$T_X\mathchar`-approaches to multiflows and metrics$

Hiroshi Hirai

RIMS, Kyoto Univ.

hirai@kurims.kyoto-u.ac.jp

June 10, 2008 Kyoto

Contents:

Part I: T-dual to maximum multiflow problems

H. Hirai, Tight extentions of distance spaces and the dual fractionality of undirected multiflow problems, RIMS Preprint-1606, 2007. http://www.kurims.kyoto-u.ac.jp/preprint/RIMS1606.pdf

Part II: Metric packing for $K_3 + K_3$ (option)

H. Hirai, Metric packing for $K_3 + K_3$, RIMS-preprent 1608, 2007. http://www.kurims.kyoto-u.ac.jp/preprint/RIMS1608.pdf

Part I: *T*-dual to maximum multiflow problems Main message:

• Multiflow combinatorial duality theorems can be derived from T-dual.

• Geometry of T_{μ} rules discreteness of multiflow potential.

Notation

G = (V, E): an undirected graph with nonnegative capasity $c : E \to \mathbf{R}_+$ S: the set of terminals $S \subseteq V$ \mathcal{P} : the set of paths in G whose ends belong to S.

Definition. $f : \mathcal{P} \to \mathbf{R}_+$ is a *multiflow* (w.r.t (G, c; S)) if

$$\sum_{P \in \mathcal{P}: e \in P} f(P) \le c(e) \quad (e \in E).$$

Maxmimization problem

 $\begin{array}{l} \mu\text{-max problem:}\\ \text{Given } \mu:S\times S\to \mathbf{R}_+ \text{ with } \mu(s,t)=\mu(t,s) \text{ and } \mu(s,s)=0,\\ \text{Maximize } & \sum_{P\in\mathcal{P}}\mu(s_P,t_P)f(P)\\ \text{Subject to } & f: \text{a multiflow for } (G,c;S), \end{array}$

where s_P, t_P : endpoints of P.

Philosophy: we shall regard μ as a distance on S

Problem of the bounded fractionality (Karzanov)

When does μ -max problem have integer, half-integer, quarter-integer, or 1/k-integer (fixed k) optimal flow for $\forall G = (V, E)$ with integer c and $S \subseteq V$?

Some nice examples

• $S = \{s, t\} \Rightarrow$ single commodity flow

Maxflow-Mincut Theorem (Ford-Fulkerson 54) Max flow value = s-t mincut value, \exists integer optimal flow if c is integer.

• $S = \{s, s', t, t'\}$, $\mu(s, t) = \mu(s', t') = 1$ and zero otherwise \Rightarrow two commodity flow

Maxbiflow-Mincut Theorem (Hu 63)

Max flow value = Min (ss'-tt' mincut, st'-ts' mincut), \exists half-integer optimal flow if c is integer. • $\mu(s,t) = 1 \ \forall s,t$ with $s \neq t \Rightarrow$ free multiflow problem

Theorem (Lovasz 76, Cherkassky 77) Max flow value $= \frac{1}{2} \sum_{t \in S} t \cdot S \setminus t$ mincut, \exists half-integer optimal flow if c is integer.

Notation: If μ is 0-1, the commodity graph $H_{\mu} = (S, R_{\mu})$ is defined by $st \in R_{\mu} \stackrel{\text{def}}{\iff} \mu(s, t) = 1.$

Remark: $H_{\mu} = K_2$: single commodity, $H_{\mu} = K_2 + K_2$: two commodity, $H_{\mu} = K_n$: free multiflow,

Assume H_{μ} has no isolated point and c is integer.

Theorem (Karzanov-Lomonosov 1978)

If the intersection graph Γ of the maximal stable sets in H_{μ} has no triangle, there exists a quarter-integer optimal flow.

If Γ is bipartite, there exists a half-integer optimal flow.

Rem: \exists combinatorial duality theorem.

Rem: A polymatroidal proof (Frank, Karzanov, and Sebö 1994).

Beyond 0-1 weights

Multiflow Locking Theorem (Karzanov-Lomonosov 1978) \mathcal{A} : 3-cross free family on S $\mu = \sum_{A \in \mathcal{A}} \delta_A$: sum of cut metrics of \mathcal{A}

Max flow value = $\sum_{A \in \mathcal{A}} A - S \setminus A$ mincut, ∃ half-integer optimal flow

Theorem (Karzanov & Manoussakis 1996) (S, μ): the graph metric of $K_{2,n}$ \exists half-integer optimal flow (+ combinatrial duality theorem)

Where do these small fractionality phenomena come from ?

LP-dual to μ -max problem

 $\begin{array}{lll} \text{Minimize} & \langle c,d\rangle_E\\ \text{Subject to} & d\text{: metric on }V,\\ & d(s,t)\geq \mu(s,t) \quad (s,t\in S) \end{array}$

Remark: If μ -max problem has a 1/k-integer optimal flow for $\forall (G, c)$ with $c \in \mathbf{Z}^E_+$ and μ is integral, the polyhedron

 $\mathcal{P}_{\mu,V} = \{d : \text{metric on } V \mid d(s,t) \ge \mu(s,t)(s,t \in S)\} + \mathbf{R}^V_+$

is 1/k-integral (by standard TDI argument).

Remark: This gives a necessary condition for the existence of 1/k-integral optimal flows

Assume μ is 0-1 distance and H_{μ} has no isolated point.

Theorem (Karzanov 1989)

(1) If H_{μ} satisfies:

(P) three pairwise intersecting maximal stable sets A_1, A_2, A_3 in H_μ satisfies $A_1 \cap A_2 = A_2 \cap A_3 = A_3 \cap A_1$,

then $\mathcal{P}_{\mu,V}$ is quarter-integral for $\forall V$ with $S \subseteq V$.

(2) If H_{μ} violates (P), then there is no integer k such that $\mathcal{P}_{\mu,V}$ is 1/kintegral for $\forall V$ with $S \subseteq V$.

A. V. Karzanov: Polyhedra related to undirected multicommodity flows, *Linear Algebra and Its Applications* 114/115 (1989) 293–328.

Karzanov Conjecture (ICM, Kyoto, 1990)

(1) If H_{μ} satisfies (P), then there is $k \in \mathbb{Z}_{+}$ such that μ -max problem has 1/k-integer optimal flow for $\forall G = (V, E)$ with $c \in \mathbb{Z}^{E}$ and $S \subseteq V$.

(2) k = 4 will do.

Some special cases beyond Karzanov-Lomonosov Theorem (1978)

- If $H_{\mu} = K_2 + K_3$, \exists half-integer optimal flow (Karzanov 1998).
- If $H_{\mu} = K_2 + K_r$, \exists quarter-integer optimal flow (Lomonosov 2004).

 μ : an integral metric $P_{\mu} := \{ p \in \mathbf{R}^{S} \mid p(s) + p(t) \ge \mu(s,t) \ (s,t \in S) \}$ $T_{\mu} :=$ the set of minimal elements of P_{μ} (tight span of μ)

Theorem (Karzanov 1998)

- (1) If dim $T_{\mu} \leq 2$, then $\mathcal{P}_{\mu,V}$ is quarter-integral for $\forall V$ with $S \subseteq V$.
- (2) If dim $T_{\mu} \ge 3$, then then there is no k such that $\mathcal{P}_{\mu,V}$ is 1/k-integral for $\forall V$ with $S \subseteq V$.

A. V. Karzanov:

Minimum 0-extensions of graph metrics, *European J. Combin.* **19** (1998) 71–101. Metrics with finite sets of primitive extensions, *Ann. Combin.* **2** (1998) 211–241. μ : an integral distance

Main Theorem (H.07)

- (1) If dim $T_{\mu} \leq 2$, then $\mathcal{P}_{\mu,V}$ is quarter-integral for every V with $S \subseteq V$.
- (2) If dim $T_{\mu} \geq 3$, then then there is no k such that $\mathcal{P}_{\mu,V}$ is 1/k-integral for every V with $S \subseteq V$.

Remark (H.07): Karzanov condition (P) \Leftrightarrow dim $T_{\mu} \leq 2$ for 0-1 distance μ .

Generalized Karzanov Conjecture:

If dim $T_{\mu} \leq 2$, there is $k \in \mathbb{Z}$ such that μ -max problem has a 1/k-integral optimal flow for $\forall G = (V, E)$ with $c \in \mathbb{Z}_{+}^{E}$ and $S \subseteq V$.

Now I'm trying to solve it !

 T_{μ} : the *tight span*, the *injective hull*, or the T_X -space

 T_{μ} is not so common in combinatrial optimization.

Q1. What is T_{μ} ?

- Q2. Why does T_{μ} arise in multiflow problem ? (\rightarrow *T*-dual)
- Q3. Why is dim $T_{\mu} \leq 2$ crucial ? ($\rightarrow l_{\infty}$ -plane $\simeq l_1$ -plane)

What is T_{μ} ? (some history)

1964 Isbell (injective hull)

1984 Dress (phylogenetic tree reconstruction)

1994 Chrobak & Larmore (online algorithm)

2006 Hirai (the tight span of nonmetric distances)

Relation to multiflow theory

1997 Chepoi (T_X -proof to cut packing theorem)

1998 Karzanov (relaxation of 0-extension problem)

Some interesting properties of T_{μ}

- μ is isometrically embedded into (T_{μ}, l_{∞}) (Dress 84, H. 06)
- metric μ is a tree metric if and only if T_{μ} is a tree (Dress 84), and more...

Why does T_{μ} arise in multiflow problem ?

 $P_{\mu} := \{ p \in \mathbf{R}^{S} \mid p(s) + p(t) \ge \mu(s,t) \ (s,t \in S) \}$ $T_{\mu} := \text{the set of minimal elements of } P_{\mu}$ $T_{\mu,s} := \{ p \in T_{\mu} \mid p(s) = 0 \} \quad (s \in S) \text{ (the terminal region of } s) \}$

T-*dual* to μ -max problem:

Theorem (H. 07)

- $\begin{array}{lll} \text{Minimize} & \langle c,d\rangle_E\\ \text{Subject to} & d\text{: metric on }V,\\ & d(s,t)\geq \mu(s,t) & (s,t\in S) \end{array}$
- $\simeq \text{ Minimize } \sum_{\substack{xy \in E \\ \text{Subject to }}} c(xy) \| \rho(x) \rho(y) \|_{\infty}$ Subject to $\rho: V \to T_{\mu}$ $\rho(s) \in T_{\mu,s} \quad (s \in S)$

 ρ is an analogue of the *potential* $\|\rho(x) - \rho(y)\|_{\infty}$ is the *potential difference*

Multifacility location problem (a variation of *p*-median problems)

Proof of *T*-dual

$$P_{\mu} = \{ p \in \mathbf{R}^{S} \mid p(s) + p(t) \ge \mu(s, t) \ (s, t \in S) \}$$
$$P_{\mu,s} := \{ s \in P_{\mu} \mid p(s) = 0 \} \ (s \in S)$$

Lemma: LP-dual of μ -max problem is equivalent to

$$\begin{array}{ll} \text{Minimize} & \sum\limits_{xy \in E} c(xy) \| \rho(x) - \rho(y) \|_{\infty} \\ \text{Subject to} & \rho : V \to P_{\mu} \\ & \rho(s) \in P_{\mu,s} \quad (s \in S) \end{array}$$

Proof: For $\rho: V \to P_{\mu}$ define metric d by

$$d(x,y) := \|\rho(x) - \rho(y)\|_{\infty} \quad (x,y \in V).$$

Then

$$d(s,t) = \|\rho(s) - \rho(t)\|_{\infty} \ge \rho(t)(s) - \rho(s)(s) = \rho(t)(t) + \rho(t)(s) \ge \mu(s,t).$$

Conversely, for metric d with $d|_S \geq \mu$, define $\rho: V \rightarrow \mathbf{R}^S$ by

$$(\rho(x))(s) := d(x,s) \quad (s \in S).$$

Then we have

$$\rho(x)(s) + \rho(x)(t) = d(x,s) + d(x,t) \ge d(s,t) \ge \mu(s,t) \Rightarrow \rho(x) \in P_{\mu},$$

$$\rho(s)(s) = d(s,s) = 0 \Rightarrow \rho(s) \in P_{\mu,s}.$$

Moreover,

$$\|\rho(x) - \rho(y)\| = |d(x,s) - d(y,s)| \le d(x,y).$$

Lemma (Dress 84) There is $\phi: P_{\mu} \to T_{\mu}$ such that

- $\phi(p) \leq p$ for $p \in P_{\mu}$ (, and thus $\phi(p) = p$ for $p \in T_{\mu}$),
- $\|\phi(p) \phi(q)\|_{\infty} \leq \|p q\|_{\infty}$ for $p, q \in P_{\mu}$.

A. W. M. Dress: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. *Advances in Mathematics* **53** (1984), 321–402.

Ford-Fulkerson reconsidered ($S = \{s, t\}$)

The tight span is a segment

22

 $d^{\rho} = 1/2(d^{\rho'} + d^{\rho''})$ $d^{\rho}(x, y) := \|\rho(x) - \rho(y)\|_{\infty}$

 \Rightarrow *T*-dual is equivalent to

Minimize $\sum_{xy \in E} c(xy) \operatorname{dist}(\rho(x), \rho(y))$ Subject to $\rho: V \to$ $\rho(s) = \bullet \quad \rho(t) = \bullet$

 \Rightarrow finding *s*-*t* mincut.

Lovasz-Cherkassky reconsidered ($H_{\mu} = K_n$)

The tight span is a star

 \Rightarrow *T*-dual is equivalent to

$$\Rightarrow \frac{1}{2} \sum_{t \in S} t - S \setminus t \text{ mincut.}$$

Two-commodity reconsidered ($S = \{s, t, s', t'\}$)

The tight span is a square in l_{∞} -plane.

Rem:
$$(x_1, x_2) \mapsto \left(\frac{x_1 + x_2}{2}, \frac{x_1 - x_2}{2}\right).$$

T-dual is equivalent to

+

_

$$d^{\rho} = \frac{3}{4}d^{\rho'} + \frac{1}{4}d^{\rho''}$$

28

One more step to maxbiflow-mincut (left to audience)

Lemma [H.07] 2-face of T_{μ} is isomorphic to

Lemma [H.07] 2-faces of T_{μ} are gluing *nicely*.

An l_1 -grid on T_{μ} .

Lemma [H. 07]

The graph of an l_1 -grid is an isometric subspace of (T_{μ}, l_{∞}) .

- μ : a rational 2-dim distance on S.
- Γ : the graph of an orientable l_1 -grid on T_{μ} .
- Γ_s : the subgraph of Γ induced by $T_{\mu,s}$ $(s \in S)$.

Theorem (H. 07)

T-dual is equivalent to

 $\begin{array}{ll} \text{Minimize} & \sum_{xy \in E} c(xy) \text{dist}_{\Gamma}(\rho(x), \rho(y)) \\ \text{Subject to} & \rho : V \to V\Gamma, \\ & \rho(s) \in V\Gamma_s \ (s \in S) \end{array}$

• { the vertices of $\mathcal{P}_{\mu,V}$ } \subseteq { $d^{\rho} \mid \rho$: above}, where $d^{\rho}(x,y)$:= dist $_{\Gamma}(\rho(x),\rho(y))$.

Orientablity is important.

Nonorientablity

Proposition [H.07]

If μ is 2-dim 0-1 distance, then $T_{\mu} \simeq$ one-point join of the clique-vertex incidence graph of the intersection graph of the maximal stable sets of H_{μ} .

- Karzanov-Lomonosov condition (1978) $\Leftrightarrow \exists 1/2-l_1$ -grids.
- $T_{\mu} \simeq$ one-point join of the intersection graph of maximal stable sets of H_{μ}
- bipartiteness \Leftrightarrow orientability

Theorem (H.07)

If μ is integral, then there is an orientable 1/4- l_1 -grid, and consequently $\mathcal{P}_{\mu,V}$ is 1/4-integral.

• The existence of an 1/4- l_1 -grid is easy.

•
$$P_{\mu}$$
 is half-integral and $(x_1, x_2) \mapsto \left(\frac{x_1 + x_2}{2}, \frac{x_1 - x_2}{2}\right)$.

• The most difficult part is to prove that this $1/4-l_1$ -grid is orientable.

Why is dim $T_{\mu} \geq 3$ bad ?

• In (\mathbb{R}^3, l_∞) , there exists an infinite family of finite sets $P_i(i = 1, 2, ...)$ such that d_{P_i, l_∞} (i = 1, 2, ...) lie on all distinct extreme rays of the metric cone.

Karzanov's original approach (1998)

0-extension problem (metric labeling problem):

Given G = (V, E), $c \in \mathbf{R}^E_+$, and Γ with $V\Gamma \subseteq V$

 $\begin{array}{ll} \text{Minimize} & \sum_{xy \in E} c(xy) \text{dist}_{\Gamma}(\rho(x), \rho(y)) \\ \text{Subject to} & \rho : V \to V\Gamma, \\ & \rho|_{V\Gamma} = \text{id}_{V\Gamma} \end{array}$

 \Rightarrow NP-hard (3-terminal cut problem if $\Gamma = K_3$)

A relaxation problem:

$\sum c(xy)d(x,y)$
$xy \in E$ d: metric on V
$d _{V\Gamma} = \operatorname{dist}_{\Gamma}$

(This is LP-dual of μ -max problem for $\mu = \text{dist}_{\Gamma}!$)

Theorem (Karzanov 98)

Two problems are equivalent if and only if Γ is bipartite without isometric k-cycle for $k \ge 6$, and orientable.

 \Rightarrow a combinatorial characterization of 2-dim tight span (of metrics).

Karzanov's approach: graph theoretical, T_{μ} implicit.

Our approach: polyhedral geometry of T_{μ} .

Summary:

The tight span is very powerfull, and gives a unified understanding to multiflow problems.

Future works (for part I):

- Toward the generalized Karzanov conjecture (in preparation).
- Directed multiflows (in preparation, joint with Shungo Koichi).

$$P_{\mu} = \{(p,q) \in \mathbf{R}^{S}_{+} \times \mathbf{R}^{S}_{+} \mid p(s) + q(t) \ge \mu(s,t) \ (s,t \in S)\}$$

$$T_{\mu} = \text{the set of minimal elements of } P_{\mu}$$

- Discrete convex analysis for multiflows.
 - − Network flow + convex analysis + discreteness (Iri 69, Rockafellar 84)
 ⇒ Discrete convex analysis (Murota 98) afternoon today !
 - Multiflow + convex analysis + T-dual + discrete metrics \Rightarrow ??

Part II: Metric packing for $K_3 + K_3$.

Multiflow feasiblity problem

G = (V, E): an undirected graph with nonnegative capasity $c \in \mathbf{R}_{+}^{E}$ H = (S, R): a demand graph $S \subseteq V$

Given a demand $q: R \to \mathbf{R}_+$, find a multiflow $f: \mathcal{P} \to \mathbf{R}_+$ such that

$$\sum \{ f(P) \mid P \in \mathcal{P} : P \text{ is } st\text{-path} \} = q(st) \quad (st \in R).$$

Japanese Theorem (Onaga-Kakusho 71, Iri 71)

There exists a feasible multiflow if and only if

 $\langle c,d\rangle_E \geq \langle q,d\rangle_R$ ($\forall d$: metric on V).

Cut condition:

 $\langle c, \delta_A \rangle_E \ge \langle q, \delta_A \rangle_R \quad (S \subseteq V)$

When is the cut condition sufficient ?

Theorem (Papernov 76)

The cut condition is sufficient if and only if $H = K_4, C_5$ or the union of two star.

Theorem (Hu 63, Rothchild-Winston 66, Lomonosov 76, 85, Seymour 80) If H is above and G + H is Eulerian, then the cut condition implies an integer multiflow.

Polarity

Lemma (Seymour 79, Karzanov 84)

The cut condition is sufficient if and only if for any $l \in \mathbf{R}^E_+$ there are a familiy of cuts $\{\delta_{A_i}\}_i$ and its nonnegative weight $\{\lambda_i\}_i$ such that

$$\sum_{i} \lambda_i \delta_{A_i}(x, y) \leq \text{dist}_{G,l}(x, y) \quad (xy \in E),$$

 $\sum_{i} \lambda_i \delta_{A_i}(s, t) = \text{dist}_{G,l}(s, t) \quad (st \in R)$

Such a $(\delta_{A_i}, \lambda_i)$ is called an *H*-packing

Theorem (Seymour 80 for $H = K_2 + K_2$, Karzanov 85) If H is above and G is bipartite, then there exists an integral H-packing by cut metrics. Beyond the cut condition

 Γ : undirected graph

Definition A metric d on V is called a $\varGamma\text{-metric}$ if there is $\phi:V\to V\varGamma$ such that

$$d(x,y) = \text{dist}_{\Gamma}(\phi(x),\phi(y)) \quad (x,y \in V).$$

Remark: cut metric $\simeq K_2$ -metric.

Lemma: For a set \mathcal{G} of graphs, \mathcal{G} -metric condition is sufficient if and only if for $l \in \mathbb{R}^E_+$ there are familiy of \mathcal{G} -metrics $\{d_i\}_i$ and its nonnegative weight $\{\lambda_i\}_i$ such that

$$\sum_{i} \lambda_{i} d_{i}(x, y) \leq \text{dist}_{G, l}(x, y) \quad (xy \in E)$$
$$\sum_{i} \lambda_{i} d_{i}(s, t) = \text{dist}_{G, l}(s, t) \quad (st \in R)$$

demand graph H	$K_4, C_5,$ star + star	$K_5, K_3 + \text{star}$	$K_{3} + K_{3}$	other classes: H has 3-matching
multiflow for $G + H$:Eulerian	integer flow	integer flow (Karzanov 87)	$\exists k, 1/k$ -flow conjectured (Karzanov 90)	no fixed integer k , 1/k-flow (Lomonosov 85)
feasibility condition	K_2 cut condition	$\begin{array}{c} K_2, \ K_{2,3} \\ (\text{Karzanov 87}) \end{array}$	$K_2, K_{2,3}, \Gamma_{3,3}$ (Karzanov 89)	infinite family of graphs (Karzanov 90)
H-packing for G : bipartite	integer packing	integer packing (Karzanov 90)	half-integer packing conjectured (Karzanov 90)	

Main result

Theorem [H. 07] If $H = K_3 + K_3$ and G is bipartite, then there is an integral H-packing by cut, $K_{2,3}$, $K_{3,3}$, and $\Gamma_{3,3}$ -metrics Chepoi's approach (1997) with a modification by (H. 07)

 μ : a bipartite metric on $S \iff \mu(C)$ is even for cycle C) L: a lattice on \mathbf{Z}^S defined by

$$L = \{ p \in \mathbf{Z}^S \mid p(s) + p(t) = 0 \mod 2 \quad (s, t \in S) \}$$

 A_{μ} : an affine lattice defined by

$$A_{\mu} = \mu_s + L,$$

where μ_s is a *s*-th row vector of μ (well-defined).

Lemma (Chepoi 97, H. 07) For a finite subset $Q \subseteq P_{\mu} \cap A_{\mu}$, there is a map $\phi : Q \to T_{\mu} \cap A_{\mu}$ such that (1) $\phi(p) \leq p$ for $p \in Q$ (, and thus $\phi(p) = p$ if $p \in T_{\mu}$)

(2) $\|\phi(p) - \phi(q)\|_{\infty} \le \|p - q\|_{\infty}$ for $p, q \in Q$.

This is a discrete version of Dress' lemma.

H = (S, R): a commodity graph G = (V, E): a bipartite graph and $S \subseteq V$

 \Rightarrow dist_G is a bipartite metric on V

Define a (bipartite) metric μ on S by

 $\mu := \operatorname{dist}_G|_S.$

Define a point $p^x \in \mathbf{R}^S$ for $x \in V$ by

$$p^x(s) = \operatorname{dist}_G(s, x) \quad (s \in S).$$

Lemma:

• $p^x \in P_\mu \cap A_\mu$ for $x \in V$, and $p^s \in T_\mu \cap A_\mu$ for $s \in S$.

•
$$||p^x - p^y|| \leq \operatorname{dist}_G(x, y).$$

•
$$||p^s - p^t|| = \operatorname{dist}_G(s, t) = \mu(s, t)$$
 for $s, t \in S$

integral *H*-packing \Rightarrow decomposing $(T_{\mu} \cap A_{\mu}, l_{\infty})$

Chepoi proved Karzanov's $K_2, K_{2,3}$ -packing theorems by using the classification result of tight spans of five point metrics (Dress 84).

Remark. dim $T_{\mu} \leq \#S/2$

Unfortunately, this approach cannot be applied to six-vertex commodity graph $K_3 + K_3$.

Definition A metric μ is called an *H*-minimal if there is no metric $\mu' \neq \mu$ with $\mu' \leq \mu$ such that

$$\mu'(s,t) = \mu(s,t) \quad (s,t \in R).$$

In the process above, we can replace μ by *H*-minimal bipartite metric μ' with $\mu(s,t) = \mu'(s,t)$ for $st \in R$.

Lemma [H. 07] If H has no 3-matching, then any H-minimal metric μ is dim $T_{\mu} \leq 2$.

Consider the graph Γ of $T_{\mu} \cap A_{\mu}$ connecting p, q by edge if $\|p - q\|_{\infty} = 1$

Proposition [H. 07] If H has no 3-matching and μ is H-minimal, the connected components of the closure of $T_{\mu} \setminus \Gamma$ are

Future works (for part II):

- A unified understanding to planer multiflows and some variations:
 - planar multiflows with demand edges on k holes (k = 1: Okamura-Seymour 81, k = 2: Okamura 83, k = 3,4: Karzanov 94,95)
 - graph having no K_5 -minor (Seymour 81), signed graph having no odd K_5 -minor (Geelen-Guenin 01)