Multiflow Feasibility Problem for $K_{3}+K_{3}$

Hiroshi Hirai
RIMS, Kyoto Univ.
hirai@kurims.kyoto-u.ac.jp

6th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

May 16-19, 2009, Budapest, Hungary

Contents

H. Hirai, Bounded fractionality of the multiflow feasibility problem for demand graph $K_{3}+K_{3}$ and related maximization problems, RIMS-Preprint 1645, 2008.

- Reviews on multiflow feasibility problems
- Karzanov's conjecture
- Main theorem
- Proof sketch

Multiflows (Multicommodity flows)

G: an undirected graph (supply graph)
$c: E G \rightarrow \mathbf{R}_{+}:$nonnegative edge capacity
$S \subseteq V G$: terminal set

A multiflow $f=(\mathcal{P}, \lambda) \stackrel{\text { def }}{\Longrightarrow}$
\mathcal{P} : set of S-paths

$\lambda: \mathcal{P} \rightarrow \mathbf{R}_{+}$: flow-value function satisfying capacity constraint

$$
\sum\{\lambda(P) \mid P \in \mathcal{P}: e \in P\} \leq c(e) \quad(e \in E G)
$$

Multiflow feasibility problem

H : demand graph with $V H=S$
$q: E H \rightarrow \mathbf{R}_{+}$: demand function on edges $E H$.

Find a multiflow $f=(\mathcal{P}, \lambda)$ satisfying demand requirement

$$
\sum\{\lambda(P) \mid P \in \mathcal{P}: P \text { is }(s, t)-p a t h\}=q(s t) \quad(s t \in E H)
$$

or establish that no such a multiflow exists.

We are interested in behavior of multiflows
for a fixed H and arbitrary G, c, q.

- $H=K_{2}$: single commodity flows

Theorem [Ford-Fulkerson 54]
c, q integral, feasible $\Rightarrow \exists$ integral solution.

- $H=K_{2}+K_{2}$: 2-commodity flows

Theorem [Hu 63]
c, q integral, feasible $\Rightarrow \exists$ half-integral solution.

- $H=K_{2}+K_{2}+\cdots+K_{2}: k$-commodity flows
??? c, q integral, feasible $\Rightarrow \exists 1 / p$-integral solution $(p \leq k) ? ? ?$ (Jewell 67, Seymour 81)

Theorem [Lomonosov 85]
There is no integer $k>0$ such that every feasible 3-commodity flow problem with integer capacity and demand has a $1 / k$-integral solution.

Fractionality
$\operatorname{frac}(H):=$ the least positive integer k with the property: $\forall c, q$ integral, feasible $\Rightarrow \exists 1 / k$-integral solution.

Problem [Karzanov 89,90]
Classify demand graphs H with $\operatorname{frac}(H)<+\infty$.

Remark $H \supseteq K_{2}+K_{2}+K_{2} \Rightarrow \operatorname{frac}(H)=+\infty$.

Graphs without $K_{2}+K_{2}+K_{2}$
(I) K_{4}, C_{5}, or star + star,
(II) K_{5} or star $+K_{3}$,
(III) $K_{3}+K_{3}$.

(III)
(I) $H=K_{4}, C_{5}$, or star + star,

Theorem [Rothschild \& Winston 66, Seymour 80, Lomonosov 76,85] c, q Eulerian, feasible $\Rightarrow \exists$ integral solution $(\rightarrow \operatorname{frac}(H)=2$).

Combinatorial feasibility condition [Papernov 76]
c, q feasible \Leftrightarrow cut condition

$$
\left\langle c, \delta_{X}\right\rangle_{E G} \geq\left\langle q, \delta_{X}\right\rangle_{E H} \quad(\forall X \subseteq V G)
$$

where δ_{X} is the cut metric of X.

$$
\delta_{X}=\begin{array}{|c|cc|}
\hline & X & \bar{X} \\
\hline X & 0 & 1 \\
\bar{X} & 1 & 0 \\
\hline
\end{array}
$$

(II) $H=K_{5}$ or star $+K_{3}$

Theorem [Karzanov 87]
c, q Eulerian, feasible $\Rightarrow \exists$ integral solution $(\rightarrow \operatorname{frac}(H)=2$).

Combinatorial feasibility condition [Karzanov 87] c, q feasible $\Leftrightarrow K_{2,3}$-metric condition

$$
\langle c, d\rangle_{E G} \geq\langle q, d\rangle_{E H} \quad\left(\forall K_{2,3} \text {-metric } d \text { on } V G\right)
$$

$K_{2,3}$-metric $d \stackrel{\text { def }}{\Longleftrightarrow} d=d_{K_{2,3}}(\phi(\cdot), \phi(\cdot))$ for $\exists \phi: V G \rightarrow V K_{2,3}$

$$
d=\begin{array}{|c|ccccc|}
\hline & S & T & U_{1} & U_{2} & U_{3} \\
\hline S & 0 & 2 & 1 & 1 & 1 \\
T & 2 & 0 & 1 & 1 & 1 \\
U_{1} & 1 & 1 & 0 & 2 & 2 \\
U_{2} & 1 & 1 & 2 & 0 & 2 \\
U_{3} & 1 & 1 & 2 & 2 & 0 \\
\hline
\end{array}
$$

(III) $H=K_{3}+K_{3}$

Remark $\exists c, q$ integral, feasible
\Rightarrow no integral, no half-integral, \exists quarter-integral solution.
$\rightarrow \operatorname{frac}\left(K_{3}+K_{3}\right) \geq 4$.
Combinatorial feasibility condition [Karzanov 89]
c, q feasible $\Leftrightarrow \Gamma_{3,3}$-metric condition

Conjecture [Karzanov 90, ICM, Kyoto]

1. $\operatorname{frac}\left(K_{3}+K_{3}\right)<+\infty$.
2. c, q Eulerian, feasible $\Rightarrow \exists$ half-integral solution $\left(\rightarrow \operatorname{frac}\left(K_{3}+K_{3}\right)=4\right)$

Cf. Problems 51, 52 in Schrijver's book "Combinatorial Optimization"

Main Theorem [H. 08]
$H=K_{3}+K_{3}, c, q$ Eulerian, feasible
$\Rightarrow \exists 1 / 12$-integral solution.
\rightarrow the complete classification of demand graphs having finite fractionality

Corollary $\operatorname{frac}(H)<+\infty \Leftrightarrow H \nsupseteq K_{2}+K_{2}+K_{2}$.

Corollary $\operatorname{frac}\left(K_{3}+K_{3}\right) \in\{4,8,12,24\}$.

Proof Sketch

1. Reduction to
$K_{3,3}$-metric-weighted maximum multiflow problem
2. A combinatorial dual problem
3. Its optimality criterion
4. Fractional splitting-off with potential update
$K_{3,3}$-metric weighted maximum multiflow problem
(G, c): an undirected graph with edge-capacity $S \subseteq V G:$ 6-element terminal set with $S=V K_{3,3}$

Max. $\quad \sum_{P \in \mathcal{P}} d_{K_{3,3}}\left(s_{P}, t_{P}\right) \lambda(P)$
s. t. $f=(\mathcal{P}, \lambda)$: multiflow for $(G, c ; S)$

Remark no integral optimum even if (G, c) inner Eulerian.

Remark

$\exists 1 / k$-integral optimum in inner Eulerian $K_{3,3}$-max problem
\Longrightarrow
$\exists 1 / k$-integral solution in Eulerian $K_{3}+K_{3}$-feasibility problem

Theorem [H. 08]
$\exists 1 / 12$-integral optimum in every inner Eulerian $K_{3,3}$-max problem.

Splitting-off for multiflows

[Rothschild-Winston 66, Lovász 76, Seymour 80, Karzanov 87]

- Very powerful for showing an integral optimum in Eulerian problems.
- How about showing a $1 / k$-integral optimum ($k \geq 2$) ?
- A naive fractional variant violates Eulerianess, and induction fails.

Three key ingredients

- Combinatorial dual problem [Karzanov 89, 98]
- Its optimality criterion [H. 08]
- Fractional splitting-off with potential update [H. 08]

Combinatorial duality relation [Karzanov 89, 98]
Max.

$$
\sum_{P \in \mathcal{P}} d_{K_{3,3}}\left(s_{P}, t_{P}\right) \lambda(P) \text { s.t. } f=(\mathcal{P}, \lambda) \text { for }(G, c ; S)
$$

$$
=\text { Min. } \quad \frac{1}{2} \sum_{x y \in E G} c(x y) d_{\Gamma_{3,3}}(\rho(x), \rho(y))
$$

s. t. $\quad \rho: V G \rightarrow V \Gamma_{3,3},\left.\rho\right|_{S}=i d, \quad \leftarrow$ potential

Optimality criterion [H. 08]

forward

backward
$\rho^{\prime}:$ a forward neighbor of $\rho \stackrel{\text { def }}{\Longrightarrow}$ in forward orientation $\overrightarrow{\Gamma_{3,3}}$,

$$
\rho^{\prime}(x) \neq \rho(x) \Longrightarrow \overrightarrow{\rho(x) \rho^{\prime}(x)} \in \overrightarrow{E \Gamma_{3,3}} \text { or }\left(\rho(x), \rho^{\prime}(x)\right)=(\bullet, \bullet) \text { or }(\bullet, \bullet)
$$

ρ^{\prime} : a backward neighbor of $\rho \stackrel{\text { def }}{\Longrightarrow}$ in backward orientation ...
Proposition [H. 08]
ρ is not optimal $\Rightarrow \exists$ neighbor ρ^{\prime} of ρ having smaller obj. value.

Proof sketch (of duality relation and opt. criterion)

LP-dual to $K_{3,3}$-max problem

$$
\begin{array}{cl}
\text { Min. } & \sum_{x y \in E G} c(x y) d(x, y) \\
\text { s.t. } & d: \text { metric on } V G,\left.\quad d\right|_{S}=d_{K_{3,3}}
\end{array}
$$

Proposition[Karzanov 98]
every minimal metric is embedded into $\left(T_{K_{3,3}}, l_{1}\right)$.

Lemma $d_{l_{1}} \circ \rho=\sum_{i} \lambda_{i}\left(d_{l_{1}} \circ \rho_{i}\right)$ for $\exists \rho_{i}$ with $\operatorname{Im} \rho_{i}=\{\bullet, \bullet, \circ, \bullet\}$
cf. tight spans (Isbell 64, Dress 84)

Fractional splitting-off

$\tau=\left(e, y, e^{\prime}\right)$: fork

Splitting capacity: $\alpha(\tau):=\max \left\{0 \leq \alpha \leq 2 \mid \operatorname{opt}(G, c)=\operatorname{opt}\left(G^{\tau}, c-\alpha \chi_{e^{\tau}}\right)\right\}$

Corollary (G, c) : inner Eulerian, ρ : optimal potential

$$
\begin{aligned}
\alpha(\tau) & =\min \left\{\left.\frac{\left\langle c, d_{\Gamma_{3,3}} \circ \rho^{\prime}\right\rangle-\left\langle c, d_{\Gamma_{3,3}} \circ \rho\right\rangle}{d_{\Gamma_{3,3}}\left(\rho^{\prime}(y), \rho^{\prime}\left(y^{\tau}\right)\right)} \right\rvert\, \rho^{\prime}: \text { neighbor of } \rho \text { with } \rho^{\prime}(y) \neq \rho^{\prime}\left(y^{\tau}\right)\right\} \\
& \in\left\{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\right\} . \quad\left\langle c, d_{\Gamma_{3,3}} \circ \rho\right\rangle:=\sum_{x y \in E G} c(x y) d_{\Gamma_{3,3}}(\rho(x), \rho(y))
\end{aligned}
$$

A neighbor attaining $\alpha(\tau)$ is called a critical neighbor.
ρ : optimal potential

$$
\begin{aligned}
S_{\rho} & =\{x \in V G \mid \rho(x)=\bullet \text { or } \bullet\} \\
M_{\rho} & =\{x \in V G \mid \rho(x)=\bullet\} \\
C_{\rho} & =\{x \in V G \mid \rho(x)=\bullet\}
\end{aligned}
$$

Proposition [H. 08]
(G, c) inner Eulerian, ρ optimal potential, $y \in S_{\rho}$ inner node $\Rightarrow y$ has a splittable fork.

Corollary $M_{\rho} \cup C_{\rho}=\emptyset \Rightarrow \exists$ integral optimum.
cf. splitting-off idea for 5-terminus flows $H=K_{5}$ in [Karzanov 87]

Splitting-off with Potential UPdate (SPUP)

ρ : an optimal potential
τ : a fork (unsplittable) at $M_{\rho} \cup C_{\rho}$
ρ^{\prime} : a critical neighbor of ρ w.r.t. τ
$\left(\alpha(\tau)=\min _{\rho^{\prime}} \frac{\left\langle c, d_{\Gamma_{3,3}} \circ \rho^{\prime}\right\rangle-\left\langle c, d_{\Gamma_{3,3}} \circ \rho\right\rangle}{d_{\Gamma_{3,3}}\left(\rho^{\prime}(y), \rho^{\prime}\left(y^{\tau}\right)\right)} \in\left\{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\right\}\right)$
SPUP: $(G, c ; \rho) \rightarrow\left(G^{\tau}, c-\alpha(\tau) \chi_{\left.e^{\tau} ; \rho^{\prime}\right)}\right.$

This SPUP does not keep (G, c) Eulerian, but C_{ρ} decreases, and still $\alpha(\tau) \in\left\{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\right\}$ in the next forward SPUP

In forward SPUP, C_{ρ} is nonincreasing, and M_{ρ} is nonincreasing if $C_{\rho}=\emptyset$.

These observations suggest us a possibility to repeat forward SPUPs until $M_{\rho} \cup C_{\rho}=\emptyset$ with keeping ($G, k c$) inner Eulerian for a fixed integer k.
$(\rightarrow \exists 1 / k$-integral optimum)
Proposition [H. 08] We can do it for $k=12$.
The proof is lengthy and complicated.

Concluding remarks

- We do not know whether $1 / 12$ is tight.
- The bounded fractionality conjecture for $K_{3}+K_{3}$ is a very special case of the conjecture (see Proceedings);

For a terminal weight $\mu, \operatorname{dim} T_{\mu} \leq 2$ if and only if there exists $k>0$ such that every Eulerian μ-max problem has a $1 / k$-integral optimum.

$$
T_{\mu}:=\text { Minimal }\left\{p \in \mathbf{R}^{S} \mid p(s)+p(t) \geq \mu(s, t)(s, t \in S)\right\}
$$

- Recently we proved it for $k=12$ [H. 09, in preparation]
- Half-integral $\Gamma_{3,3}$-metric packing [H. 07, Combinatorica, to appear]

Future works

- Improving the bound $1 / 12(\rightarrow 1 / 2$?).
- Augmenting path algorithms for multiflows ?

Appendix I

Proof sketch (based on Karzanov's splitting-off idea for 5-terminus flows)

$\Rightarrow \alpha(\tau) \in\{0,1,2\} . \quad\left(\leftarrow \alpha(\tau)=2 \min _{\rho^{\prime}} \frac{\operatorname{obj}\left(\rho^{\prime}\right)-\operatorname{obj}(\rho)}{\operatorname{dist} \Gamma_{3,3}\left(\rho^{\prime}(y), \rho^{\prime}\left(y^{\tau}\right)\right)}\right)$
Suppose $\alpha(\tau)=1$.
Take an optimal flow $f=(\mathcal{P}, \lambda)$ for $\left(G^{\tau}, c-\alpha(\tau) \chi_{e^{\tau}}\right)$.
Complementary slackness: both $f=(\mathcal{P}, \lambda), \rho^{\prime}$ optimal \Leftrightarrow

$$
\begin{aligned}
\rho^{\prime}(x) \neq \rho^{\prime}(y) & \Rightarrow x y \text { is saturated by } f, \\
P \in \mathcal{P}: \lambda(P)>0 & \Rightarrow \rho^{\prime}(P) \text { is geodesic in } \Gamma_{3,3} .
\end{aligned}
$$

Appendix II
($G, c ; \rho$): restricted Eulerian if c integer, and $\forall y \in M_{\rho} \cup C_{\rho}$ has even degree.
Lemma ($G, c ; \rho$):restricted Eulerian, τ : a fork, ρ^{\prime} : a critical neighbor. ρ^{\prime} is forward $\Rightarrow \alpha(\tau) \in\left\{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\right\}$.

Proposition ($G, c ; \rho$):restricted Eulerian, $y \in M_{\rho}$ (unsplittable),

1. \exists an optimal forward neighbor ρ^{\prime} with $\rho^{\prime}(y) \in S_{\rho}$, or
2. \exists a fork τ s.t. a critical neighbor ρ^{\prime} is forward $\left(\rightarrow \rho^{\prime}(y), \rho^{\prime}\left(y^{\tau}\right) \in S_{\rho}, \alpha(\tau)=1\right.$, SPUP keeps ($G, c ; \rho$) restrict Eulerian)

Corollary
($G, c ; \rho$) restricted Eulerian with $C_{\rho}=\emptyset \Rightarrow \exists$ half-integral optimum.

Starting from inner Eulerian (G, c) with all inner node having degree four.
Proposition We can apply forward SPUPs to all degree four nodes in C_{ρ} with keeping ($G, 6 c ; \rho$) restricted Eulerian.

The ring condition:
the subgraph of G induced by C_{ρ} consists of paths and cycles.
Proposition ($G, c ; \rho$) restricted Eulerian and the ring condition $\Rightarrow \exists$ half-integral optimum.

