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Abstract

This note addresses the undirected multiflow (multicommodity flow) theory. A
multiflow in a network with terminal set T can be regarded as a single commodity
(A, T \ A)-flow for any nonempty proper subset A ⊂ T by ignoring flows not con-
necting A and T \A. A set system A on T is said to be lockable if for every network
having T as terminal set there exists a multiflow being simultaneously a maximum
(A, T \ A)-flow for every A ∈ A. The multiflow locking theorem, due to Karzanov
and Lomonosov, says that A is lockable if and only if it is 3-cross-free.

A multiflow can also be regarded as a single commodity (A,B)-flow for every
partial cut (A,B) of terminals, where a partial cut is a pair of disjoint subsets (not
necessarily a bipartition). Based on this observation, we study the locking property
for partial cuts, and prove an analogous characterization for a lockable family of
partial cuts.

1 Introduction

By a network (G,T, c) we mean a triple of an undirected graph G = (V G,EG), a
specified node subset T ⊆ V G, and a nonnegative edge-capacity c : EG→ R+. A node
in T is called a terminal, and a node in V G \ T is called an inner node. A multiflow
(multicommodity flow) is a pair f = (P, λ) of paths P connecting distinct terminals
and a nonnegative flow-value function λ : P → R+ satisfying the capacity constraint∑

P∈P:e∈P λ(P ) ≤ c(e) for each edge e ∈ EG. A multiflow is said to be integral if
its flow-value function is integer-valued. For a nonempty proper subset A ⊂ T , any
multiflow f can be regarded as a single commodity (A, T \ A)-flow by ignoring paths
not connecting A and T \ A. One of interesting phenomena in multiflows is: for a
special set system A ⊆ 2T \{∅, T} there always exists a multiflow f being simultaneously
a maximum (A, T \ A)-flow for all A ∈ A. For example, take A as the set of all
singletons {{s} | s ∈ T}. Then Lovász [16] and Cherkassky [2] independently showed
that there exists a multiflow being simultaneously a maximum (s, T \s)-flow for all s ∈ T .
Moreover, if the capacity c is integer-valued, then there exists a half-integral multiflow
of this property.

For a multiflow f , we say “f locks A” if f is a maximum (A, T \A)-flow for all A ∈ A.
Then A is said to be lockable if for every network (G,T, c) there exists a multiflow locking
A. Themultiflow locking theorem, due to Karzanov and Lomonosov [14], gives a complete
characterization of such a lockable set system. Two subsets A,B ⊆ T are said to be
crossing if none of A \ B, B \ A, A ∩ B, and T \ (A ∪ B) is empty. A network (G,T, c)
is said to be inner Eulerian if c is integer-valued and every inner node has even degree.
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Theorem 1.1 ([14]). Let A ⊆ 2T \ {∅, T} be a set system on T . Then A is lockable if
and only if A has no pairwise crossing triple. In addition, if lockable, then there exists
an integral multiflow locking A in every inner Eulerian network (G,T, c)

See [7, 15] for proofs, and also see [12] and [18, 73.3c] for further information. The
aim of this note is to give an extension of this result. A pair (A,B) of two disjoint
nonempty subsets is called a partial cut; we do not distinguish (A,B) and (B,A). For
a partial cut (A,B) on T , any multiflow f can also be regarded as a single commodity
(A,B)-flow (by ignoring paths not connecting A and B). So we can extend the locking
concept for partial cuts. Let A be a set of partial cuts on T . For a multiflow f , we say
“ f locks A” if f is a maximum (A,B)-flow for all (A,B) ∈ A. Then A is said to be
lockable if there exists a multiflow locking A in every network (G,T, c).

Our main result is an analogous characterization of a lockable system of partial cuts.
Two partial cuts (A,B) and (C,D) are said to be laminar if one of the following four cases
holds: (i) A ⊆ C,B ⊇ D, (ii) A ⊆ D,B ⊇ C, (iii) A ⊇ C,B ⊆ D, (iv) A ⊇ D,B ⊆ C.
Otherwise (A,B) and (C,D) are said to be crossing, and, in addition, said to be regularly
crossing if A ∪ B = C ∪D and irregularly crossing if A ∪ B 6= C ∪D. A terminal s is
said to be proper if s ∈ A ∪ B for all (A,B) ∈ A, and improper otherwise. A network
(G,T, c) is said to be properly inner Eulerian (with respect to A) if it is inner Eulerian
and each improper terminal has even degree.

Theorem 1.2. Let A be a set of partial cuts on T . Then A is lockable if and only if A
has no pairwise crossing triple and no irregularly crossing pair. In addition, if lockable,
then there exists an integral multiflow locking A in every properly inner Eulerian network
(G,T, c)

This theorem includes the previous one for a special case where A ∪B = T ′ ⊆ T for
each (A,B) ∈ A. Originally we found this result by using a framework in [10, 11]; we
can associate A with a cubital folder complex KA, and can derive Theorem 1.2 by [11,
Proposition 2.9, Theorem 5.1]. However, we here prove it by a basic technique involving
splitting-off and submodularity of cuts, similar to that in [7, 16].

2 Proof

Let (G,T, c) be a network, possibly having multiple edges an loops. An edge e joining
nodes x and y is denoted as xy. We begin to prove the only-if part.

Only-if part. LetA be a set of partial cut on T . Suppose first thatA has an irregularly
crossing pair (A,B), (C,D). We may assume A \ (C ∪D) 6= ∅. Take s ∈ A \ (C ∪D).
Suppose the case where both B ∩ C and B ∩ D are nonempty. Take t ∈ B ∩ C and
u ∈ B ∩ D. Consider the network on T consisting of only two edges st, tu with unit
capacity. Then there is no multiflow locking {(A,B), (C,D)}. Indeed, to lock (C,D),
we need to push unit (t, u)-flow passing through t, s, u in order. However if push, then
it is impossible to add flows to lock (A,B). Next suppose the case where B \ (C ∪D)
is nonempty. We may assume that A ∩ C or A ∩ D is empty; otherwise it reduces to
the case above. Take s′ ∈ B \ (C ∪ D), t ∈ C, and t′ ∈ D. Consider the network
consisting of four edges st, ts′, s′t′, t′s with unit capacity. Again there is no multiflow
locking {(A,B), (C,D)}. Indeed, we may assume t′ 6∈ A. To lock (A,B), we need to
push unit (s, s′)-flow passing through s, t′, s′ in order. If push, then it is impossible to
lock (C,D). So we may assume B ⊆ C. Since (A,B) and (C,D) are not laminar, D \A
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is nonempty. Take t ∈ B ⊆ C and u ∈ D \ A. Consider the network consisting of two
edges st, su of unit capacity. Again there is no multiflow locking {(A,B), (C,D)}.

So we may assume that A has no irregularly crossing pair and has pairwise crossing
triple (Ai, Bi) (i = 1, 2, 3). Then A1 ∪ B1 = A2 ∪ B2 = A3 ∪ B3. In this case, we
can directly use a proof [15, p. 44] of the only-if part of the ordinary locking theorem
(Theorem 1.1).

If part. We need some notions. For a partial cut (X,Y ), the capacity c(X,Y ) is the
sum of capacity of edges e joining X and Y . A cut is a bipartition (X,Y ) of node set
V G. For a partial cut (A,B) on T , a cut (X,Y ) is called an (A,B)-cut if A ⊆ X and
B ⊆ Y . The minimum capacity of (A,B)-cuts is denoted by κA,B. The cut distance
δA,B : T × T → R+ is defined by

δA,B(s, t) =

{
1 if (s, t) ∈ A×B or (t, s) ∈ A×B,
0 otherwise,

(s, t ∈ T ).

Let A be a set of partial cuts on T . For a nonnegative weight α : A → R+, let
µA,α =

∑
(A,B)∈A α(A,B)δA,B. Consider the following maximum multiflow problem:

(2.1) Max.
∑
P∈P

µA,α(sP , tP )λ(P ) s.t. f = (P, λ) : multiflow in (G,T, c).

Here sP , tP denote the ends of P . For a multiflow f , let valA,α(f) denote the objective
value of (2.1). Then we have

(2.2) valA,α(f) ≤
∑

(A,B)∈A

α(A,B)κA,B.

Indeed, this follows from∑
P∈P

δA,B(sP , tP )λ(P ) = (the total flow-value of (A,B)-flows in f) ≤ κA,B.

By the max-flow min-cut theorem [5], a multiflow f locks A if and only if f attains (2.2)
with equality. Therefore the if part and the latter part of Theorem 1.2 are rephrased as
follows:

Theorem 2.1. Suppose that A has no pairwise crossing triple and no irregularly crossing
pair. Then, for every nonnegative weight α : A → R+ and every network (G,T, c), the
following relation holds:

(2.3) max{valA,α(f) | f : multiflow in (G,T, c)} =
∑

(A,B)∈A

α(A,B)κA,B.

In addition, if (G,T, c) is properly inner Eulerian, then there exists an integral multiflow
f attaining the maximum in (2.3).

It suffices to consider the case where (G,T, c) is properly inner Eulerian. Indeed,
for any network (G,T, c) having integer-valued capacity, network (G,T, 2c) is obviously
properly inner Eulerian. Consequently, if (2.3) holds for every properly inner Eulerian
network, then it holds for every network having rational-valued capacity. Since both sides
of (2.3) are continuous functions on c, the relation (2.3) holds for general (non-rational)
capacity c.
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Suppose that A has no pairwise crossing triple and no irregularly crossing pair and
(G,T, c) is property inner Eulerian. Our goal is to prove the existence of an integral
multiflow f attaining (2.2) with equality. The proof is based on the splitting-off method.
For a simplification of the proof, we use a standard technique to make the input network
have a small degree, as in [6, p. 51]. First, by multiplying edges, make each edge
have unit capacity. Suppose that there is an inner node y of degree at least 6, incident
to edges ei = xiy (i = 0, 1, . . . ,m + 1) (some nodes xi, xj may coincide). Change the
incidence around y by the following way. Subdivide edge ei = xiy into two edges xizi, ziy
for i = 1, 2, . . . ,m. Replace e0 by x0z1, and replace em+1 by xm+1zm. Add new edge
zizi+1 for i = 1, 2, . . . ,m − 1. Then any integer multiflow in the new network can be
transformed into an integer multiflow in the original network having the same valA,α(·).
The converse transformation is also possible. In particular, the min-cut value κA,B is
invariant. By repeating this process, make y have degree four. Suppose that there is an
improper terminal s of (even) degree m ≥ 4. Add m/2 new terminals s1, s2, . . . , sm/2,
and join s and each si by two parallel edges (of unit capacity). Make s being an inner
node, i.e., T ← T \ {s}. For each partial cut (A,B) ∈ A with s ∈ A (resp. s ∈ B),
replace A by A∪ {s1, s2, . . . , sm/2} \ {s} (resp. B by B ∪ {s1, s2, . . . , sm/2} \ {s}). Then
the problem is unchanged. By this reduction, we may assume that each edge has unit
capacity, each inner node has degree four, and each improper terminal has degree two.

Recall the splitting-off operation. A pair {xy, yz} of consecutive edges incident to a
common node y is called a fork. The splitting-off operation at {xy, yz} is to delete edges
xy, yz and add a new edge joining x and z of unit capacity (if x 6= z). A fork is said to
be splittable if the splitting-off operation does not decrease the min-cut value κA,B for
all (A,B) ∈ A. The splitting-off decreases the total number of edges. From an integral
multiflow in the new network, we obtain an integral multiflow in the original network.
Therefore, if we find a splittable fork, then by induction on the number of edges we can
prove the existence of an integral multiflow attaining (2.2) in equality.

By the degree condition, each node x 6∈ A ∪ B has even degree for (A,B) ∈ A.
Therefore, for an (A,B)-cut (X,Y ), c(X,Y ) is an even integer if and only if A (or
B) contains the even number of odd-degree vertices. Consequently, for two (A,B)-
cuts (X,Y ), (X ′, Y ′), the difference c(X,Y )− c(X ′, Y ′) is an even integer. Moreover the
splitting-off at {xy, yz} decreases the cut-capacity of (X,Y ) if and only if y ∈ X,x, z ∈ Y
or y ∈ Y, x, z ∈ X. If decreases, then it decreases by 2. Therefore, if {xy, yz} is
unsplittable, then there exist a partial cut (A,B) ∈ A and a minimum (A,B)-cut (X,Y )
such that y ∈ X,x, z ∈ Y or y ∈ Y, x, z ∈ X. We call this cut (X,Y ) a critical (A,B)-cut
with respect to {xy, yz}.

Take an inner node y of degree four incident to four edges ei = yxi for i = 0, 1, 2, 3.
We show that at least one of three forks {x0y, yxi} (i = 1, 2, 3) is splittable. Suppose (to
the contrary) that all three forks are unsplittable. Then there is a critical (Ai, Bi)-cut
(Xi, Yi) with respect to {x0y, yxi} for i = 1, 2, 3. We claim:

(∗1) (Ai, Bi) and (Aj , Bj) are crossing if i 6= j.

This immediately leads a contradiction to the hypothesis of A. Suppose that (A1, B1)
and (A2, B2) are laminar. We may assume x0, xi ∈ Xi and y ∈ Yi for i = 1, 2. Then
x2, x3 ∈ Y1 and x1, x3 ∈ Y2 necessarily hold. Indeed, if x2 ∈ X1, then c(X1, Y1) >
c(X1∪{y}, Y1\{y}); this is a contradiction to the assumption that (X1, Y1) is a minimum
(A1, B1)-cut. It suffices to consider two cases: (i) A1 ⊆ A2, B1 ⊇ B2 and (ii) A1 ⊆
B2, B1 ⊇ A2. Suppose (i). Recall the submodular-type relation of cuts:

c(X1, Y1)+ c(X2, Y2) = c(X1 ∩X2, Y1 ∪Y2)+ c(X1 ∪X2, Y1 ∩Y2)+ 2c(X1 \X2, X2 \X1).
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Then (X1∩X2, Y1∪Y2) is a minimum (A1, B1)-cut and (X1∪X2, Y1∩Y2) is a minimum
(A2, B2)-cut. However c(X1∪X2∪{y}, Y1∩Y2\{y}) < c(X1∪X2, Y1∩Y2). A contradiction
to the minimality. So suppose (ii). Then (X1 ∩ Y2, Y1 ∪X2) and (X1 ∪ Y2, Y1 ∩X2) are
an (A1, B1)-cut and an (A2, B2)-cut, respectively. There is one more relation:

c(X1, Y1) + c(X2, Y2) = c(X1 ∩ Y2, Y1 ∪X2) + c(X1 ∪ Y2, Y1 ∩X2) + 2c(X1 ∩X2, Y1 ∩ Y2).

By x0 ∈ X1 ∩X2, y ∈ Y1 ∩ Y2, and e0 = x0y ∈ EG. we have c(X1 ∩X2, Y1 ∩ Y2) > 0.
So c(X1, Y1) > c(X1 ∩ Y2, Y1 ∪ X2) or c(X2, Y2) > c(X1 ∪ Y2, Y1 ∩ X2). However this
contradicts to the minimality assumption. Therefore every inner node has a splittable
fork.

So it suffices to consider the case where there is no inner node, i.e., V G = T . Suppose
further that a (unique) fork at every improper terminal is unsplittable; if splittable, then
split it off and apply induction. We claim:

(∗2) for each (A,B) ∈ A we have c(A,B) = κA,B.

If true, then the set of all one-edge paths of unit flow-value is obviously an integral
multiflow attaining (2.2) with equality. So suppose c(A,B) < κA,B. By Menger’s the-
orem, there is a path (s0, s1, . . . , sm) such that s0 ∈ A, sm ∈ B, and sj 6∈ A ∪ B for
j = 1, 2, . . . ,m−1 (m ≥ 2). For j = 1, 2, . . . ,m−1, terminal sj is improper and is incident
only to sj−1 and sj+1. Consider the splitting-off at a fork {s0s1, s1s2}. By assumption,
it is unsplittable. Take its critical (A′, B′)-cut (X,Y ) with s1 ∈ X and s0, s2 ∈ Y . Then
necessarily s1 ∈ A′; otherwise (X \ {s1}, Y ∪ {s1}) is an (A′, B′)-cut having smaller cut
capacity. Thus A′ ∪B′ 6= A∪B, and consequently (A′, B′), (A,B) are laminar. By lam-
inarity we have sm ∈ B ⊆ A′ ⊆ X (and A ⊇ B′). Then s2 ∈ B (m = 2) is impossible.
So m > 2. However we have c(X,Y ) > c(X ∪ {s2, s3, . . . , sm−1}, Y \ {s2, s3, . . . , sm−1});
a contradiction to the minimality of (X,Y ).

3 Concluding remarks

The size of lockable family. Karzanov and Lomonosov [14] asked: how large is the
size of a lockable family ? A set system without crossing triple is said to be 3-cross-free.
Pevzner [17] showed that the cardinality of any 3-cross-free family on n-set is O(n); see
[4] for a shorter proof. Recently, Dress, Koolen and Moulton [3] proved the tight upper
bound 8n− 20 (n ≥ 3).

A similar question arises: how large is the size of a lockable family of partial cuts ? We
show that the size of a lockable family of partial cuts on n-set is not linearly bounded, but
is bounded by O(n2). We give an example of O(n2) size. Let n = 2k be a positive even
integer. Consider a tree Γ consisting of edges x0x

i
1, x

i
1x

i
2, . . . , x

i
k−1x

i
k for i = 1, 2, . . . , k.

Namely Γ is obtained by subdividing a star of k leaves. Let [n] = {1, 2, . . . , n} be an
n-element set. We associate each element j in [n] with a subtree Fj in Γ as follows. For
j = 1, 2, . . . , k, let Fj be the subtree induced by nodes x with dΓ (x0, x) ≤ j − 1, where
dΓ is the shortest path metric on node set of Γ . For j = k + 1, k + 2, . . . , 2k, let Fj be

the subtree consisting of one node xj−k
k . For each edge e in Γ , the deletion of e divides

Γ into two connected components Γ ′, Γ ′′. Let Ae be the set of indices i for which Fi

belongs to Γ ′, and let Be be the set of indices i for which Fi belongs to Γ ′′. Note that
if Fj contains e, then neither Ae nor Be contains j. Now we obtain a partial cut family
A = {(Ae, Be) | e is an edge of Γ} of cardinality (n/2)2 = O(n2). One can easily verify
that A is laminar, i.e., each pair is laminar. In fact, it is known that every laminar
partial cut family is obtained by a family of subtrees on a tree in this way [9].
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To see the upper bound O(n2), we use a result from the split decomposition theory [1,
8]; a partial cut is called a partial split in [8, Section 4]. Then one can easily see that a set
of partial cuts without crossing triple and irregularly crossing pair is weakly compatible
in the sence of [8, Section 4]. A general result [8, Theorem 4.13] says that for a weakly
compatible family of partial cuts A on an n-set T , the corresponding set of cut distances
{δA,B | (A,B) ∈ A} is linearly independent in the vector space of symmetric functions
with zero diagonals {d ∈ RT×T | d(s, t) = d(t, s), d(s, s) = 0 (s, t ∈ T )}. Therefore
|A| ≤ n(n− 1)/2 = O(n2).

Fractionality. Theorem 2.1 says the existence of an integral optimal multiflow in a
class of µ-weighted maximum multiflow problems. For a weight µ : T × T → R+,
the fractionality of µ is defined to be the least positive integer k with property that
the µ-weighted maximum multiflow problem has a 1/k-integral optimal multiflow for
every integer-capacitated network (G,T, c). If such an integer does not exist, then the
fractionality is defined to be infinity. Recently, [11] proved a complete characterization
of weights having finite fractionality, and showed that if the fractionality is finite, then
it is a divisor of 24 (the conjectured tight upper bound is 4). So it is still interesting
to identify a class of weights having small fractionality. From the point of the view,
Theorem 2.1 provides a new class of weights having fractionality 2.

A distance among subtrees in a tree, considered in [9], is a natural example of such a
weight; it is exactly a nonnegative sum of cut distances for a laminar partial cut family.
By the extended split decomposition in [8, Section 4], we can determine, in strongly
polynomial time, whether a given weight µ is decomposed into a nonnegative sum of
cut distances for a lockable family of partial cuts, and we can also obtain an explicit
decomposition if decomposable.

A polynomial time algorithm. The splitting-off proof provides a strongly polyno-
mial time algorithm to find an integral multiflow locking A in a properly inner Eulerian
network. We sketch it. Once the existence of an integral solution is established, it is
unnecessary to reduce the degrees as in the proof of Theorem 2.1. So we may assume
that the input network (G,T, c) is complete and has no multiple edges and loops. Let
n = |V G|. We use a capacitated version of splitting-off. The maximum capacity of the
splitting-off can be computed, in strongly polynomial time, by a minimum (A,B)-cut
algorithm for all (A,B) ∈ A. By applying splitting-off for all n2(n + 1)/2 forks (in
some ordering), we can make the network have no splittable fork. This is nontrivial;
see [11, Section 7] and [13, Section 4] for details. Then the multiflow consisting of all
one-edge paths is obviously an integral solution. By reversing the splitting-off opera-
tions, we obtain an integral multiflow locking A in the original network (in an edge-node
form if necessarily). So the whole complexity is O(n3|A|ϕ(n)), where ϕ(n) denotes the
complexity of a maximum flow algorithm for an n-node network. An augmenting path
approach, as in [2, 12, 15], would yield a more faster algorithm, which is left to readers.
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