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Aim of talk is to discuss an interrelationship among:

• Tight spans (Isbell 64, Dress 84)

– Phylogenetic tree/network in biology.

• Metric labeling, and 0-extensions

– Pattern recognitions and classifications.

– Image restoration in computer vision.

• Multicommodity flows

– Combinatorial optimization, network flows.
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Tight spans (Isbell 64, Dress 84)
µ: a metric on a set S.

Pµ := {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)},
Tµ := the set of minimal elements of Pµ.

Tµ: the tight span of µ.
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Lemma [Isbell 64, Dress 84]
(S, µ) is isometrically embeded into (Tµ, l∞) by s 7→ µ(s, ·) ∈ RS (s ∈ S).
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Theorem [Dress 84]
A metric µ is a tree metric if and only if Tµ is a tree.

→ Tµ is a kind of a higher dimensional tree.

→ phylogenetic trees in biology.
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Why “tight” ?

(S, µ), (X, d): metric spaces.

(X, d): an extension of (S, µ)
def⇐⇒ S ⊆ X and d|S = µ.

(X, d): a tight extension of (S, µ)
def⇐⇒ (X, d) is an extension s.t.

∀ extension (X, d′) of (S, µ) with d′ ≤ d ⇒ d′ = d.

Theorem [Isbell 64, Dress 84]

• (Tµ, l∞) is a tight extension of (S, µ), and

• Every tight extension of (S, µ) is isometrically embeded into (Tµ, l∞)

→ Tµ is the universal tight extension.
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Metric labeling problem (Kleingberg & Tardos 02)

µ: a metric on a set of labels S,

G = (V, E, c): a graph with edge weight c ≥ 0,

f : V × S → R ∪ {+∞} (assignment cost).

Minimize
∑
x∈V

f(x, ρ(x)) +
∑

xy∈E

c(xy)µ(ρ(x), ρ(y))

subject to ρ : V → S (assignment of labels)

Image restoration in computar vision

(Ishikawa and Geiger 99, Boykov et al. 01)

Noise

pixels

• Modeling by Markov Random Field (MRF)
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In many cases, MLP reduces to O-extension problem.
Suppose S ⊆ V .

Minimize
∑

xy∈E

c(xy)µ(ρ(x), ρ(y))

subject to ρ : V → S, ρ|S = idS

' Minimize
∑

xy∈E

c(xy) d(x, y)

subject to d: metric on V with d|S = µ

∀x ∈ V ∃s ∈ S, d(x, s) = 0

Metric labeling and 0-extension are NP-hard

• Good heuristics (Boykov et al. 01)

• Approximation algorithms
(Kleinberg and Tardos 02, Calinescu et al. 04, · · · )

• Polynomially-solvable classes (Karzanov 98, 04)
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Karzanov’s LP-relaxation for 0-extension (Karzanov 98)

Minimize
∑

xy∈E

c(xy)d(x, y)

subject to (V, d): 0-extension of (S, µ)

=⇒
Minimize

∑
xy∈E

c(xy)d(x, y)

subject to (V, d): extension of (S, µ)

When does this relaxation exactly solves the 0-extension ?
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In the case of graph metric

Γ : a graph

dΓ : graph metric of Γ

Theorem [Karzanov 98]

The LP-relaxation solves 0-extension for (∀G;S, dΓ ) exactly

⇔ Γ is bipartite, orientable, and has no isometric k-cycle (k ≥ 6).

Such a graph is called a frame (including trees, grids, · · · ).
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Proof sketch (Karzanov 98)

Min.
∑

xy∈E

c(xy)d(x, y)

s. t. d: a tight extension of µ

'
Min.

∑
xy∈E

c(xy)‖ρ(x) − ρ(y)‖∞

s. t. ρ : V → Tµ, ρ(s) = µ(s, ·) (s ∈ S).

• For a frame Γ , the tight span TdΓ
is obtained by filling l1-space into

each 4-cycle.

Γ (TdΓ
, l∞)

(R2, l1)
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Multicommodity flows (multiflows)

G = (V, E, c): a graph with nonnegative edge capasity c.

S ⊆ V : a set of terminals.

A multiflow f = (P, λ)
def⇐⇒

P: a set of S-paths,

λ : P → R+: a flow-value function satisfying capasity constraint∑
P∈P:e∈P

f(P ) ≤ c(e) (e ∈ E).

Maximum multiflow problem

Given terminal weight µ : S × S → R+ with µ(s, t) = µ(t, s) ≥ µ(s, s) = 0.

Max.
∑

P∈P
µ(sP , tP )f(P )

s. t. f = (P, λ): a multiflow,

where sP , tP : endpoints of P .
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LP-dual to maximum multiflow problem

(Onaga-Kakusho 71, Iri 71, Lomonosov 85):

Min.
∑

xy∈E

c(xy)d(x, y)

s. t. d: metric on V with d|S ≥ µ

When µ is metric,

Min.
∑

xy∈E

c(xy)d(x, y)

s.t. d: metric on V with d|S = µ

This is just Karzanov’s LP-relaxation of 0-extension for µ !

' Min.
∑

xy∈E

c(xy)‖ρ(x) − ρ(y)‖∞

s.t. ρ : V → Tµ, ρ(s) = µ(s, ·) (s ∈ S).

→ Nonmetric version ?
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Observation [H. 06]:
tight spans are definable for nonmetric distances

Theorem [H.07, to appear in JCTB]

Max. multiflow value for (G;S, µ) =

Min.
∑

xy∈E

c(xy)‖ρ(x) − ρ(y)‖∞

s. t. ρ : V → Tµ, ρ(s) ∈ Tµ,s (s ∈ S),

Tµ,s := {p ∈ Tµ | p(s) = 0} (s ∈ S).

Theorem [H.07] µ:rational

dimTµ ≤ 2 ⇔ ∃ graph Γ on Tµ and k ∈ Z>0 such that

Max. multiflow value for (G;S, µ)

= Min.
1

k

∑
xy∈E

c(xy) dΓ (ρ(x), ρ(y))

s.t. ρ : V → V Γ, ρ(s) ∈ V Γ ∩ Tµ,s (s ∈ S).
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Proof sketch (H. 07)

(R2, l1)

(R2, l1)

(R2, l1)

(Tµ, l∞) Γ

14



Single-commodity flows

Tµ

O

Tµ,s

Tµ,t

p(s)

p(t)

Pµ

µ =

s t

s 0 1

t 1 0

Max flow value =

s. t.Min.
∑

xy∈E

c(xy)dist (ρ(x), ρ(y)) ρ : V →

ρ(s) = • ρ(t) = •

→ Max-flow Min-cut theorem by Ford-Fulkerson (1954)
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Two-commodity flows

µ =

s s′ t t′

s 0 0 1 0

s′ 0 0 0 1

t 1 0 0 0

t′ 0 1 0 0

TµTµ,s

Tµ,t

Tµ,s′

Tµ,t′
(R{s,s′}, l∞)

Max flow value =

Min.
ρ(s) ∈ {•, •}
ρ(t) ∈ {•, •}
ρ(s′) ∈ {•, •}
ρ(t′) ∈ {•, •}

∑

xy∈E

c(xy) dist (ρ(x), ρ(y)) s. t. 1/2
ρ : V →

→ Max-biflow Min-cut theorem by Hu (1963)
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Three-commodity flow

has no combinatorial duality theorem since dimTµ ≥ 3.

(R3, l∞)
µ =

s1 s2 s3 t1 t2 t3

s1 1

s2 1

s3 1

t1 1

t2 1

t3 1

Tµ
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More examples

1/4

1/4
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Summery

Tight spans have a potential to provide a unified framework for metric

labeling, 0-extensions, and multicommodity flows.

Future works

• Design of heuristics/approximation algorithms for metric labeling and

0-extension based on tight spans.

• Design of efficient/practical algorithms for multiflows based on tight

spans.

• Fractionality problems in the multiflow theory

(Karzanov 90, H. 08).
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