Tight spans, Metric labeling, and Multicommodity flows

Hiroshi Hirai

RIMS, Kyoto Univ.

hirai@kurims.kyoto-u.ac.jp

March 20-21, 2009 Discovering Patterns in Biology, GyeongJu Aim of talk is to discuss an interrelationship among:

- Tight spans (Isbell 64, Dress 84)
 - Phylogenetic tree/network in biology.
- Metric labeling, and 0-extensions
 - Pattern recognitions and classifications.
 - Image restoration in computer vision.
- Multicommodity flows
 - Combinatorial optimization, network flows.

Tight spans (Isbell 64, Dress 84)

 μ : a metric on a set S.

$$P_{\mu} := \{ p \in \mathbf{R}^{S} \mid p(s) + p(t) \ge \mu(s, t) \ (s, t \in S) \},$$

$$T_{\mu} := \text{the set of minimal elements of } P_{\mu}.$$

 T_{μ} : the *tight span* of μ .

Lemma [Isbell 64, Dress 84] (S, μ) is isometrically embedded into (T_{μ}, l_{∞}) by $s \mapsto \mu(s, \cdot) \in \mathbb{R}^{S}$ ($s \in S$).

Theorem [Dress 84]

A metric μ is a tree metric if and only if T_{μ} is a tree.

 $\rightarrow T_{\mu}$ is a kind of *a higher dimensional tree*.

 \rightarrow phylogenetic trees in biology.

Why "tight" ?

 (S,μ) , (X,d): metric spaces.

(X,d): an *extension* of $(S,\mu) \stackrel{\text{def}}{\iff} S \subseteq X$ and $d|_S = \mu$.

(X, d): a *tight extension* of (S, μ) $\stackrel{\text{def}}{\longleftrightarrow} (X, d)$ is an extension s.t. \forall extension (X, d') of (S, μ) with $d' \leq d \Rightarrow d' = d$.

Theorem [Isbell 64, Dress 84]

- (T_{μ}, l_{∞}) is a tight extension of (S, μ) , and
- Every tight extension of (S, μ) is isometrically embedded into (T_{μ}, l_{∞})

 $\rightarrow T_{\mu}$ is the universal tight extension.

Metric labeling problem (Kleingberg & Tardos 02) μ : a metric on a set of labels S, G = (V, E, c): a graph with edge weight $c \ge 0$, $f: V \times S \rightarrow \mathbf{R} \cup \{+\infty\}$ (assignment cost).

$$\begin{array}{ll} \text{Minimize} & \sum_{x \in V} f(x, \rho(x)) + \sum_{xy \in E} c(xy) \, \mu(\rho(x), \rho(y)) \\ \text{subject to} & \rho : V \to S \text{ (assignment of labels)} \end{array}$$

Image restoration in computar vision

(Ishikawa and Geiger 99, Boykov et al. 01)

• Modeling by Markov Random Field (MRF)

In many cases, MLP reduces to O-extension problem. Suppose $S \subseteq V$.

$$\begin{array}{lll} \text{Minimize} & \sum\limits_{xy \in E} c(xy) \, \mu(\rho(x), \rho(y)) \\ \text{subject to} & \rho : V \to S, \rho|_S = id_S \\ \\ \simeq \text{Minimize} & \sum\limits_{xy \in E} c(xy) \, d(x,y) \\ \text{subject to} & d: \text{ metric on } V \text{ with } d|_S = \mu \\ \quad \forall x \in V \exists s \in S, d(x,s) = 0 \end{array}$$

Metric labeling and 0-extension are NP-hard

- Good heuristics (Boykov et al. 01)
- Approximation algorithms (Kleinberg and Tardos 02, Calinescu et al. 04, ···)
- Polynomially-solvable classes (Karzanov 98, 04)

Karzanov's LP-relaxation for 0-extension (Karzanov 98)

Minimize	$\sum c(xy)d(x,y)$
subject to	$xy \in E$ (V,d): 0-extension of (S, μ)
\Longrightarrow	
Minimize	$\sum_{x \in F} c(xy) d(x,y)$
subject to	(V,d) : extension of (S,μ)

When does this relaxation exactly solves the 0-extension ?

In the case of graph metric

- Γ : a graph
- d_{\varGamma} : graph metric of \varGamma

Theorem [Karzanov 98]

The LP-relaxation solves 0-extension for $(\forall G; S, d_{\Gamma})$ exactly

 $\Leftrightarrow \Gamma$ is bipartite, orientable, and has no isometric k-cycle ($k \ge 6$).

Such a graph is called a *frame* (including trees, grids, \cdots).

Proof sketch (Karzanov 98)

- Min. $\sum_{xy \in E} c(xy)d(x,y)$ Min. $\sum_{xy \in E} c(xy) \|\rho(x) \rho(y)\|_{\infty}$
- s. t. d: a tight extension of μ s. t. $\rho: V \to T_{\mu}, \ \rho(s) = \mu(s, \cdot) \ (s \in S).$
- \bullet For a frame \varGamma , the tight span $T_{d_{\varGamma}}$ is obtained by filling $l_1\text{-space}$ into each 4-cycle.

Multicommodity flows (multiflows)

G = (V, E, c): a graph with nonnegative edge capasity c. $S \subseteq V$: a set of terminals.

A multiflow $f = (\mathcal{P}, \lambda) \Leftrightarrow$ \mathcal{P} : a set of S-paths, $\lambda : \mathcal{P} \to \mathbf{R}_+$: a flow-value function satisfying capasity constraint $\sum_{P \in \mathcal{P}: e \in P} f(P) \leq c(e) \quad (e \in E).$

Maximum multiflow problem

Given terminal weight $\mu : S \times S \to \mathbf{R}_+$ with $\mu(s,t) = \mu(t,s) \ge \mu(s,s) = 0$.

Max.
$$\sum_{P \in \mathcal{P}} \mu(s_P, t_P) f(P)$$

s. t.
$$f = (\mathcal{P}, \lambda)$$
: a multiflow,

where s_P, t_P : endpoints of P.

LP-dual to maximum multiflow problem (Onaga-Kakusho 71, Iri 71, Lomonosov 85):

$$\begin{array}{lll} {\rm Min.} & \displaystyle \sum_{xy\in E} c(xy) d(x,y) \\ {\rm s. t.} & d : \mbox{ metric on } V \mbox{ with } d|_S \geq \mu \end{array}$$

When μ is metric,

Min.
$$\sum_{xy \in E} c(xy)d(x,y)$$
s.t. d: metric on V with $d|_S = \mu$

This is just Karzanov's LP-relaxation of 0-extension for μ !

$$\simeq \operatorname{Min.} \quad \sum_{xy \in E} c(xy) \| \rho(x) - \rho(y) \|_{\infty}$$

s.t. $\rho : V \to T_{\mu}, \ \rho(s) = \mu(s, \cdot) \quad (s \in S).$

 \rightarrow Nonmetric version ?

Observation [H. 06]:

tight spans are definable for nonmetric distances

Theorem [H.07, to appear in JCTB] Max. multiflow value for $(G; S, \mu) =$

Min.
$$\sum_{xy \in E} c(xy) \| \rho(x) - \rho(y) \|_{\infty}$$

s. t.
$$\rho : V \to T_{\mu}, \ \rho(s) \in T_{\mu,s} \quad (s \in S),$$
$$T_{\mu,s} := \{ p \in T_{\mu} \mid p(s) = 0 \} \ (s \in S).$$

Theorem [H.07] μ :rational

dim $T_{\mu} \leq 2 \Leftrightarrow \exists$ graph Γ on T_{μ} and $k \in \mathbb{Z}_{>0}$ such that

Max. multiflow value for $(G; S, \mu)$ = Min. $\frac{1}{k} \sum_{xy \in E} c(xy) d_{\Gamma}(\rho(x), \rho(y))$ s.t. $\rho: V \to V\Gamma, \ \rho(s) \in V\Gamma \cap T_{\mu,s} \ (s \in S).$

Proof sketch (H. 07)

Single-commodity flows

Max flow value =

Min.
$$\sum_{xy \in E} c(xy) \operatorname{dist}(\rho(x), \rho(y))$$
 s. t. $\rho: V \to \rho(s) = \bullet$ $\rho(t) = \bullet$

 \rightarrow Max-flow Min-cut theorem by Ford-Fulkerson (1954)

Two-commodity flows

 \rightarrow Max-biflow Min-cut theorem by Hu (1963)

Three-commodity flow has no combinatorial duality theorem since dim $T_{\mu} \ge 3$.

More examples

Summery

Tight spans have a potential to provide a unified framework for metric labeling, 0-extensions, and multicommodity flows.

Future works

- Design of heuristics/approximation algorithms for metric labeling and 0-extension based on tight spans.
- Design of efficient/practical algorithms for multiflows based on tight spans.
- Fractionality problems in the multiflow theory (Karzanov 90, H. 08).