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Aim of talk is to discuss an interrelationship among:

e Tight spans (Isbell 64, Dress 84)

— Phylogenetic tree/network in biology.

e Metric labeling, and 0-extensions

— Pattern recognitions and classifications.
— Image restoration in computer vision.

e Multicommodity flows

— Combinatorial optimization, network flows.



Tight spans (Isbell 64, Dress 84)
@: a metric on a set S.

Py = {peR%|p(s) +p(t) = u(s,0) (s,t € 5},
Ty the set of minimal elements of P,.

T, the tight span of p.
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Lemma [Isbell 64, Dress 84]
(S, ) is isometrically embeded into (T,,ls) by s+ u(s,-) € R® (s € S).
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Theorem [Dress 84]
A metric p is a tree metric if and only if T}, is a tree.

— 1}, is a Kind of a higher dimensional tree.

— phylogenetic trees in biology.
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Why “tight” 7

(S, ), (X,d): metric spaces.

(X,d): an extension of (S, u) IS C X and d|g = pu.

(X,d): a tight extension of (S, )

et (X,d) is an extension s.t.

vV extension (X,d") of (S,u) with d' <d = d' =d.

Theorem [Isbell 64, Dress 84]
o (Ty,lxo) is a tight extension of (S, u), and

e Every tight extension of (S, u) is isometrically embeded into (1),l)

— T}, is the universal tight extension.



Metric labeling problem (Kleingberg & Tardos 02)
@: a metric on a set of labels §,

G = (V,E,c). a graph with edge weight ¢ > 0,
f:VxS—RU{+ox} (assignment cost).

Minimize >  f(z,p(z)) + > c(zy) ulp(z), p(y))

eV rzyck

subject to p:V — S (assignment of labels)

Image restoration in computar vision
(Ishikawa and Geiger 99, Boykov et al. 01)
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e Modeling by Markov Random Field (MRF)




In many cases, MLP reduces to O-extension problem.

Suppose S C V.
Minimize
subject to
~ Minimize

subject to

> e(zy) plp(z), p(y))

zyel
p:V — S plg=idg

> e(zy) d(z,y)
ryel
d: metric on V with d|g = u

Ve € Vds € S,d(x,s) =0

Metric labeling and O-extension are NP-hard

e Good heuristics (Boykov et al. 01)

e Approximation algorithms

(Kleinberg and Tardos 02, Calinescu et al. 04, ---)

e Polynomially-solvable classes (Karzanov 98, 04)



Karzanov's LP-relaxation for 0-extension (Karzanov 98)

Minimize Y c(zy)d(z,y)

zyek
subject to  (V,d): 0-extension of (S, u)
=
Minimize > e(zy)d(z,y)
xyek

subject to  (V,d): extension of (S, )

When does this relaxation exactly solves the 0-extension 7



In the case of graph metric
I': a graph
dr: graph metric of I'

Theorem [Karzanov 98]
The LP-relaxation solves 0-extension for (VG; S,dp) exactly
& I is bipartite, orientable, and has no isometric k-cycle (k > 6).

Such a graph is called a frame (including trees, grids, ---).



Proof sketch (Karzanov 938)

Min. > c(zy)d(z,y) Min. > clzy)llp(@) — p(¥) oo
xyek ~ xyek
s. t. d: a tight extension of u s. t. p:V =Ty, p(s) =u(s,-) (s€8).

e For a frame I', the tight span po is obtained by filling [1-space into
each 4-cycle.

r (Tdrv l00>

10



Multicommodity flows (multiflows)

G = (V,E,c): a graph with nonnegative edge capasity c.

S C V: a set of terminals.

A multiflow f = (P,)) £

P:. a set of S-paths,

AP — R4 a flow-value function satisfying capasity constraint

> f(P)<c(e) (e€B).

PeP:ecP

Maximum multiflow problem
Given terminal weight p: S x S — Ry with p(s,t) = u(t,s) > u(s,s) = 0.

Max. > u(sp,tp)f(P)
PeP
s. t. f=(P,)): a multiflow,

where sp,tp: endpoints of P.
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LP-dual to maximum multiflow problem
(Onaga-Kakusho 71, Iri 71, Lomonosov 85):

Min. > c(zy)d(z,y)

zyek
s. t. d: metric on V with d|g > u

When p is metric,

Min. > c(zy)d(z,y)

zyel
s.t. d: metric on V with d|g = p

This is just Karzanov’s LP-relaxation of O-extension for u !

~Min. > c(zy)|lp(z) — p(y)lloo

zyel
st. p:V =T, p(s) =u(s,:) (se€8).

— Nonmetric version 7
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Observation [H. 06]:
tight spans are definable for nonmetric distances

Theorem [H.07, to appear in JCTB]
Max. multiflow value for (G; S, p) =

Min. Z c(xy)||lp(z) — p(y)]|oo

zyel
s.t. p:V—-=Ty p(s)eTys (s€S5),

Tus ={peTy|p(s) =0} (s€Sf).

Theorem [H.07] p:rational
dimT, <2 & d graph I' on T, and k € Z- ¢ such that

Max. multiflow value for (G; S, u)

= Min. 3 e(a) drip(), p(v)
zyekl
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Proof sketch (H. 07)
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Single-commodity flows

S = o+

Max flow value =

p‘(t)
b,
Tps |
N
p(s

)
Min. ZeEC(xy)diSK(p(x),p(yD s. 5. PV = \

p(s)=9e  p(t)

— Max-flow Min-cut theorem by Ford-Fulkerson (1954)
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Two-commodity flows
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Max flow value =

Min. xyZEEc(xy) dis.g((p(af),p(y)) st

— Max-biflow Min-cut theorem by Hu (1963)
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Three-commodity flow
has no combinatorial duality theorem since dimT},, > 3.
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Summery

Tight spans have a potential to provide a unified framework for metric
labeling, 0-extensions, and multicommodity flows.

Future works
e Design of heuristics/approximation algorithms for metric labeling and
O-extension based on tight spans.

e Design of efficient/practical algorithms for multiflows based on tight
sSpans.

e Fractionality problems in the multiflow theory
(Karzanov 90, H. 08).
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