Tight spans, Metric labeling, and Multicommodity flows

Hiroshi Hirai
RIMS, Kyoto Univ.
hirai@kurims.kyoto-u.ac.jp

March 20-21, 2009
Discovering Patterns in Biology, GyeongJu

Aim of talk is to discuss an interrelationship among:

- Tight spans (Isbell 64, Dress 84)
- Phylogenetic tree/network in biology.
- Metric labeling, and 0-extensions
- Pattern recognitions and classifications.
- Image restoration in computer vision.
- Multicommodity flows
- Combinatorial optimization, network flows.

Tight spans (Isbell 64, Dress 84)
μ : a metric on a set S.

$$
\begin{aligned}
& P_{\mu}:=\left\{p \in \mathbf{R}^{S} \mid p(s)+p(t) \geq \mu(s, t)(s, t \in S)\right\} \\
& T_{\mu}:=\text { the set of minimal elements of } P_{\mu}
\end{aligned}
$$

T_{μ} : the tight span of μ.

Lemma [Isbell 64, Dress 84]
(S, μ) is isometrically embeded into $\left(T_{\mu}, l_{\infty}\right)$ by $s \mapsto \mu(s, \cdot) \in \mathbf{R}^{S}(s \in S)$.

Theorem [Dress 84]
A metric μ is a tree metric if and only if T_{μ} is a tree.
$\rightarrow T_{\mu}$ is a kind of a higher dimensional tree.
\rightarrow phylogenetic trees in biology.

Why "tight" ?
$(S, \mu),(X, d):$ metric spaces.
(X, d) : an extension of $(S, \mu) \stackrel{\text { def }}{\Longleftrightarrow} S \subseteq X$ and $\left.d\right|_{S}=\mu$.
(X, d) : a tight extension of (S, μ)
$\stackrel{\text { def }}{\Longleftrightarrow}(X, d)$ is an extension s.t.
\forall extension $\left(X, d^{\prime}\right)$ of (S, μ) with $d^{\prime} \leq d \Rightarrow d^{\prime}=d$.

Theorem [Isbell 64, Dress 84]

- $\left(T_{\mu}, l_{\infty}\right)$ is a tight extension of (S, μ), and
- Every tight extension of (S, μ) is isometrically embeded into (T_{μ}, l_{∞})
$\rightarrow T_{\mu}$ is the universal tight extension.

Metric labeling problem (Kleingberg \& Tardos 02)
μ : a metric on a set of labels S,
$G=(V, E, c):$ a graph with edge weight $c \geq 0$, $f: V \times S \rightarrow \mathbf{R} \cup\{+\infty\}$ (assignment cost).

$$
\begin{aligned}
\text { Minimize } & \sum_{x \in V} f(x, \rho(x))+\sum_{x y \in E} c(x y) \mu(\rho(x), \rho(y)) \\
\text { subject to } & \rho: V \rightarrow S \text { (assignment of labels) }
\end{aligned}
$$

Image restoration in computar vision (Ishikawa and Geiger 99, Boykov et al. 01)

- Modeling by Markov Random Field (MRF)

In many cases, MLP reduces to O-extension problem. Suppose $S \subseteq V$.

$$
\begin{aligned}
\text { Minimize } & \sum_{x y \in E} c(x y) \mu(\rho(x), \rho(y)) \\
\text { subject to } & \rho: V \rightarrow S,\left.\rho\right|_{S}=i d_{S} \\
\simeq \text { Minimize } & \sum_{x y \in E} c(x y) d(x, y) \\
\text { subject to } & d: \text { metric on } V \text { with }\left.d\right|_{S}=\mu \\
& \forall x \in V \exists s \in S, d(x, s)=0
\end{aligned}
$$

Metric labeling and 0-extension are NP-hard

- Good heuristics (Boykov et al. 01)
- Approximation algorithms (Kleinberg and Tardos 02, Calinescu et al. 04, ...)
- Polynomially-solvable classes (Karzanov 98, 04)

Karzanov's LP-relaxation for 0-extension (Karzanov 98)

$$
\begin{aligned}
\text { Minimize } & \sum_{x y \in E} c(x y) d(x, y) \\
\text { subject to } & (V, d): 0 \text {-extension of }(S, \mu) \\
\Longrightarrow & \\
\text { Minimize } & \sum_{x y \in E} c(x y) d(x, y) \\
\text { subject to } & (V, d): \text { extension of }(S, \mu)
\end{aligned}
$$

When does this relaxation exactly solves the O-extension ?

In the case of graph metric
Γ : a graph
d_{Γ} : graph metric of Γ

Theorem [Karzanov 98]
The LP-relaxation solves 0-extension for $\left(\forall G ; S, d_{\Gamma}\right)$ exactly
$\Leftrightarrow \Gamma$ is bipartite, orientable, and has no isometric k-cycle $(k \geq 6)$.

Such a graph is called a frame (including trees, grids, ...).

Proof sketch (Karzanov 98)

$$
\begin{array}{ll}
\text { Min. } & \sum_{x y \in E} c(x y) d(x, y) \\
\text { s. t. } d: \text { a tight extension of } \mu & \text { Min. } \sum_{x y \in E} c(x y)\|\rho(x)-\rho(y)\|_{\infty} \\
\text { s. t. } \rho: V \rightarrow T_{\mu}, \rho(s)=\mu(s, \cdot)
\end{array}
$$

- For a frame Γ, the tight span $T_{d_{\Gamma}}$ is obtained by filling l_{1}-space into each 4-cycle.

Multicommodity flows (multiflows)
$G=(V, E, c)$: a graph with nonnegative edge capasity c.
$S \subseteq V:$ a set of terminals.
A multiflow $f=(\mathcal{P}, \lambda) \stackrel{\text { def }}{\Longleftrightarrow}$
\mathcal{P} : a set of S-paths,
$\lambda: \mathcal{P} \rightarrow \mathbf{R}_{+}:$a flow-value function satisfying capasity constraint

$$
\sum_{P \in \mathcal{P}: e \in P} f(P) \leq c(e) \quad(e \in E)
$$

Maximum multiflow problem
Given terminal weight $\mu: S \times S \rightarrow \mathbf{R}_{+}$with $\mu(s, t)=\mu(t, s) \geq \mu(s, s)=0$.

$$
\begin{array}{ll}
\text { Max. } & \sum_{P \in \mathcal{P}} \mu\left(s_{P}, t_{P}\right) f(P) \\
\text { s. t. } & f=(\mathcal{P}, \lambda): \text { a multiflow, }
\end{array}
$$

where s_{P}, t_{P} : endpoints of P.

LP-dual to maximum multiflow problem
(Onaga-Kakusho 71, Iri 71, Lomonosov 85):
Min. $\quad \sum_{x y \in E} c(x y) d(x, y)$
s. t. d : metric on V with $\left.d\right|_{S} \geq \mu$

When μ is metric,

$$
\begin{array}{ll}
\text { Min. } & \sum_{x y \in E} c(x y) d(x, y) \\
\text { s.t. } & d: \text { metric on } V \text { with }\left.d\right|_{S}=\mu
\end{array}
$$

This is just Karzanov's LP-relaxation of O-extension for μ !

$$
\begin{aligned}
\simeq \operatorname{Min.} & \sum_{x y \in E} c(x y)\|\rho(x)-\rho(y)\|_{\infty} \\
\text { s.t. } & \rho: V \rightarrow T_{\mu}, \rho(s)=\mu(s, \cdot) \quad(s \in S)
\end{aligned}
$$

\rightarrow Nonmetric version ?

Observation [H. 06]:
tight spans are definable for nonmetric distances
Theorem [H.07, to appear in JCTB]
Max. multiflow value for $(G ; S, \mu)=$

$$
\begin{array}{ll}
\text { Min. } & \sum_{x y \in E} c(x y)\|\rho(x)-\rho(y)\|_{\infty} \\
\text { s. t. } & \rho: V \rightarrow T_{\mu}, \rho(s) \in T_{\mu, s}(s \in S), \\
& T_{\mu, s}:=\left\{p \in T_{\mu} \mid p(s)=0\right\}(s \in S) .
\end{array}
$$

Theorem [H.07] μ :rational $\operatorname{dim} T_{\mu} \leq 2 \Leftrightarrow \exists \operatorname{graph} \Gamma$ on T_{μ} and $k \in \mathbf{Z}_{>0}$ such that

Max. multiflow value for $(G ; S, \mu)$

$$
\begin{aligned}
=\operatorname{Min.} & \frac{1}{k} \sum_{x y \in E} c(x y) d_{\Gamma}(\rho(x), \rho(y)) \\
\text { s.t. } & \rho: V \rightarrow V \Gamma, \rho(s) \in V \Gamma \cap T_{\mu, s}(s \in S)
\end{aligned}
$$

Proof sketch (H. 07)

Single-commodity flows

Max flow value $=$

Min. $\quad \sum_{x y \in E} c(x y) \operatorname{dist}(\rho(x), \rho(y)) \quad$ s. t. $\quad \rho: V \rightarrow$

$$
\rho(s)=\bullet \quad \rho(t)=
$$

\rightarrow Max-flow Min-cut theorem by Ford-Fulkerson (1954)

Two-commodity flows

Max flow value $=$
Min. $\sum_{x y \in E} c(x y) \operatorname{dist}(\rho(x), \rho(y))$ s. t. $\rho: V \rightarrow$

$$
\begin{aligned}
& \rho(s) \in\{\bullet, \bullet\} \\
& \rho(t) \in\{\bullet, \bullet\} \\
& \rho\left(s^{\prime}\right) \in\{\bullet, \bullet\} \\
& \rho\left(t^{\prime}\right) \in\{\bullet, \bullet\}
\end{aligned}
$$

\rightarrow Max-biflow Min-cut theorem by Hu (1963)

Three-commodity flow
has no combinatorial duality theorem since $\operatorname{dim} T_{\mu} \geq 3$.

$$
\mu=\begin{array}{|l|llllll|}
\hline & s_{1} & s_{2} & s_{3} & t_{1} & t_{2} & t_{3} \\
\hline s_{1} & & & & 1 & & \\
s_{2} & & & & & 1 & \\
s_{3} & & & & & & 1 \\
t_{1} & 1 & & & & & \\
t_{2} & & 1 & & & & \\
t_{3} & & & & 1 & & \\
\hline
\end{array}
$$

More examples

Summery

Tight spans have a potential to provide a unified framework for metric labeling, 0-extensions, and multicommodity flows.

Future works

- Design of heuristics/approximation algorithms for metric labeling and 0-extension based on tight spans.
- Design of efficient/practical algorithms for multiflows based on tight spans.
- Fractionality problems in the multiflow theory (Karzanov 90, H. 08).

