Multiflow Feasibility Problem for $K_3 + K_3$

Hiroshi Hirai RIMS, Kyoto Univ. hirai@kurims.kyoto-u.ac.jp

6th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications May 16-19, 2009, Budapest, Hungary H. Hirai, Bounded fractionality of the multiflow feasibility problem for demand graph $K_3 + K_3$ and related maximization problems, *RIMS-Preprint 1645*, 2008.

- Reviews on multiflow feasibility problems
- Karzanov's conjecture
- Main theorem
- Proof sketch

Multiflows (Multicommodity flows)

G: an undirected graph (*supply graph*)

 $c: EG \rightarrow \mathbf{R_+}$: nonnegative edge capacity

 $S \subseteq VG$: terminal set

A multiflow
$$f = (\mathcal{P}, \lambda) \stackrel{\text{def}}{\iff}$$

 $\mathcal{P}:$ set of S-paths

 $\lambda: \mathcal{P} \to \mathbf{R}_+$: flow-value function satisfying capacity constraint

$$\sum \{\lambda(P) \mid P \in \mathcal{P} : e \in P\} \le c(e) \quad (e \in EG).$$

Multiflow feasibility problem

H: demand graph with VH = S $q: EH \rightarrow \mathbf{R}_+$: demand function on edges EH.

Find a multiflow $f = (\mathcal{P}, \lambda)$ satisfying demand requirement $\sum \{\lambda(P) \mid P \in \mathcal{P} : P \text{ is } (s,t)\text{-path}\} = q(st) \quad (st \in EH),$ or establish that no such a multiflow exists.

We are interested in behavior of multiflows for a fixed H and arbitrary G, c, q. • $H = K_2$: single commodity flows Theorem [Ford-Fulkerson 54] c, q integral, feasible $\Rightarrow \exists$ integral solution.

- $H = K_2 + K_2$: 2-commodity flows Theorem [Hu 63] c, q integral, feasible $\Rightarrow \exists$ half-integral solution.
- $H = K_2 + K_2 + \dots + K_2$: k-commodity flows ??? c,q integral, feasible $\Rightarrow \exists 1/p$ -integral solution $(p \le k)$??? (Jewell 67, Seymour 81)

Theorem [Lomonosov 85]

There is no integer k > 0 such that every feasible 3-commodity flow problem with integer capacity and demand has a 1/k-integral solution.

Fractionality

frac(H) := the least positive integer k with the property: $\forall c, q$ integral, feasible $\Rightarrow \exists 1/k$ -integral solution.

Problem [Karzanov 89,90] Classify demand graphs H with $frac(H) < +\infty$.

Remark $H \supseteq K_2 + K_2 + K_2 \Rightarrow \operatorname{frac}(H) = +\infty$.

Graphs without $K_2 + K_2 + K_2$

(I) K_4 , C_5 , or star + star,

(II) K_5 or star + K_3 ,

(III) $K_3 + K_3$.

(I) $H = K_4$, C_5 , or star + star,

Theorem [Rothschild & Winston 66, Seymour 80, Lomonosov 76,85] c, q Eulerian, feasible $\Rightarrow \exists$ integral solution (\rightarrow frac(H) = 2).

Combinatorial feasibility condition [Papernov 76] c, q feasible \Leftrightarrow cut condition

$$\langle c, \delta_X \rangle_{EG} \ge \langle q, \delta_X \rangle_{EH} \quad (\forall X \subseteq VG),$$

where δ_X is the *cut metric* of X.

(II) $H = K_5$ or star + K_3

Theorem [Karzanov 87] c, q Eulerian, feasible $\Rightarrow \exists$ integral solution (\rightarrow frac(H) = 2).

Combinatorial feasibility condition [Karzanov 87] c, q feasible $\Leftrightarrow K_{2,3}$ -metric condition

 $\langle c, d \rangle_{EG} \geq \langle q, d \rangle_{EH} \quad (\forall K_{2,3}\text{-metric } d \text{ on } VG).$

 $K_{2,3}$ -metric $d \stackrel{\text{def}}{\iff} d = d_{K_{2,3}}(\phi(\cdot), \phi(\cdot))$ for $\exists \phi : VG \to VK_{2,3}$

 $(III) H = K_3 + K_3$

Remark $\exists c, q$ integral, feasible \Rightarrow no integral, no half-integral, \exists quarter-integral solution. \rightarrow frac $(K_3 + K_3) \ge 4$.

Combinatorial feasibility condition [Karzanov 89]

c,q feasible $\Leftrightarrow \Gamma_{3,3}$ -metric condition

Conjecture [Karzanov 90, ICM, Kyoto]

1. frac $(K_3 + K_3) < +\infty$.

2. c,q Eulerian, feasible $\Rightarrow \exists$ half-integral solution (\rightarrow frac($K_3 + K_3$) = 4)

Cf. Problems 51, 52 in Schrijver's book "Combinatorial Optimization"

Main Theorem [H. 08]

- $H = K_3 + K_3$, c, q Eulerian, feasible
- $\Rightarrow \exists 1/12$ -integral solution.
- → the complete classification of demand graphs having finite fractionality

Corollary frac(H) < $+\infty \Leftrightarrow H \not\supseteq K_2 + K_2 + K_2$.

Corollary frac $(K_3 + K_3) \in \{4, 8, 12, 24\}$.

Proof Sketch

1. Reduction to

 $K_{3,3}$ -metric-weighted maximum multiflow problem

- 2. A combinatorial dual problem
- 3. Its optimality criterion
- 4. Fractional splitting-off with potential update

 $K_{3,3}$ -metric weighted maximum multiflow problem

(G, c): an undirected graph with edge-capacity $S \subseteq VG$: 6-element terminal set with $S = VK_{3,3}$

Max.
$$\sum_{P \in \mathcal{P}} d_{K_{3,3}}(s_P, t_P)\lambda(P)$$

s. t. $f = (\mathcal{P}, \lambda)$: multiflow for $(G, c; S)$

Remark no integral optimum even if (G, c) inner Eulerian.

Remark

∃ 1/k-integral optimum in inner Eulerian $K_{3,3}$ -max problem ⇒ ∃ 1/k-integral solution in Eulerian $K_3 + K_3$ -feasibility problem

Theorem [H. 08]

 \exists 1/12-integral optimum in every inner Eulerian $K_{3,3}$ -max problem.

Splitting-off for multiflows

[Rothschild-Winston 66, Lovász 76, Seymour 80, Karzanov 87]

- Very powerful for showing an integral optimum in Eulerian problems.
- How about showing a 1/k-integral optimum ($k \ge 2$)?
- A naive fractional variant violates Eulerianess, and induction fails.

Three key ingredients

- Combinatorial dual problem [Karzanov 89, 98]
- Its optimality criterion [H. 08]
- Fractional splitting-off with potential update [H. 08]

Combinatorial duality relation [Karzanov 89, 98]

Max.
$$\sum_{P \in \mathcal{P}} d_{K_{3,3}}(s_P, t_P)\lambda(P)$$
 s.t. $f = (\mathcal{P}, \lambda)$ for $(G, c; S)$

= Min.
$$\frac{1}{2} \sum_{xy \in EG} c(xy) d_{\Gamma_{3,3}}(\rho(x), \rho(y))$$

s. t. $\rho: VG \to V\Gamma_{3,3}, \ \rho|_S = id, \quad \leftarrow \text{potential}$

17

Proposition [H. 08] ρ is not optimal $\Rightarrow \exists$ neighbor ρ' of ρ having smaller obj. value.

Proof sketch (of duality relation and opt. criterion)

LP-dual to $K_{3,3}$ -max problem

Min.
$$\sum_{xy \in EG} c(xy)d(x,y)$$

s.t. d: metric on VG , $d|_S = d_{K_{3,3}}$

Proposition[Karzanov 98]

every minimal metric is embedded into $(T_{K_{3,3}}, l_1)$.

Lemma $d_{l_1} \circ \rho = \sum_i \lambda_i \ (d_{l_1} \circ \rho_i)$ for $\exists \rho_i$ with Im $\rho_i = \{\bullet, \bullet, \circ, \bullet\}$ cf. *tight spans* (Isbell 64, Dress 84)

Splitting capacity: $\alpha(\tau) := \max\{0 \le \alpha \le 2 \mid \mathsf{opt}(G, c) = \mathsf{opt}(G^{\tau}, c - \alpha \chi_{e^{\tau}})\}$

Corollary (G, c): inner Eulerian, ρ : optimal potential

$$\begin{aligned} \alpha(\tau) &= \min\left\{\frac{\langle c, d_{\Gamma_{3,3}} \circ \rho' \rangle - \langle c, d_{\Gamma_{3,3}} \circ \rho \rangle}{d_{\Gamma_{3,3}}(\rho'(y), \rho'(y^{\tau}))} \ \Big| \ \rho' : \text{neighbor of } \rho \text{ with } \rho'(y) \neq \rho'(y^{\tau}) \right\} \\ &\in \left\{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\right\}. \qquad \langle c, d_{\Gamma_{3,3}} \circ \rho \rangle := \sum_{xy \in EG} c(xy) d_{\Gamma_{3,3}}(\rho(x), \rho(y)) \end{aligned}$$

A neighbor attaining $\alpha(\tau)$ is called a *critical neighbor*.

ρ : optimal potential

$$S_{\rho} = \{x \in VG \mid \rho(x) = \bullet \text{ or } \bullet\}$$
$$M_{\rho} = \{x \in VG \mid \rho(x) = \circ\}$$
$$C_{\rho} = \{x \in VG \mid \rho(x) = \bullet\}$$

Proposition [H. 08] (G,c) inner Eulerian, ρ optimal potential, $y \in S_{\rho}$ inner node $\Rightarrow y$ has a splittable fork.

Corollary $M_{\rho} \cup C_{\rho} = \emptyset \Rightarrow \exists$ integral optimum.

cf. splitting-off idea for 5-terminus flows $H = K_5$ in [Karzanov 87]

Splitting-off with Potential UPdate (SPUP)

 $\rho: \text{ an optimal potential}$ $\tau: \text{ a fork (unsplittable) at } M_{\rho} \cup C_{\rho}$ $\rho': \text{ a critical neighbor of } \rho \text{ w.r.t. } \tau$ $\left(\alpha(\tau) = \min_{\rho'} \frac{\langle c, d_{\Gamma_{3,3}} \circ \rho' \rangle - \langle c, d_{\Gamma_{3,3}} \circ \rho \rangle}{d_{\Gamma_{3,3}}(\rho'(y), \rho'(y^{\tau}))} \in \{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\}\right)$

SPUP: $(G, c; \rho) \rightarrow (G^{\tau}, c - \alpha(\tau)\chi_{e^{\tau}}; \rho')$

This SPUP does not keep (G, c) Eulerian, but C_{ρ} decreases, and still $\alpha(\tau) \in \{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\}$ in the next forward SPUP

In forward SPUP, C_{ρ} is nonincreasing, and M_{ρ} is nonincreasing if $C_{\rho} = \emptyset$.

These observations suggest us a possibility to repeat forward SPUPs until $M_{\rho} \cup C_{\rho} = \emptyset$ with keeping (G, kc) inner Eulerian for a fixed integer k. $(\rightarrow \exists 1/k\text{-integral optimum})$

Proposition [H. 08] We can do it for k = 12.

The proof is lengthy and complicated.

Concluding remarks

- We do not know whether 1/12 is tight.
- The bounded fractionality conjecture for $K_3 + K_3$ is a very special case of the conjecture (see Proceedings);

For a terminal weight μ , dim $T_{\mu} \leq 2$ if and only if there exists k > 0 such that every Eulerian μ -max problem has a 1/k-integral optimum.

 $T_{\mu} := \text{Minimal } \{ p \in \mathbf{R}^S \mid p(s) + p(t) \ge \mu(s, t) \ (s, t \in S) \}$

- Recently we proved it for k = 12 [H. 09, in preparation]
- Half-integral $\Gamma_{3,3}$ -metric packing [H. 07, *Combinatorica*, to appear]

Future works

- Improving the bound 1/12 (\rightarrow 1/2 ?).
- Augmenting path algorithms for multiflows ?

Appendix I

Appendix II

 $(G, c; \rho)$: restricted Eulerian if c integer, and $\forall y \in M_{\rho} \cup C_{\rho}$ has even degree.

Lemma $(G, c; \rho)$:restricted Eulerian, τ : a fork, ρ' : a critical neighbor. ρ' is forward $\Rightarrow \alpha(\tau) \in \{0, \frac{1}{2}, \frac{2}{3}, 1, \frac{4}{3}, \frac{3}{2}, 2\}.$

Proposition $(G, c; \rho)$:restricted Eulerian, $y \in M_{\rho}$ (unsplittable),

1. \exists an optimal forward neighbor ρ' with $\rho'(y) \in S_{\rho}$, or

2. \exists a fork τ s.t. a critical neighbor ρ' is forward $(\rightarrow \rho'(y), \rho'(y^{\tau}) \in S_{\rho}, \alpha(\tau) = 1$, SPUP keeps $(G, c; \rho)$ restrict Eulerian)

Corollary

 $(G, c; \rho)$ restricted Eulerian with $C_{\rho} = \emptyset \Rightarrow \exists$ half-integral optimum.

Starting from inner Eulerian (G, c) with all inner node having degree four.

Proposition We can apply forward SPUPs to all degree four nodes in C_{ρ} with keeping $(G, 6c; \rho)$ restricted Eulerian.

The ring condition:

the subgraph of G induced by C_{ρ} consists of paths and cycles.

Proposition $(G, c; \rho)$ restricted Eulerian and the ring condition $\Rightarrow \exists$ half-integral optimum.