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Multiflows (Multicommodity flows)

G: an undirected graph (supply graph)

c : EG → R+: nonnegative edge capacity

S ⊆ V G: terminal set

A multiflow f = (P, λ) def⇐⇒

P: set of S-paths

λ : P → R+: flow-value function satisfying capacity constraint

∑
{λ(P ) | P ∈ P : e ∈ P} ≤ c(e) (e ∈ EG).

S

(G, c)
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Multiflow feasibility problem

H: demand graph with V H = S
q : EH → R+: demand function on edges EH.

Find a multiflow f = (P, λ) satisfying demand requirement∑
{λ(P ) | P ∈ P : P is (s, t)-path} = q(st) (st ∈ EH),

or establish that no such a multiflow exists.

(H, q)

(G, c)

We are interested in behavior of multiflows
for a fixed H and arbitrary G, c, q.
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• H = K2: single commodity flows

Theorem [Ford-Fulkerson 54]

c, q integral, feasible ⇒ ∃ integral solution.

• H = K2 + K2: 2-commodity flows

Theorem [Hu 63]

c, q integral, feasible ⇒ ∃ half-integral solution.

• H = K2 + K2 + · · · + K2: k-commodity flows

??? c, q integral, feasible ⇒ ∃ 1/p-integral solution (p ≤ k)???

(Jewell 67, Seymour 81)
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Theorem [Lomonosov 85]

There is no integer k > 0 such that every feasible 3-commodity

flow problem with integer capacity and demand

has a 1/k-integral solution.

Fractionality

frac(H) := the least positive integer k with the property:

∀c, q integral, feasible ⇒ ∃ 1/k-integral solution.

Problem [Karzanov 89,90]

Classify demand graphs H with frac(H) < +∞.

Remark H ⊇ K2 + K2 + K2 ⇒ frac(H) = +∞.
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Graphs without K2 + K2 + K2

(I) K4, C5, or star + star,

(II) K5 or star + K3,

(III) K3 + K3.

(I) (II) (III)
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(I) H = K4, C5, or star + star,

Theorem [Rothschild & Winston 66, Seymour 80, Lomonosov 76,85]

c, q Eulerian, feasible ⇒ ∃ integral solution (→ frac(H) = 2).

Combinatorial feasibility condition [Papernov 76]

c, q feasible ⇔ cut condition

〈c, δX〉EG ≥ 〈q, δX〉EH (∀X ⊆ V G),

where δX is the cut metric of X.

δX =
X X

X 0 1
X 1 0

(G, c)

(H, q)

X
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(II) H = K5 or star + K3

Theorem [Karzanov 87]

c, q Eulerian, feasible ⇒ ∃ integral solution (→ frac(H) = 2).

Combinatorial feasibility condition [Karzanov 87]

c, q feasible ⇔ K2,3-metric condition

〈c, d〉EG ≥ 〈q, d〉EH (∀ K2,3-metric d on V G).

K2,3-metric d
def⇐⇒ d = dK2,3

(φ(·), φ(·)) for ∃φ : V G → V K2,3

d =

S T U1 U2 U3
S 0 2 1 1 1
T 2 0 1 1 1
U1 1 1 0 2 2
U2 1 1 2 0 2
U3 1 1 2 2 0

S

T

U1 U2 U3
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(III) H = K3 + K3

Remark ∃c, q integral, feasible
⇒ no integral, no half-integral, ∃ quarter-integral solution.
→ frac(K3 + K3) ≥ 4.

Combinatorial feasibility condition [Karzanov 89]

c, q feasible ⇔ Γ3,3-metric condition

Γ,

Conjecture [Karzanov 90, ICM, Kyoto]

1. frac(K3 + K3) < +∞.

2. c, q Eulerian, feasible ⇒ ∃ half-integral solution (→ frac(K3+K3) = 4)

Cf. Problems 51, 52 in Schrijver’s book “Combinatorial Optimization”
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Main Theorem [H. 08]

H = K3 + K3, c, q Eulerian, feasible

⇒ ∃ 1/12-integral solution.

→ the complete classification of

demand graphs having finite fractionality

Corollary frac(H) < +∞ ⇔ H 6⊇ K2 + K2 + K2.

Corollary frac(K3 + K3) ∈ {4,8,12,24}.
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Proof Sketch

1. Reduction to

K3,3-metric-weighted maximum multiflow problem

2. A combinatorial dual problem

3. Its optimality criterion

4. Fractional splitting-off with potential update
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K3,3-metric weighted maximum multiflow problem

(G, c): an undirected graph with edge-capacity

S ⊆ V G: 6-element terminal set with S = V K3,3

Max.
∑

P∈P
dK3,3

(sP , tP )λ(P )

s. t. f = (P, λ) : multiflow for (G, c;S)

s1

s1

s2

K3,3 s2

s3

s3

t1 t2

t3

t1

t2

t3

1

2
2

1

1/2

Remark no integral optimum even if (G, c) inner Eulerian.
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Remark

∃ 1/k-integral optimum in inner Eulerian K3,3-max problem

=⇒
∃ 1/k-integral solution in Eulerian K3 + K3-feasibility problem

(G, c) (G′, c′)

(H, q)
s1

s2

s3

t1

t2
t3

q1

q3 q2

q3 + q2

q1 + q3

q1 + q2

Theorem [H. 08]

∃ 1/12-integral optimum in every inner Eulerian K3,3-max problem.
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Splitting-off for multiflows
[Rothschild-Winston 66, Lovász 76, Seymour 80, Karzanov 87]

• Very powerful for showing an integral optimum in Eulerian problems.

• How about showing a 1/k-integral optimum (k ≥ 2) ?

• A naive fractional variant violates Eulerianess, and induction fails.

1-g 1-g

g
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Three key ingredients

• Combinatorial dual problem [Karzanov 89, 98]

• Its optimality criterion [H. 08]

• Fractional splitting-off with potential update [H. 08]
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Combinatorial duality relation [Karzanov 89, 98]

Max.
∑

P∈P
dK3,3

(sP , tP )λ(P ) s.t. f = (P, λ) for (G, c;S)

= Min.
1

2

∑
xy∈EG

c(xy)dΓ3,3(ρ(x), ρ(y))

s. t. ρ : V G → V Γ3,3, ρ|S = id, ← potential

(G, c)

ρ

s1

s2

s3

t1
t2

t3

t1
t2

t3

s2

s3

s1

Γ,

s1
s3

s2

t1

t3

t2K3,3
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Optimality criterion [H. 08]

forward backward

ρ′: a forward neighbor of ρ
def⇐⇒ in forward orientation

−−→
Γ3,3,

ρ′(x) 6= ρ(x) =⇒
−−−−−−→
ρ(x)ρ′(x) ∈

−−−→
EΓ3,3 or (ρ(x), ρ′(x)) = (•, •) or (•, •)

ρ′: a backward neighbor of ρ
def⇐⇒ in backward orientation ...

Proposition [H. 08]

ρ is not optimal ⇒ ∃ neighbor ρ′ of ρ having smaller obj. value.
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Proof sketch (of duality relation and opt. criterion)

LP-dual to K3,3-max problem

Min.
∑

xy∈EG

c(xy)d(x, y)

s.t. d: metric on V G, d|S = dK3,3

Proposition[Karzanov 98]

every minimal metric is embedded into (TK3,3
, l1).

(TK3,3
, l1)

ρ

G

ρi

G
1

1/2

Lemma dl1 ◦ ρ =
∑
i

λi (dl1 ◦ ρi) for ∃ρi with Im ρi = {•, •, ◦, •}

cf. tight spans (Isbell 64, Dress 84)
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Fractional splitting-off

τ = (e, y, e′): fork

y

e e′

e′

c(eτ ) := 2
yτ

(G, c) (Gτ , c)
e

eτy

Splitting capacity: α(τ) := max{0 ≤ α ≤ 2 | opt(G, c) = opt(Gτ , c − αχeτ)}

Corollary (G, c): inner Eulerian, ρ: optimal potential

α(τ) = min

〈c, dΓ3,3 ◦ ρ′〉 − 〈c, dΓ3,3 ◦ ρ〉
dΓ3,3(ρ

′(y), ρ′(yτ))

∣∣∣∣ ρ′ : neighbor of ρ with ρ′(y) 6= ρ′(yτ)


∈

{
0,

1

2
,
2

3
,1,

4

3
,
3

2
,2

}
. 〈c, dΓ3,3 ◦ ρ〉 :=

∑
xy∈EG

c(xy)dΓ3,3(ρ(x), ρ(y))

A neighbor attaining α(τ) is called a critical neighbor.
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ρ: optimal potential

(G, c)

ρ

s1

s2

s3

t1
t2

t3

t1
s2

s3

s2

s3

s1

Γ, Sρ = {x ∈ V G | ρ(x) = • or •}
Mρ = {x ∈ V G | ρ(x) = ◦}
Cρ = {x ∈ V G | ρ(x) = •}

Proposition [H. 08]

(G, c) inner Eulerian, ρ optimal potential, y ∈ Sρ inner node

⇒ y has a splittable fork.

Corollary Mρ ∪ Cρ = ∅ ⇒ ∃ integral optimum.

cf. splitting-off idea for 5-terminus flows H = K5 in [Karzanov 87]
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Splitting-off with Potential UPdate (SPUP)

ρ: an optimal potential

τ : a fork (unsplittable) at Mρ ∪ Cρ

ρ′: a critical neighbor of ρ w.r.t. τ(
α(τ) = min

ρ′

〈c,dΓ3,3◦ρ′〉−〈c,dΓ3,3◦ρ〉
dΓ3,3(ρ

′(y),ρ′(yτ)) ∈ {0, 1
2, 2

3,1, 4
3, 3

2,2}
)

SPUP: (G, c; ρ) → (Gτ , c − α(τ)χeτ ; ρ′)

(G, c; ρ)

τ

(Gτ , c − α(τ)χe
τ ; ρ′)

2 − α(τ)y ρ(y)

ρ

ρ′(y)

y

yτ

ρ′

ρ′(yτ)

This SPUP does not keep (G, c) Eulerian, but Cρ decreases, and

still α(τ) ∈ {0, 1
2, 2

3,1, 4
3, 3

2,2} in the next forward SPUP
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In forward SPUP, Cρ is nonincreasing, and Mρ is nonincreasing if Cρ = ∅.

These observations suggest us a possibility to repeat forward SPUPs
until Mρ ∪ Cρ = ∅ with keeping (G, kc) inner Eulerian
for a fixed integer k. (→ ∃ 1/k-integral optimum)

Proposition [H. 08] We can do it for k = 12.

The proof is lengthy and complicated.
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Concluding remarks

• We do not know whether 1/12 is tight.

• The bounded fractionality conjecture for K3 + K3 is a very special
case of the conjecture (see Proceedings);

For a terminal weight µ, dimTµ ≤ 2 if and only if there exists
k > 0 such that every Eulerian µ-max problem has a 1/k-integral
optimum.

Tµ := Minimal {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)}

• Recently we proved it for k = 12 [H. 09, in preparation]

• Half-integral Γ3,3-metric packing [H. 07, Combinatorica, to appear]

Future works

• Improving the bound 1/12 (→ 1/2 ?).

• Augmenting path algorithms for multiflows ?
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Appendix I
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Proof sketch (based on Karzanov’s splitting-off idea for 5-terminus flows)

y

ρ
ρ(y)

τ

ρ′

ρ′(y)

y

yτ ρ′(yτ)

ρ′(yτ )ρ′(y)

or

(G, c; ρ) (Gτ , c − α(τ)χe
τ ; ρ′)

⇒ α(τ) ∈ {0,1,2}.
(
← α(τ) = 2min

ρ′
obj(ρ′)−obj(ρ)

distΓ3,3(ρ
′(y),ρ′(yτ))

)
Suppose α(τ) = 1.
Take an optimal flow f = (P, λ) for (Gτ , c − α(τ)χeτ).

saturated
by single flow

y

y
τ

1

e
τComplementary slackness: both f = (P, λ), ρ′ optimal ⇔

ρ′(x) 6= ρ′(y) ⇒ xy is saturated by f,

P ∈ P : λ(P ) > 0 ⇒ ρ′(P ) is geodesic in Γ3,3.
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ε

if ε > 0

if ε = 0

g ≥ 1/2

1/2 1/2

1/21/2

1/2 1/2

y

1/2 + ε

y

splittable !

ττ ′

τ ′

if g > 1/2

unsaturation of eτ
′

> 1
α(τ ′) > 1 ⇒ α(τ ′) = 2

(Gτ
′

, c)

τ ′ is splittable

τ ′′

f is also optimal for (Gτ
′

, c − χ
e
τ
′ )
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Appendix II
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(G, c; ρ):restricted Eulerian if c integer, and ∀y ∈ Mρ∪Cρ has even degree.

Lemma (G, c; ρ):restricted Eulerian, τ : a fork, ρ′: a critical neighbor.
ρ′ is forward ⇒ α(τ) ∈ {0, 1

2, 2
3,1, 4

3, 3
2,2}.

Proposition (G, c; ρ):restricted Eulerian, y ∈ Mρ (unsplittable),

1. ∃ an optimal forward neighbor ρ′ with ρ′(y) ∈ Sρ, or

2. ∃ a fork τ s.t. a critical neighbor ρ′ is forward
(→ ρ′(y), ρ′(yτ) ∈ Sρ, α(τ) = 1, SPUP keeps (G, c; ρ) restrict Eulerian)

y
ρ

y

ρ
′

1

y
τ

Corollary
(G, c; ρ) restricted Eulerian with Cρ = ∅ ⇒ ∃ half-integral optimum.
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Starting from inner Eulerian (G, c) with all inner node having degree four.

Proposition We can apply forward SPUPs to all degree four nodes in Cρ

with keeping (G,6c; ρ) restricted Eulerian.

Cρ

y

yτ

xτ
′

x

The ring condition:
the subgraph of G induced by Cρ consists of paths and cycles.

Proposition (G, c; ρ) restricted Eulerian and the ring condition
⇒ ∃ half-integral optimum.
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