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(V ,E , S , b, c): network
(V ,E ): undirected graph
S ⊆ V : terminal set
b : V → Z+: node-capacity
c : E → Z+: edge-capacity (V, E, b, c)

S

.

Definition

.

.

.

. ..

. .

Multiflow f = (P, λ)
def⇐⇒

P: a set of S-paths & λ : P → R+: a flow-value function satisfying∑
{λ(P) | P ∈ P : x ∈ VP} ≤ b(x) (x ∈ V ),∑
{λ(P) | P ∈ P : e ∈ EP} ≤ c(e) (e ∈ E ).

routing in networks, VLSI-layout, disjoint paths,
LP-relaxations of NP-hard problems (multicut, 0-extension, . . .)
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Our Problem

(V ,E , S , b, c): network, µ :
(S
2

)
→ R+

.

Definition (Flow-value of f = (P, λ))

.

.

.

. ..

.

.

val(µ, f ) :=
∑

{λ(P)µ(sP , tP) | P ∈ P}.

.

Problem

.

.

.

. ..

.

.

Maximize val(µ, f ) over all multiflows f in (V ,E , S , b, c)

S = {s, t} ⇒ single commodity flow (Ford-Fulkerson 56)
µ = 1 ⇒ free multiflow (Lovász 76, Cherkassky 77; Vazirani 01,
Pap 07, Babenko-Karzanov 08)

We are interested in the behavior of multiflows
for fixed µ and an arbitrary network (V ,E , S , b, c)
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Subtree distance (H. 06)

.

Definition

.

.

.

. ..

.

.

µ :
(S
2

)
→ R+ is a subtree distance

def⇐⇒
∃ tree Γ , α ∈ R>0, a family {Rs | s ∈ S} of subtrees s.t.

µ(s, t) = α distΓ (Rs ,Rt) (s, t ∈ S).

distΓ (Rs, Rt) = 3

Rt

Rs

Ru

Γ
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Main Theorem (combinatorial min-max relation)

(V ,E , S , b, c), µ: subtree distance realized by (Γ, α; {Rs}s∈S)

.

Theorem (H. 10)

.

.

.

. ..

.

.

max
f

val(µ, f )

= αmin
∑
x∈V

b(x)diamF (x) +
∑
xy∈E

c(xy)distΓ (F (x),F (y))

s.t. F : V → FΓ (all subtrees), F (s) ∩ Rs 6= ∅ (s ∈ S).

S

(V, E, b, c)

x

F (x)
F : V → FΓ

y F (y)

RsF (s)
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Main Theorem (half-integrality & polytime algorithm)

.

Theorem (H. 10, cond.)

.

.

.

. ..

.

.

There exists a half-integral µ-max multiflow.

There exists a strongly polytime algorithm to find a
half-integral µ-max multiflow and an optimal subtree location.

.

Remark

.

.

.

. ..

.

.

Tree-shaped facility location
(Mineaka 85, Lowe-Tamir 92, Hakimi-Schmeichel-Labbe 93, . . . )

µ 6= tree distance
⇒ ∀k, ∃(V ,E , S , b, c), 6 ∃ 1/k-integral µ-max multiflow
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When b → ∞ (edge-only-capacitated)

max
f

val(µ, f )

= αmin
∑
x∈V

b(x)diamF (x) +
∑
xy∈E

c(xy)distΓ (F (x),F (y))

s.t. F : V → FΓ, F (s) ∩ Rs 6= ∅ (s ∈ S)

= αmin
∑
xy∈E

c(xy)distΓ (ρ(x), ρ(y))

s.t. ρ : V → VΓ, ρ(s) ∈ Rs (s ∈ S)

⇒ point location on tree Γ
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When c → ∞ (node-only-capacitated)

max
f

val(µ, f ) = αmin
∑
x∈V

b(x)diamF (x)

s.t. F : V → FΓ

F (x) ∩ F (y) 6= ∅ (xy ∈ E )

F (s) ∩ Rs 6= ∅ (s ∈ S)

Interpretation ?
Vt := {x ∈ V | t ∈ F (x)} (t ∈ VΓ ).

(Γ, {Vt}t∈V Γ ): tree-decomposition of (V ,E ).
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Example 1 (node-only capacitated; c → ∞, b|S → ∞)

S = {s, t}, µ(s, t) = 1, Γ = vsvt, Rs = {vs}, Rt = {vt}

max
f

val(µ, f ) = min
∑

x∈V \S b(x)diamF (x)

s.t. F (x) = {vs}, {vt}, or {vs , vt} (x ∈ V ),

F (x) ∩ F (y) 6= ∅ (xy ∈ E ),

(F (s),F (t)) = ({vs}, {vt}).

vs

vt

s

t

Γ

F

(V, E, {s, t}, b)

→ Menger’s theorem
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Example 2 (node-only capacitated; c → ∞, b|S → ∞)

S = {s1, s2, . . . , sk}, µ = 1

1/2
1

2

34

5

1

2

34

5

Γ
(V, E, S, b)

F : V → FΓ

max
f

val(µ, f ) = min b(U0) +
1

2

k∑
i=1

b(Bd(Ui ))

s.t. U0,U1,U2, . . . ,Uk(disjoint), si ∈ Ui .

cf. Vazirani 01, Mader 78.
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Proof Sketch

Proof consists of two parts:

Duality relation: LP-dualilty & subtree lemma

Half-integrality: optimality criterion & fractional b-matching

Our proof is constructive (→ polynomial time algorithm)
but..

is not combinatorial by the use of generic LP-solver.
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LP-duality & Subtree Lemma

max
f

val(µ, f ) = min
∑

x∈V b(x)h(x) +
∑

xy∈E c(xy)d(xy)

s.t. d(xy) + d(yz)− d(xz) + h(y) ≥ 0 (x , y , z ∈ V ),

d(st) + h(s) + h(t) ≥ µ(s, t) (s, t ∈ S),

h : V → R+, d :
(V
2

)
→ R+.

Suppose µ is realized by (Γ, 1; {Rs}s∈S).
Γ ⊆ R2: a geometric realization of Γ
FΓ : the set of all subtrees (closed connected sets)

.

Subtree Lemma

.

.

.

. ..

.

.

(1) ∀F : V → FΓ with Rs ∩ F (s) 6= ∅,
(h, d) := (diam(·), distΓ (·)) is feasible to LP.

(2) ∀(h, d) feasible to LP, ∃F : V → FΓ , Rs ∩ F (s) 6= ∅,
distΓ (F (x),F (y)) ≤ d(xy) (x , y ∈ V ),

diamF (x) ≤ h(x) (x ∈ V ).
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Proof of Subtree Lemma
(for easiest case; Rs = {vs}, b → ∞, h → 0 )

Given d :
(V
2

)
→ R+ s.t. d(xy) + d(yz)− d(xz) ≥ 0, d |S ≥ µ.

Goal ρ : V → Γ s.t. ρ(s) = vs , distΓ (ρ(x), ρ(y)) ≤ d(xy)

V = {
S︷ ︸︸ ︷

x1, x2, . . . , xk , xk+1, xk+2, . . . , xn}

ρ(xi ) :=


vxi (i = 1, 2, . . . , k)

any point in
i−1∩
j=1

Ball(ρ(xj), d(xjxi )) (i = k + 1, k + 2, . . .)

Claim:
∩

Ball is nonempty

⇐ Ball(ρ(xj), d(xjxi )) ∩ Ball(ρ(xk), d(xkxi )) 6= ∅ (∀j , k) (Helly)
⇐ d(xjxi ) + d(xixk) ≥ d(xj , xk) ≥ distΓ (ρ(xj), ρ(xk))

cf. Aronszajn-Panitchpakdi 56
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Minimum cost multiflows
(node-only-capacitated; c → ∞, b|S → ∞)

a : V → R+: node-cost
cost(a, f ) :=

∑
{λ(P)a(VP) | P ∈ P}

.

Problem (mincost multiflow)

.

.

.

. ..

.

.

Maximize val(µ, f )− cost(a, f ) over all multiflows f .

.

Theorem (H. 10)

.

.

.

. ..

.

.

If µ is a subtree distance, then there exists a half-integral mincost
multiflow.

• edge-only-capacitated & µ = 1 (Karzanov 79, 94)
• node-capacitated & µ = 1 (Pap 08, Babenko-Karzanov 09)

Hiroshi Hirai Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees



. . . . . .

.

Proposition

.

.

.

. ..

.

.

max
f

val(µ, f )− cost(a, f )

= min
∑

y∈V \S

b(y)max{0, diamF (y)− a(y)}

s.t. F : V → FΓ ,

F (x) ∩ F (y) 6= ∅ (xy ∈ E ),

F (s) is a single point in Rs (s ∈ S).

→ optimality criterion (kilta condition)
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Flow-support ζ f : E → R+

ζ f (e) =
∑

{λ(P) | P ∈ P : e ∈ P} (e ∈ E )

Polyhedron of optimal-flow-supposts:

P∗ := {ζ : E → R+ | ζ = ζ f
∗
for some optimal multiflow f ∗}

.

Proposition

.

.

.

. ..

.

.

(1) Given an optimal subtree map F ∗ : V → FΓ , we can obtain
polynomial size linear inequality description of P∗.

(2) P∗ is half-integral.

.

Proposition

.

.

.

. ..

.

.

Given a half-integral extreme point ζ∗ in P∗, we can construct a
half-integral optimal multiflow f ∗ with ζ∗ = ζ f

∗
in polytime.

Hiroshi Hirai Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees



. . . . . .

Flow-support ζ f : E → R+

ζ f (e) =
∑

{λ(P) | P ∈ P : e ∈ P} (e ∈ E )

Polyhedron of optimal-flow-supposts:
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∗
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.

.

Optimality criterion

δ(y): the set of edges incident to y

.

Lemma

.

.

.

. ..

.

.

f = (P, λ) and F : V → FΓ are both optimal ⇔

(1) ζ f (δy) =

{
2b(y) if diamF (y) > a(y)
0 if diamF (y) < a(y)

(∀y ∈ V \ S).

(2) ∀P ∈ P, diamF (VP) = distΓ (RsP ,RtP ).

Rs

Rt

x1

x2

x3

x4

x5

s

t

F (x1)

F (x2)
F (x3)

F (s)

F (t)

F (x4)

F (x5)

diamF (x2)

F
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.

.

Concluding remarks

Combinatorial polynomial time algorithm (Challenge !! )

Convex-cost multiflows (Fenchel duality theory)

What is discrete convexity theory for multiflows ?

Weighted version of Mader’s S-paths packing ?
(µ 6= subtree distance ⇒ µ-max integer multiflow is NP-hard)
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