Metric Packing for $K_3 + K_3$

Hiroshi Hirai

RIMS, Kyoto Univ.

hirai@kurims.kyoto-u.ac.jp

September 17, 2008 Kashiwa

Notation

G = (V, E): an undirected graph with nonnegative capacity $c : E \to \mathbf{R}_+$ S: the set of terminals $S \subseteq V$ \mathcal{P} : the set of paths in G whose ends belong to S.

Definition. $f : \mathcal{P} \to \mathbf{R}_+$ is a *multiflow* (w.r.t (G, c; S)) if

$$\sum_{P \in \mathcal{P}: e \in P} f(P) \le c(e) \quad (e \in E).$$

Multiflow feasibility problem

G = (V, E): an undirected graph with nonnegative capacity $c \in \mathbf{R}_{+}^{E}$ H = (S, R): a demand graph $S \subseteq V$

Given a demand $q: R \to \mathbf{R}_+$, find a multiflow $f: \mathcal{P} \to \mathbf{R}_+$ such that

$$\sum \{ f(P) \mid P \in \mathcal{P} : P \text{ is } st\text{-path} \} = q(st) \quad (st \in R).$$

Japanese Theorem (Onaga-Kakusho 71, Iri 71)

There exists a feasible multiflow if and only if

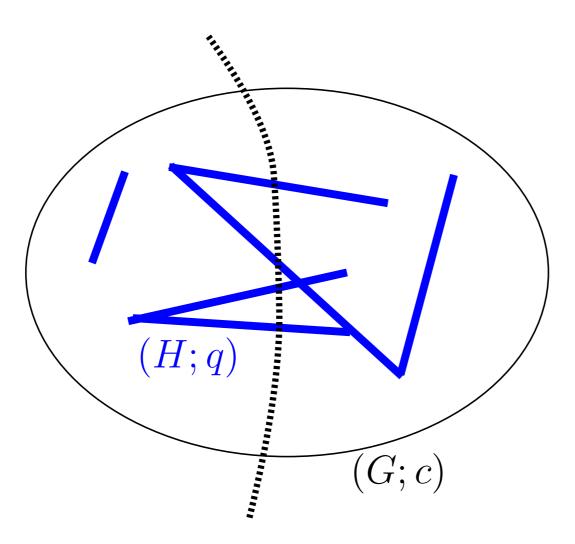
 $\langle c,d\rangle_E \geq \langle q,d\rangle_R$ ($\forall d$: metric on V).

Cut condition:

$$\langle c, \delta_A \rangle_E \ge \langle q, \delta_A \rangle_R \quad (A \subseteq V)$$

Cut metric:

$$\delta_A = \begin{bmatrix} A & V \setminus A \\ A & 0 & 1 \\ V \setminus A & 1 & 0 \end{bmatrix}$$



Cut condition: $\langle c, \delta_A \rangle_E \ge \langle q, \delta_A \rangle_R \quad (\forall A \subseteq V)$ Metric condition: $\langle c, d \rangle_E \ge \langle q, d \rangle_R \quad (\forall d: metric).$ When is the cut condition sufficient ?

Theorem (Papernov 76)

The cut condition is sufficient if and only if $H = K_4, C_5$ or the union of two star.

Theorem (Hu 63, Rothchild-Winston 66, Lomonosov 76, 85, Seymour 80) If H is above and G + H is Eulerian, then the cut condition implies an integer multiflow.

Polarity

Lemma (Seymour 79, Karzanov 84)

The cut condition is sufficient if and only if for any $l \in \mathbf{R}^E_+$ there are a family of cuts $\{\delta_{A_i}\}_i$ and its nonnegative weight $\{\lambda_i\}_i$ such that

$$\sum_{i} \lambda_i \delta_{A_i}(x, y) \leq \operatorname{dist}_{G,l}(x, y) \quad (x, y \in V)$$

 $\sum_{i} \lambda_i \delta_{A_i}(s, t) = \operatorname{dist}_{G,l}(s, t) \quad (st \in R)$

Such a $(\delta_{A_i}, \lambda_i)$ is called an fractional *H*-packing

Theorem (Seymour 80 for $H = K_2 + K_2$, Karzanov 85) If H is above and G is bipartite, then there exists an integral H-packing by cut metrics.

,

Beyond the cut condition

 Γ : undirected graph

Definition A metric d on V is called a $\varGamma\text{-metric}$ if there is $\phi:V\to V\varGamma$ such that

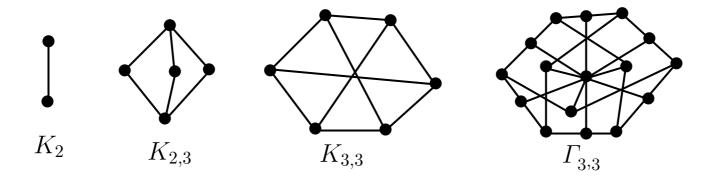
$$d(x,y) = \operatorname{dist}_{\Gamma}(\phi(x),\phi(y)) \quad (x,y \in V).$$

Remark: cut metric = K_2 -metric.

Lemma: For a set \mathcal{G} of graphs, \mathcal{G} -metric condition is sufficient if and only if for $l \in \mathbf{R}^E_+$ there are family of \mathcal{G} -metrics $\{d_i\}_i$ and its nonnegative weight $\{\lambda_i\}_i$ such that

$$\sum_{i} \lambda_{i} d_{i}(x, y) \leq \text{dist}_{G,l}(x, y) \quad (x, y \in V)$$
$$\sum_{i} \lambda_{i} d_{i}(s, t) = \text{dist}_{G,l}(s, t) \quad (st \in R)$$

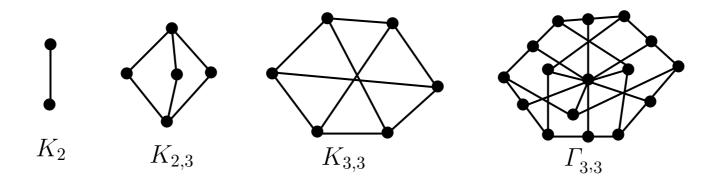
demand graph H	$K_4, C_5,$ star + star	$K_5, K_3 + \text{star}$	$K_{3} + K_{3}$	other classes: H has 3-matching
multiflow for $G + H$:Eulerian	integer flow	integer flow (Karzanov 87)	$\exists k, 1/k$ -flow conjectured (Karzanov 90)	no fixed integer k , 1/k-flow (Lomonosov 85)
feasibility condition	K_2 cut condition	$\begin{array}{c} K_2, \ K_{2,3} \\ (\text{Karzanov 87}) \end{array}$	$K_2, K_{2,3}, \Gamma_{3,3}$ (Karzanov 89)	infinite family of graphs (Karzanov 90)
H-packing for G : bipartite	integer packing	integer packing (Karzanov 90)	half-integer packing conjectured (Karzanov 90)	



Main result

Theorem [H. 07]

If $H = K_3 + K_3$ and G is bipartite, then there is an integral H-packing by cut, $K_{2,3}$, $K_{3,3}$, and $\Gamma_{3,3}$ -metrics



Definition:

A metric μ on V is cyclically even if $\mu(C)$ is even for every cycle C in K_V .

Definition:

An extremal graph H = (S, R) of a metric μ is a graph on $S \subseteq V$ satisfying

$$\forall x, y \in V, \exists st \in R, \ \mu(s,t) = \mu(s,x) + \mu(x,y) + \mu(y,t).$$

Lemma (Karzanov 90)

An integral H-packing by G-metrics for a bipartite graph

 \Leftarrow Decomposing cyclically even metric having *H* as an extremal graph into an integral sum of *G*-metrics.

Definition:

 $\mu: \text{ metric on } V$ $P_{\mu} = \{ p \in \mathbf{R}^{V} \mid p(x) + p(y) \ge \mu(x, y) \ (x, y \in V) \}$ $T_{\mu} = \text{the set of minimal elements of } P_{\mu}$

 T_{μ} : the tight span of μ (Isbell 64, Dress 84)

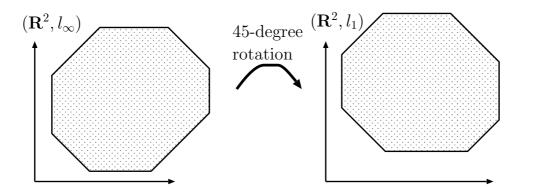
Embedding μ into (T_{μ}, l_{∞}) (Isbell 64, Dress 84) μ_x : the *x*-th row vector of μ . $\mu_x \in T_{\mu}$ and $\|\mu_x - \mu_y\|_{\infty} = \mu(x, y)$.

A key lemma(H. 07)

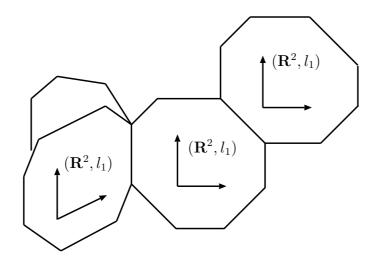
If an ex-graph H of metric μ has no k-matching, then

dim $T_{\mu} < k$.

The shape of T_{μ} with dim $T_{\mu} \leq 2$. Lemma [H.07] 2-face of T_{μ} is isomorphic to

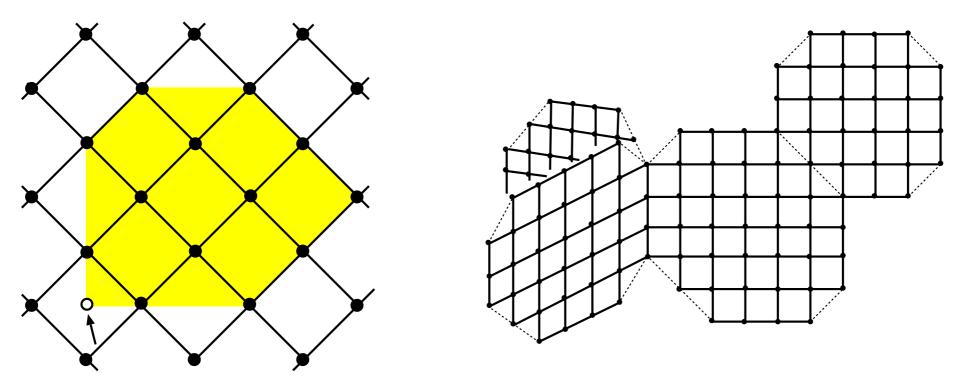


Lemma [H.07] 2-faces of T_{μ} are gluing *nicely*.

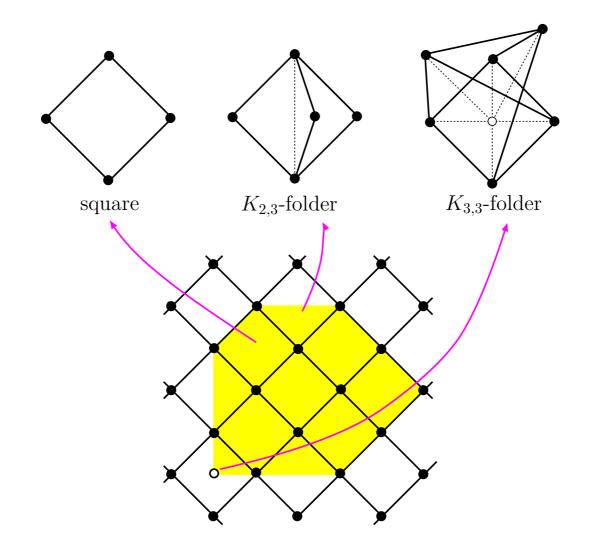


Affine lattice A_{μ}

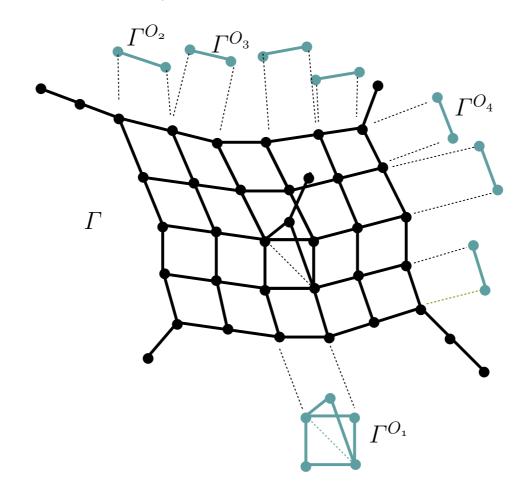
$$\begin{split} \mu &: \text{ a cyclically even metric on } V \\ L &:= \{ p \in \mathbf{Z}^V \mid p(x) + p(y) \in 2\mathbf{Z} \quad (x, y \in V) \} \\ A_\mu &:= \mu_x + L \\ \Gamma_0 &: \text{ the graph of } A_\mu &: pq \in E\Gamma \Leftrightarrow p - q \in \{-1, 1\}^V \\ \Gamma &: \text{ the subgraph of } \Gamma_0 \text{ induced by } T_\mu \end{split}$$



Proposition [H. 07] If an ex-graph H of a cyclically even metric μ has no 3-matching, the connected components of $T_{\mu} \setminus \Gamma$ are

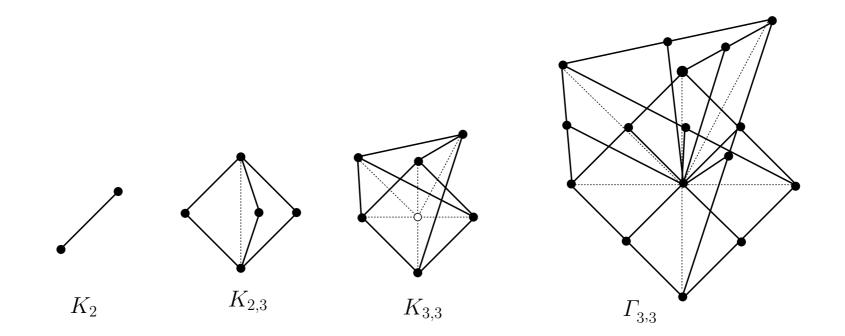


Orbit graph decomposition (Bandelt 85, Lomonosov & Sebö 93)



$$\mathsf{dist}_{\Gamma} = \mathsf{dist}_{\Gamma^{O_1}} + \mathsf{dist}_{\Gamma^{O_2}} + \dots + \mathsf{dist}_{\Gamma^{O_m}}$$

Proposition [H. 07] If an ex-graph H of a cyclically even metric μ has no 3-matching, then an orbit graph of Γ is K_2 , $K_{2,3}$, $K_{3,3}$, or an isometric subgraph of $\Gamma_{3,3}$.



Future works

- Feasible multiflows for demand graph $K_3 + K_3$ (in preparation)
- A unified understanding to planar multiflows and some variations:
 - planar multiflows with demand edges on k holes (k = 1: Okamura-Seymour 81, k = 2: Okamura 83, k = 3,4: Karzanov 94,95)
 - graph having no K_5 -minor (Seymour 81), signed graph having no odd K_5 -minor (Geelen-Guenin 01)