincut,

tes
3 half-integer optimal flow if ¢ is integer.

Notation: If p is 0-1, the commodity graph H, = (S, R,) is defined by

st € Ry, g,u(s,t) = 1.

Remark: H, = Ks: single commodity, H, = Ko + Ko: two commodity,
H, = Kyn: free multiflow,



Assume H, has no isolated point and c is integer.
Theorem (Karzanov-Lomonosov 1978)

If the intersection graph I' of the maximal stable sets in H,, has no triangle,
there exists a quarter-integer optimal flow.

If " is bipartite, there exists a half-integer optimal flow.

Rem: 9 combinatorial duality theorem.

Rem: A polymatroidal proof (Frank, Karzanov, and Sebd 1994).



Beyond 0-1 weights

Multiflow Locking Theorem (Karzanov-Lomonosov 1978)
A: 3-cross free family on S

p= Y d&4: sum of cut metrics of A
AcA

Max flow value = »  A-S\ A mincut,

AeA
3 half-integer optimal flow

Theorem (Karzanov & Manoussakis 1996)
(S,p): the graph metric of Kp,,

3 half-integer optimal flow (+ combinatrial duality theorem)

Where do these small fractionality phenomena come from 7



LP-dual to u-max problem

Minimize (¢, d)g
Subject to d: metric on V,
d(s,t) > u(s,t) (s,t€5)

Remark: If y-max problem has a 1/k-integer optimal flow for V(G, ¢) with
cE Z:E|_ and p is integral, the polyhedron

Puv ={d:metricon V | d(s,t) > u(s,t)(s,t € S)} + RYI_
is 1/k-integral (by standard TDI argument).

Remark: This gives a necessary condition for the existence of 1/k-integral
optimal flows
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Assume p is 0-1 distance and H, has no isolated point.

Theorem (Karzanov 1989)

(1) If H, satisfies:

(P) three pairwise intersecting maximal stable sets Aj, A>, A3z in Hy
satisfies Ay N Ay, = Ao N Az = AzN Aq,

then PM’V IS quarter-integral for YV with S C V.

(2) If H, violates (P), then there is no integer k such that P,y is 1/k-
integral for VV with S C V.

A. V. Karzanov: Polyhedra related to undirected multicommodity flows, Linear Algebra
and Its Applications 114/115 (1989) 293—-328.
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Karzanov Conjecture (ICM, Kyoto, 1990)

(1) If H, satisfies (P), then there is k € Z4 such that y-max problem has
1/k-integer optimal flow for VG = (V, E) with c€ Z¥ and S C V.

(2) k= 4 will do.

Some special cases beyond Karzanov-Lomonosov Theorem (1978)
o If H, = Ky + K3, 3 half-integer optimal flow (Karzanov 1998).

o If H, = Ko + Ky, 3 quarter-integer optimal flow (Lomonosov 2004).
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w: an integral metric

Py = {p € R% | p(s) + p(t) > u(s,t) (s,t € S)}

T, := the set of minimal elements of P, (tight span of u)
Theorem (Karzanov 1998)

(1) If dimT, < 2, then P,y is quarter-integral for vV with S C V.

(2) If dimT), > 3, then then there is no k such that P,y is 1/k-integral
for VV with S C V.

A. V. Karzanov:
Minimum 0-extensions of graph metrics, European J. Combin. 19 (1998) 71-101.

Metrics with finite sets of primitive extensions, Ann. Combin. 2 (1998) 211-241.
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@: an integral distance

Main Theorem (H.07)
(1) If dimT, < 2, then P,.v is quarter-integral for every V with S C V.

(2) If dimT,, > 3, then then there is no k such that P,y is 1/k-integral
for every V with S C V.

Remark (H.07): Karzanov condition (P) < dim T, < 2 for 0-1 distance p.

Generalized Karzanov Conjecture:
If dimT), <2, there is k € Z such that u-max problem has a 1/k-integral

optimal flow for VG = (V, E) with ce€ Z¥ and SC V.

Now I'm trying to solve it |
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T,,. the tight span, the injective hull, or the T'x-space

T, is not so common in combinatrial optimization.

Q1. What is T}, 7

Q2. Why does T}, arise in multiflow problem 7
(—> T—dual)

Q3. Why is dimT;, <2 crucial 7
(— loo-plane ~ [1-plane)

15



What is T), ? (some history)

1964 Isbell (injective hull)

1984 Dress (phylogenetic tree reconstruction)
1994 Chrobak & Larmore (online algorithm)

2006 Hirai (the tight span of nonmetric distances)

Relation to multiflow theory
1997 Chepoi (T'x-proof to cut packing theorem)

1998 Karzanov (relaxation of 0-extension problem)
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Some interesting properties of T},

e 1 is isometrically embeded into (7},l-x) (Dress 84, H. 06)

e metric p is a tree metric if and only if T, is a tree (Dress 84), and

more...
P, ={peR”|p(s)+p(t) > pu(s,t) (s,t €5)} T
T, = Minimal P, Ly <

T.s={p€R”|p(s) =0}

W = O W wll e
— O = W RS
O = W w N

W W W O N =+

E @ & <+ o
N =~ W N Ol w
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Why does T}, arise in multiflow problem 7

Py :={p € R¥ | p(s) + p(t) > u(s,t) (s,t € S)}
T,, := the set of minimal elements of P,
Tus ={p€Tu|p(s) =0} (s€&S) (the terminal region of s)

T-dual to pu-max problem:

Theorem (H. 07)

Minimize (¢, d)g
Subject to d: metric on V,
d(s,t) > p(s,t) (st €5)

~ Minimize ) c(zy)|p(@) — p(y) |l
zyel
Subjectto p:V =1}

p(s) €Tus (s€S)
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p is an analogue of the potential
|p(x) — p(y)l||loo is the potential difference

(V,E,c;S)

o (o)
4 o )
Yoo — ® c(zy)llp(x) — p(y)l
Minimize 3= cfay) |o(z) = p(0) | ey
Subject to p:V — 1T, / T,C RS
pls) € Ty (5 € 5) '

Multifacility location problem (a variation of p-median problems)
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Proof of T-dual

P, = {p € RS | p(s) + p(t) > u(s,t) (s,t € S)}
Pys ={seP,|p(s) =0} (s€8)

Lemma: LP-dual of u-max problem is equivalent to

Minimize 3 c(zy)llp(z) — p(y)llso
zyel
Subjectto p:V — Py

p(s) € Pus (s€S5)

Proof. For p:V — P, define metric d by

d(z,y) == ||p(z) — p(Y|lc (z,y € V).
Then

d(s,t) = [lp(s) — p(D)[lcc = p(t)(s) — p(s)(s) = p(t)(t) + p(¢)(s) = u(s,1).
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Conversely, for metric d with d|g > u, define p: V — RS by

(p(z))(s) :==d(z,s) (s€5).

Then we have

p(z)(s) + p(z)(t) = d(z,s) + d(x,t) > d(s,t) > u(s,t) = p(x) € Py,
p(s)(s) =d(s,s) =0 = p(s) € Pys.
Moreover,

|p(x) — p(y)|| = |d(z,s) — d(y,s)| < d(z,y).

S T /p(llj)

>

d(,y) [p(), p(y)|l




Lemma (Dress 84)
Thereis ¢ : P, — T}, such that

e ¢(p) <pforpe P, (, and thus ¢(p) = p for p € T},),

* |l¢(p) — #(@) oo < llp — gllc fOr p,q € Pp.

A. W. M. Dress: Trees, tight extensions of metric spaces, and the cohomological dimen-
sion of certain groups: a note on combinatorial properties of metric spaces. Advances
in Mathematics 53 (1984), 321-402.
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Ford-Fulkerson reconsidered (S = {s,t})

The tight span is a segment

pft)
B,
T,
Q TILL
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dP
d’(z,y)

= I'-dual is equivalent to

Minimize c(xy)dist\(p(:zz),p(y)) Subject to P - V=

yek

= finding s-t mincut.

1/2(d" + d*")
lp(x) — p(y)|loo
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Lovasz-Cherkassky reconsidered (H; = Kp)

The tight span is a star

s t u
S ={s,t,u} 0 11
P11 0 1

plu) - B A T,

K
-
-
-
-
-
03
03
.
.
.
S
-
-
.
-
o
0

it

"8 \ ¢ mincut
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= T'-dual is equivalent to
Minimize

Subject to

1
= = > t-S\ t mincut.
teS

2. clzy)dist (p(z), p(y))

ryel A
1/2
p:V —
p(s) =
pil) = @
plu) = @
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Two-commodity reconsidered (S = {s,t,s',t'})

The tight span is a square in [oo-plane.

45 degree rotation

1+ xp T1 _332)

Rem: (z1,z0) — ( 5 T 5
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T-dual is equivalent to

Minimize > c(zy)dist (p(z), p(y))
Y _*_./0 P Y

ryel
Subject to

27



28



One more step to maxbiflow-mincut (left to audience)

( Minimize (c, d’) h
Subject to 1/2
p:V — o
p(s)=@ or = p(s)=" or ®
£) = N =
L plt)=@ or @ p(t) or @ )
e . .
Minimize (¢, d")
- Subject to p:V — /. or \
pls) = p(s) = @ ps) = p(t') =
t) = p(t') = t) = p(s') =
. pt) = p(t') = - p(t) = p(s') g
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Lemma [H.07] 2-face of T}, is isomorphic to

(R 1.) 3s,t € S

45-degree
rotation

I /o

Lemma [H.07] 2-faces of T}, are gluing nicely.

7

¢

does not occur !
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An [1-grid on Tj,.

polyhedral subdivision into /\

Lemma [H. 07]
The graph of an [;-grid is an isometric subspace of (1y,lx).
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w: a rational 2-dim distance on S.
I': the graph of an orientable I;-grid on T},.
I's: the subgraph of I' induced by T, s (s € S).

Theorem (H. 07)
T-dual is equivalent to

Minimize  »  c(zy)distr(p(z), p(y))
zyel
Subjectto p:V — VI,

p(s) e VIs (s€ S)

o { the vertices of P,y } C {d’ | p:above},
where dP(x,y) = distp(p(z), p(y)).
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Orientablity is important.
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not orientable

orientable
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Nonorientablity
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Proposition [H.07]

If uis 2-dim 0O-1 distance, then

T,, ~ one-point join of

the clique-vertex incidence graph of

the intersection graph of the maximal stable sets of H.

e Karzanov-Lomonosov condition (1978) < 3 1/2-11-grids.

e T}, ~ one-point join of
the intersection graph of maximal stable sets of H,

e bipartiteness < orientability
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Theorem (H.07)
If u is integral, then there is an orientable 1/4-l1-grid, and consequently

P, v is 1/4-integral.

e The existence of an 1/4-[1-grid is easy.

r1 + T2 T1 —332)

o PP, is half-integral and (z1,2z5) — ( > 3 5

e The most difficult part is to prove that this 1/4-l1-grid is orientable.
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Why is dim7j,, > 3 bad ?

e In (R3,1), there exists an infinite family of finite sets P;(s = 1,2,...)
such that dp ; (i =1,2,...) lie on all distinct extreme rays of the metric
cone.

(2,-2,0) (2,0,0)
(1,1, (1717'1)
(0,0,0)

40



Karzanov's original approach (1998)
O-extension problem (metric labeling problem):
Given G = (V,E), ce RE  and ' with VI’ C V

Minimize  »  c(zy)distr(p(x), p(y))

zyek
Subjectto p:V = VI
plvr =idyrp

= NP-hard ( 3-terminal cut problem if I' = K3)

A relaxation problem:

Minimize > c(zy)d(z,y)
zyel
Subject to d: metric on V
d|VF = diStp

(This is LP-dual of u-max problem for p = distp!)

41



Theorem (Karzanov 98)
Two problems are equivalent if and only if I' is bipartite without isometric
k-cycle for k > 6, and orientable.

= a combinatorial characterization of 2-dim tight span (of metrics).

Karzanov's approach: graph theoretical, T, implicit.

Our approach: polyhedral geometry of Tj,.

42



Summary:

The tight span is very powerfull, and gives a unified understanding to
multiflow problems.
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Future works (for part I):

e Toward the generalized Karzanov conjecture (in preparation).

e Directed multiflows (in preparation, joint with Shungo Koichi).

Py = {(p.a) € RIL xR [ p(s) +a(t) > u(s,t) (s,t € 5)}
T, = the set of minimal elements of P,

e Discrete convex analysis for multiflows.

— Network flow 4 convex analysis + discreteness (Iri 69, Rockafellar 84)
— Discrete convex analysis (Murota 98) afternoon today !

— Multiflow + convex analysis + T-dual 4+ discrete metrics = 77
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Part II. Metric packing for K3 + K3.
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Multiflow feasiblity problem

G = (V, E): an undirected graph with nonnegative capasity c € R{{
H = (S,R): a demand graph S CV

Given a demand ¢ : R — R4, find a multiflow f: P — R4 such that

S{f(P)| PeP:Pis st-path} = q(st) (st € R).
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Japanese Theorem (Onaga-Kakusho 71, Iri 71)

There exists a feasible multiflow if and only if

(c,d)p > {q,d)p (Vd: metric on V).

Cut condition:

(¢,04)E =2 (¢,04)r (SCV)
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When is the cut condition sufficient 7

Theorem (Papernov 76)
The cut condition is sufficient if and only if H = K4,Cg or the union of
two star.

Theorem (Hu 63, Rothchild-Winston 66, Lomonosov 76, 85, Seymour 80)

If H is above and G + H is Eulerian, then the cut condition implies an
integer multiflow.
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Polarity

Lemma (Seymour 79, Karzanov 84)
The cut condition is sufficient if and only if for any [ &€ R:EI_ there are a

familiy of cuts {4, }; and its nonnegative weight {};}; such that
D Aida(x,y) < distg(z,y) (zy € E),

1
Z)\ﬁAi(s,t) = distg(s,t) (st€ R)
1

Such a (44, ;) is called an H-packing

Theorem (Seymour 80 for H = K- + K5, Karzanov 85)
If H is above and G is bipartite, then there exists an integral H-packing

by cut metrics.
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Beyond the cut condition

I': undirected graph

Definition A metric d on V is called a I'-metric if thereis ¢ . V — VI
such that

d(z,y) = distp(¢(z), ¢(y)) (z,y€V).

Remark: cut metric ~ Ko-metric.

Lemma: For a set G of graphs, Gg-metric condition is sufficient if and
only if for [ € R_E|_ there are familiy of G-metrics {d;}; and its nonnegative

weight {);}; such that
Y Aidi(z,y) < distg(z,y) (zy € E)
i

Z)\Z‘di(s,t) = diStG,l(S,t) (st € R)
1
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demand graph H|| K4, Cs, K, other classes:
S st;r _|_5 star K3+star K3+ K3 H has 3-matching
- Ik, 1/k-flow no fixed integer k,
mU_ltlﬂOW fOI' integer ﬂOW lnteger ﬂOW Conjectured ]./]C—ﬂOW

(G + H:Eulerian

(Karzanov 87)

(Karzanov 90)

(Lomonosov 85)

feasibility KQ KQ, K2,3 KQ, Kg,g, Fg)g 1r;ﬁn1te}fam11y
iti diti (Karzanov 87) (Karzanov 89) O Brabis
condition cut condition (Karzanov 90)
H-packing integer integer half-integer packing
for GG: bipartite packing packing conjectured

(Karzanov 90)

(Karzanov 90)

K2 K2,3 ngg
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Main result
Theorem [H. 07]

If H= K3+ K3 and G is bipartite, then there is an integral H-packing by
cut, K2,3, K3,3, and F3,3-metrics
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Chepoi's approach (1997) with a modification by (H. 07)

1. a bipartite metric on S ((d:e]; n(C) is even for cycle C)
L: a lattice on Z° defined by

L={peZ’|p(s)+p(t)=0 mod2 (s,tes)}

Ay: an affine lattice defined by

Ay = ps+ L,

where us is a s-th row vector of u (well-defined).
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Lemma (Chepoi 97, H. 07)
For a finite subset Q C P, N Ay, thereis a map ¢: Q — T, N A, such that

(1) ¢(p) <pforpe @ (, and thus ¢(p) =p if p € T)

(2) llo(p) — d(@)lloo < llp — glleo for p,q € Q.

This is a discrete version of Dress’ lemma.
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H = (S, R): a commodity graph
G = (V, E): a bipartite graph and SCV

= distg is a bipartite metric on V

Define a (bipartite) metric x on S by

n .= diStg‘S.
Define a point p® € R® for z € V by

pP(s) =distg(s,z) (s€8).

Lemma:

e pYc PbNA,forzeV,and p°c T, NA, forseS.

o Ip7 — pY|| < distg(z, y).

o |[p® — pt|| = distg(s,t) = u(s,t) for s,t € S

integral H-packing = decomposing (1), N Ayu,loo)
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Chepoi proved Karzanov's Ky, K» 3-packing theorems by using the classi-
fication result of tight spans of five point metrics (Dress 84).

Remark. dimT,, < #S5/2

Unfortunately, this approach cannot be applied to six-vertex commodity
graph K3 + K3.

56



Definition A metric p is called an H-minimal if there is no metric u/ % u
with u/ < p such that

w'(s,t) = u(s,t) (s,t €R).

In the process above, we can replace pu by H-minimal bipartite metric p/
with u(s,t) = p/(s,t) for st € R.

Lemma [H. O7] If H has no 3-matching, then any H-minimal metric u is
dimT,, < 2.
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Consider the graph I' of T, N A,, connecting p,q by edge if ||p — q|lcc =1

Proposition [H. 07] If H has no 3-matching and p is H-minimal, the
connected components of the closure of T, \ I" are

O <P

square K 3-folder K3 3-folder
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Future works (for part II):

e A unified understanding to planer multiflows and some variations:

— planar multiflows with demand edges on k holes (k = 1: Okamura-
Seymour 81, k = 2: Okamura 83, k = 3,4: Karzanov 94,95)

— graph having no Kg-minor (Seymour 81), signed graph having no
odd Kg-minor (Geelen-Guenin 01)
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