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Abstract

Given an undirected graph G = (V,E) with a terminal set S ⊆ V , a weight
function µ :

(
S
2

)
→ Z+ on terminal pairs, and an edge-cost a : E → Z+, the µ-

weighted minimum-cost edge-disjoint S-paths problem (µ-CEDP) is to maximize∑
P∈P µ(sP , tP )−a(P ) over all edge-disjoint sets P of S-paths, where sP , tP denote

the ends of P and a(P ) is the sum of edge-cost a(e) over edges e in P .
Our main result is a complete characterization of terminal weights µ for which µ-

CEDP is tractable and admits a combinatorial min-max theorem. We prove that if µ
is a tree metric, then µ-CEDP is solvable in polynomial time and has a combinatorial
min-max formula, which extends Mader’s edge-disjoint S-paths theorem and its
minimum-cost generalization by Karzanov. Our min-max theorem includes the dual
half-integrality, which was earlier conjectured by Karzanov for a special case. We
also prove that µ-EDP, which is µ-CEDP with a = 0, is NP-hard if µ is not a
truncated tree metric, where a truncated tree metric is a weight function represented
as pairwise distances between balls in a tree. On the other hand, µ-CEDP for a
truncated tree metric µ reduces to µ′-CEDP for a tree metric µ′. Thus our result
is best possible unless P = NP. As an application, we get a good approximation
algorithm for µ-EDP with “near” tree metric µ by utilizing results from the theory
of low-distortion embedding.

1 Introduction

Let G be an undirected graph with vertex set V = V (G) and edge set E = E(G). We
are given a specified set S of vertices, called terminals. An S-path is a path connecting
distinct terminals in S. Let a : E → Z+ be a nonnegative integral edge-cost, and
let µ :

(
S
2

)
→ Z+ be a nonnegative integral terminal weight defined on the set

(
S
2

)
of

all (unordered) pairs of S. One (s, t)-path P has the value µ(s, t) as well as the cost
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a(P ) :=
∑

e∈E a(e). We want to find an edge-disjoint set P of S-paths having a high
value and a low cost. Motivated by this, we consider the µ-weighted minimum-cost
edge-disjoint S-paths problem (µ-CEDP):

µ-CEDP: Maximize
∑
P∈P

µ(sP , tP )− a(P )

over all edge-disjoint sets P of S-paths in G,

where sP , tP denote the terminals which P connects. Let val(µ;G, a) denote the optimal
value of µ-CEDP.

In general, µ-CEDP is NP-hard. To see this, let S = {s, t, s′, t′} and define weight
µ2com by µ2com(u, v) := 1 if {u, v} = {s, t} or {s′, t′}, and µ2com(u, v) := 0 otherwise.
Then µ2com-CEDP with a = 0 is the integer version of the 2-commodity flow maximiza-
tion problem [20]. This problem is known to be NP-hard [10].

However, there is an instance of terminal weights µ such that µ-CEDP is tractable,
admits a nice combinatorial min-max theorem, and is not reducible to minimum-cost
(single commodity) flow problem. The case of (µ, a) = (1, 0) is fundamental, where 1
denotes the all one function and 0 denotes the all zero function. In this case, µ-CEDP is
nothing but the edge-disjoint S-paths packing problem. Mader [34] proved the following
combinatorial min-max theorem for this problem:

(1.1) val(1;G, 0) =
1

2
min

(∑
s∈S
|δXs| − κ

)
,

where the minimum is taken over all families of disjoint node subsets Xs (s ∈ S) with
s ∈ Xs, and δX denotes the set of edges joining X and V \X, and κ denotes the number
of connected components K in G−

∪
s∈S Xs such that |δV (K)| is odd. Moreover edge-

disjoint S-paths attaining the maximum val(1;G, 0) can be found in polynomial time by
Lovasz’s (linear) matroid matching algorithm [31, 32] or by the ellipsoid method [28];
see [43, Section 73.1].

In the 90’s, Karzanov [24, 26] studied µ-CEDP for µ = p1 (p > 0) and an arbitrary
cost a. If p is large enough, then any optimal solution is a maximum edge-disjoint set
of S-paths with the minimum total cost. He gave a min-max theorem together with a
combinatorial polynomial time algorithm. A proof outline was given in [26]. However the
full proof [24] takes over 60 pages, is rather complicated, and has not yet been submitted
to any journal.

Our main result is a complete characterization of terminal weights µ for which µ-
CEDP is tractable and admits a combinatorial min-max theorem, extending the edge-
disjoint S-paths theorem by Mader and its min-cost generalization by Karzanov. To
state the main result, let us introduce some notions. A tree metric is a weight function
that can be represented as distances among points in a (weighted) tree. More precisely,
a weight µ is called a tree metric if there exist a tree Γ , a positive γ > 0, and a family
of nodes {ps}s∈S ⊆ V (Γ ) indexed by S such that µ(s, t) = γdΓ (ps, pt) for s, t ∈ S,
where dΓ denotes the shortest path metric of Γ with respect to unit edge-length. Triple
(Γ, {ps}s∈S ; γ) is called a tree realization of µ. Here γ is always taken as 1/2 if µ is an
integer-valued tree metric. Indeed, by definition, a tree metric µ is also represented as
the shortest path metric among node subset {ps}s∈S in some weighted tree Γ of edge-
weight l : E → R+. We can assume that for each vertex v of degree at most two there
is s ∈ S with v = ps. Then each edge-length l(e) is half-integral since l(e) is equal to is
(µ(s, u) + µ(t, v) + µ(s, v) + µ(t, u) − µ(s, t) − µ(u, v))/2 for some s, t, u, v ∈ S. Hence,
by edge-subdivision, we get a realization of µ with γ = 1/2.
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Let G = (V,E) be a graph with terminal set S. A node in V \ S is called an inner
node. G is said to be inner Eulerian if every inner node has an even degree. An inner-
odd-join is an edge subset F ⊆ E for which G − F = (V,E \ F ) is inner Eulerian.
For a tree Γ and a map ρ : V → V (Γ ), let dΓ · ρ denote a function on E defined by
(dΓ · ρ)(e) = dΓ (ρ(x), ρ(y)) for e = xy. We are now ready to state our main theorem:

Theorem 1.1. Let µ be an integer-valued tree metric realized by (Γ, {ps}s∈S ; 1/2). Then
we have

(1.2) val(µ;G, a) = min
ρ

max
F

(
1

2
dΓ · ρ− a

)
(E \ F ),

where the maximum is taken over inner-odd-joins F and the minimum is taken over
maps ρ : V → V (Γ ) satisfying ρ(s) = ps for s ∈ S. Moreover there exists a polynomial
time algorithm to find an edge-disjoint set of S-paths attaining val(µ;G, a).

Relation to Mader’s min-max formula. Mader’s formula (1.1) can be deduced
from our formula (1.2) as follows. First, observe that, in (1.1), the minimum is always
attained by {Xs} with the following property:

(1.3) Each x ∈ Xs is reachable from s in the subgraph of G induced by Xs.

Indeed, delete such nonreachable nodes from Xs. Then
∑
|δXs| − κ does not increase.

Next consider our formula (1.2). Let µ = 1, and let Γ be a star with |S| leaves ps
(s ∈ S) and center p0. Then (Γ, {ps}s∈S ; 1/2) realizes µ. A map ρ : V → V (Γ ) satisfying
ρ(s) = ps is identified with a set {Xs}s∈S of disjoint sets with s ∈ Xs by correspondence
Xs ↔ ρ−1(ps). Then (dΓ · ρ)(E) =

∑
s∈S |δXs|. Also in (1.2) the minimum is always

attained by a map ρ with the property (1.3) (under the correspondence Xs ↔ ρ−1(ps)).
To see this, consider a map ρ′ obtained from ρ by replacing ρ(x) with p0 for all such
nonreachable nodes x. Then the inner maximum does not increase. Indeed, take an
inner-odd-join F ′ attaining maxF (dΓ · ρ′)(E \F ). Since (dΓ · ρ′)(e) ≤ (dΓ · ρ)(e) (e ∈ E)
by the construction, we have (dΓ · ρ′)(E \ F ′) ≤ (dΓ · ρ)(E \ F ′) ≤ maxF (dΓ · ρ)(E \ F ).
Next we estimate minF (dΓ · ρ)(F ) under property (1.3). Let Y1, Y2, . . . , Ym be the node
sets of connected components of G−

∪
s∈S Xs. Any inner-odd-join F meets at least one

edge in δYi if |δYi| is odd; hence minF (dΓ · ρ)(F ) ≥ κ. Conversely, taking one edge from
each δYi with |δYi| odd, we obtain an edge set F with (dΓ · ρ)(F ) = κ. By (1.3), we
can greedily add edges e with (dΓ · ρ)(e) = 0 to F , and extend F to an inner-odd-join
of G. This means minF (dΓ · ρ)(F ) = κ. Hence Theorem 1.1 implies Mader’s min-max
formula (1.1).

Dual half-integrality of min-cost edge-disjoint S-paths problem. As mentioned
already, our result includes Karzanov’s min-cost edge-disjoint S-paths theorem for a
special case of µ = p1. Therefore this paper includes a relatively simpler proof of his
result. Furthermore our min-max formula includes half-integrality of dual. Indeed, it will
turn out that the inner maximization is a minimum-cost T -join problem. Although edge-
cost c := (dΓ ·ρ)/2−a is half-integral, the sum of c(e) along every cycle is an integer (since
tree Γ is bipartite). By Seymour’s odd-cut packing theorem [45] for bipartite graphs,
the inner maximization is dualized to a half-integral odd-cut packing problem. This dual
half-integrality affirmatively resolves a question raised by Karzanov [26, Section 6, (2)]
as the special case; see Section 6.4 for detail.
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Tractability classification of terminals weights. By considering a = 0 we get an
important special case µ-EDP of µ-CEDP:

µ-EDP: Maximize
∑
P∈P

µ(sP , tP ) over all edge-disjoint sets P of S-paths in G.

A terminal weight µ is said to be EDP-tractable if µ-EDP is solvable in polynomial time
for every graph containing terminal set S. The all-one weight 1 is EDP-tractable. By
our result, every tree metric is EDP-tractable. However, a slightly more general class of
weights is EDP-tractable. A weight µ is said to be a truncated tree metric if it can be
represented as distances between balls in a weighted tree, or equivalently, if there are a
tree metric µ̄ and a nonnegative function (radius) r on S such that

(1.4) µ(s, t) = max (µ̄(s, t)− r(s)− r(t), 0) (s, t ∈ S).

Corollary 1.2. Every truncated tree metric is EDP-tractable.

Indeed, suppose that µ is a truncated tree metric represented as (1.4) for a tree metric
µ̄ and radius r. Then µ-EDP reduces to µ̄-CEDP as follows. First, for each terminal s,
add a new inner node s′, and replace each edge sx incident to s by two edges ss′ and
s′x. Clearly the problem does not change. Next define cost a as: a(e) = r(s) if e = ss′

for a terminal s and a(e) = 0 otherwise. Consider µ̄-CEDP for this graph with this cost.
Then value µ̄(s, t)− a(P ) of any (s, t)-path P is equal to µ̄(s, t)− a(s)− a(t)(≤ µ(s, t)).
Therefore the optimal value of the µ̄-CEDP is at most that of the original µ-EDP.
Conversely, from an optimal solution in the µ-EDP, we can delete all paths P with
µ(sP , tP ) = 0 to obtain a solution in the µ̄-CEDP of the same objective value. Note that
the same idea also reduces µ-CEDP to µ̄-CEDP.

We further prove that this result is best possible in the following sense:

Theorem 1.3. If µ is not a truncated tree metric, then µ-EDP is NP-hard.

This hardness result implies that EDP-tractable weights are exactly truncated tree
metrics unless P = NP.

Application: Approximating edge-disjoint S-paths for “near” tree metric.
Finding a good approximation for µ-EDP (with general µ) is a great challenge in the
area of approximation algorithms [47]; the current best is an O(

√
|V |)-approximation

due to Chekuri, Khanna and Shepherd [4].
The following observation suggests a possible use of our result to the design of ap-

proximation algorithms for µ-EDP:

If we can choose some EDP-tractable weight µ∗ with µ ≤ µ∗ ≤ αµ for some
α ≥ 1, then any optimal solution for µ∗-EDP is an α-approximate solution
for µ-EDP.

An α-approximate solution is a solution having the objective value at least 1/α times the
optimal value. In the case of metric weights, this problem—finding a good embedding
into a tree metric— falls into the area of the low-distortion embedding; see [33]. For two
metric spaces (X, d) and (Y, d′), a map ϕ : X → Y is an embedding with distortion α if
d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ αd(x, y) for x, y ∈ X. Given a metric µ (metric space (S, µ)),
let α∗ denote the minimum distortion of an embedding into a tree metric (the metric
space on a tree). Finding a tree metric achieving α∗ for a given metric µ is NP-hard.
Consider the case where the input metric µ is a graph metric, i.e., µ = dH for some
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graph H with S = V (H). Bădoiu, Indyk, and Sidiropoulos [2] gave a polynomial time
algorithm to find an embedding into some tree metric with distortion O(α∗). Later,
Chepoi, Dragan, Newman, Rabinovich, and Vaxes [6] gave a polynomial time algorithm
to find a tree embedding with distortion 6α∗. Thus we have the following.

Corollary 1.4. Let µ be a graph metric that can be embedded into a tree metric with
distortion α∗. Then there exists a 6α∗-approximation algorithm for µ-EDP.

Unfortunately, this approach does not improve the approximation ratio (for general
graph metrics) since the minimum distortion of general metrics into tree metrics is
Ω(|S|) [40]. (Note that Bartal’s probabilistic embedding [1] does not work since our
problem is a maximization problem.) Also the assumption that µ is a metric is rather
restrictive, and not natural. The most prominent case in the literature is the case where µ
is a weight on a 2k element terminal set S = {s1, s2, . . . , sk, t1, t2, . . . , tk} taking a nonzero
value only on siti (1 ≤ i ≤ k); such a weight is far from being a metric. Nevertheless we
hope that our results and techniques will provide tools to approximation algorithms for
µ-EDP/CEDP.

Multicommodity flows. A natural fractional relaxation of µ-EDP—µ-weighted max-
imum multiflow problem— has been well-studied in the literature. Hu [20] proved the
existence of a half-integral optimal solution for the 2-commodity flow maximization prob-
lem (the case of µ = µ2com). Lovász [30] and Cherkassky [5] independently proved the
existence of a half-integral optimal solution for all-one weight µ = 1. However the
3-commodity flow does not have such a property. Namely, there is no integer k > 0
such that every 3-commodity flow problem has a 1/k-integral optimal solution. Such
phenomena of the (non-)existence of an optimal solution with bounded denominator
lead to another kind of a weight classification problem, called the fractionality problem.
The fractionality problem [22, 23] asks the classification of weights µ for which every
µ-weighted multiflow problem has a 1/k-integral optimal multiflow for some integer k.
Recent works [16, 17, 18] by Hirai gave a solution to the fractionality problem. He [19]
also gave a solution to the node-capacitated variation as: µ has bounded fractionality
for node-capacitated µ-weighted maximum multiflow problems if and only if µ can be
represented as the distance between subtrees (not necessarily balls!) in a tree. This work
is influenced by these developments.

Discrete minimax relation. The formula (1.2) can be seen as a discrete minimax
relation, a minimax relation on a discrete domain, as follows. It is shown in [27] that if
G is inner Eulerian and µ is an integer-valued tree metric realized by (Γ, {ps}s∈S ; 1/2),
then the µ-weighted maximum (fractional) multiflow problem has an integral optimal
multiflow with value

min
ρ

1

2
(dΓ · ρ)(E),

where the minimum is taken over all maps ρ : V → V (Γ ) with ρ(s) = ps for s ∈ S; see
Section 3.1. Since the complement of the union of edge-disjoint S-paths is an inner-odd-
join, for a graph G = (V,E) (not necessarily inner Eulerian) we have

val(µ;G, a) = max
F

(val(µ;G− F, 0)− a(E \ F )) = max
F

min
ρ

(
1

2
dΓ · ρ− a

)
(E \ F ).

Hence our formula (1.2) implies a minimax theorem stating that “max” and “min” are
interchangeable. (In particular, the weak duality of (1.2) can be seen by the general
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relation maxxminy f(x, y) ≤ miny maxx f(x, y).) An interesting point is that this min-
imax theorem is on a discrete structure, and seems not to be explained by Euclidean
convexity.

Organization. The first goal is the proof of Theorem 1.1, and the second goal is the
proof of Theorem 1.3. We construct an LP-relaxation of µ-CEDP/EDP according to the
observation: the union of S-paths is an inner Eulerian graph, and hence the complement
is an inner-odd-join. Thus val(µ;G, a) = maxF val(µ;G − F, 0) − a(E \ F ) holds. Next
relax inner-odd-joins into points in the convex hull of the incidence vectors of inner-odd-
joins (inner-odd-join polytope), and relax edge-disjoint paths into multiflows in a natural
way. This LP-relaxation was used in [3, 26, 28] (implicitly or explicitly). Note that the
inner-odd-join polytope is a T -join polytope, and therefore a polynomial time separation
oracle exists; see, e.g., [36]. Hence this LP-relaxation can be solved in polynomial time
by the ellipsoid method [13]. We prove that if µ is a tree metric, then this LP-relaxation
has an integral optimal solution. This extends a result of Keijsper, Pendavingh, and
Stougie [28] for (µ, a) = (1, 0). Although their proof assumes Mader’s theorem (1.1),
our proof does not, and is purely polyhedral, i.e., it consists only of LP-based techniques.
Therefore our paper gives a new proof of Mader’s edge-disjoint path theorem.

In Section 2, we describe a high-level idea of how to prove the integrality of this
LP-relaxation. In Section 3, we give preliminary arguments including the polyhedral de-
scription of inner-odd-join polytope. In Section 4, we prove the first part of Theorem 1.1,
which consists of three steps. The first step is to represent the dual of the LP-relaxation
as a facility location problem on a tree. The second step is to show that a dual optimum is
always attained by a nice structured combinatorial solution, and the optimal value coin-
cides with the right hand side in the min-max formula (1.2). In the third step, we analyze
the stability of dual combinatorial solutions under edge deletion; we see an unexpected
application of the polynomial uncrossing process [26]. We then prove by induction the ex-
istence of an integral optimal solution. In Section 5, we prove the polynomial solvability
(the second part of Theorem 1.1) and NP-hardness (Theorem 1.3). The polynomial solv-
ability is almost proved by the argument in Section 4. The proof of the NP-hardness re-
sult is based on an interesting connection between a reduction to an integer 2-commodity
flow feasibility problem and 4-point characterization of truncated tree metrics. As is well
known, a metric µ is a tree metric if and only if there is no quadruple (s, t, s′, t′) (vio-
lating quadruple) satisfying µ(s, t) + µ(s′, t′) > max{µ(s, s′) + µ(t, t′), µ(s′, t) + µ(s, t′)};
see [44]. We prove a similar 4-point characterization for truncated tree metrics. From a
violating quadruple (s, t, s′, t′), we can reduce a version of the integer 2-commodity flow
feasibility problem, which is NP-hard, to µ|S′-EDP on the four terminal S′ = {s, t, s′, t′}.
In Section 6, we discuss related issues and raise future research directions.

Notation. Let R and R+ denote the sets of reals and nonnegative reals, respectively,
and let Z and Z+ denote the sets of integers and nonnegative integers, respectively. For
a set X, let RX and RX

+ denote the sets of functions from X to R and from X to R+,
respectively. For a function f : X → R, let D+f and D−f denote the sets of elements
x ∈ X with f(x) > 0 and f(x) < 0, respectively. Let f+, f−, and |f | denote the functions
defined by f+(x) = max(0, f(x)), f−(x) = min(0, f(x)), and |f |(x) = max(−f(x), f(x)),
respectively. Let ∥f∥ denote the l∞-norm of f ; ∥f∥ := maxx∈X |f(x)|. For a subset
Y ⊆ X, let f(Y ) denote the sum of f(y) over all y ∈ Y . The all-one function is denoted
by 1, and the zero function is denoted by 0.

By a metric on a set V , we mean a function d : V × V → R+ satisfying d(x, x) = 0,
d(x, y) = d(y, x), and triangle inequalities d(x, y) + d(y, z) ≥ d(x, z) for x, y, z ∈ V . For
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a subset X ⊆ V , the cut metric δX is defined by δX(x, y) = 1 if |X ∩ {x, y}| = 1 and
δX(x, y) = 0 otherwise.

Let G = (V,E) be a graph with possible parallel edges and loops. For an edge e, we
write e = xy if e joins nodes x, y. For a node subset X ⊆ V , let δX = δGX denote the
set of edges joining X and V \X. For two functions f, g on E, let f · g denote the inner
product

∑
e∈E f(e)g(e). We regard a metric d on V as a function on E by d(e) := d(x, y)

for e = xy ∈ E. In particular, δX · ξ = ξ(δX) for ξ ∈ RE .

2 High-level idea for the proof of Theorem 1.1

The aim of this section is to explain the high-level idea behind the proof of Theorem 1.1.
In Section 2.1, we introduce an LP-relaxation of µ-CEDP; our goal is to show that this
LP is exact. In Section 2.2, taking a special case of (µ, a) = (1, 0), we illustrate a basic
idea to prove the existence of an integral optimal solution. In Section 2.3, we explain
how to extend this idea to general (µ, a), with giving an outline of Sections 3 and 4.

Let G = (V,E) be an undirected graph with terminal set S ⊆ V , µ a terminal weight,
and a an edge-cost.

2.1 LP relaxation

Recall that an inner-odd-join is an edge subset F for which G−F is inner Eulerian. Our
starting point is the following relation:

(2.1) val(µ;G, a) = max
F

(val(µ;G− F, 0)− a(E \ F )) ,

where the maximum is taken over all inner-odd-joins F in G. To see this, let P∗ be
an edge-disjoint set of S-paths attaining val(µ;G, a), and let F ∗ be the complement of
the union of P∗. Then F ∗ is an inner-odd-join, and val(µ;G, a) =

∑
P∈P∗ µ(sP , tP ) −

a(E \ F ∗) ≤ val(µ;G − F ∗, 0) − a(E \ F ∗). Conversely, for any inner-odd-join F and
any edge-disjoint set P of S-paths in G − F , we have

∑
P∈P µ(sP , tP ) − a(E \ F ) ≤∑

P∈P µ(sP , tP ) − a(P ) ≤ val(µ;G, a), where we use the nonnegativity of a in the first
inequality.

Motivated by (2.1), we consider the following linear programming relaxation:

Max.
∑
P∈Π

µ(sP , tP )f(P )− a(E) +
∑
e∈E

a(e)ξ(e)(2.2)

s. t. ξ(e) +
∑

P∈Π:e∈P
f(P ) ≤ 1 (e ∈ E),

ξ ∈ Q, f : Π → R+.

Here Q = QG,S ⊆ RE
+ denotes the convex hull of the incidence vectors of all inner-odd-

joins in G, and Π = ΠG,S denotes the set of all S-paths in G. The maximum value
of (2.2) is denoted by val(µ;G, a). Obviously val(µ;G, a) ≤ val(µ;G, a). We are going
to show that if µ is a tree metric, then (2.2) has an integral optimal solution, and the
LP-dual of (2.2) has an optimal solution of a special combinatorial interpretation, which
gives the formula (1.2).

2.2 Case (µ, a) = (1, 0): A fractional approach to Mader’s theorem

To illustrate a basic idea behind the proof of the formula (1.2), we consider the special
case of (µ, a) = (1, 0), i.e., the case of Mader. Let us introduce a slightly different
formulation of the minimization problem of RHS in Mader’s formula (1.1).
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A partition X of V is said to be feasible (with respect to G and S) if it satisfies:

(1) for every X ∈ X we have |X ∩ S| ≤ 1.

(2) for every distinct X,Y ∈ X with |X ∩ S| = |Y ∩ S| = 0 there is no edge between
X and Y .

For a feasible partition X , denote by XS the set of subsets X in X with |X ∩ S| = 1,
and define τ(X )(= τG(X )) by

(2.3) τ(X ) := 1

2

 ∑
X∈XS

|δX| −
∑

Z∈X\XS

(|δZ| mod 2)

 ,

where (n mod 2) = 1 if n is odd, and = 0 if n is even. It is not difficult to see that τ is
an upper bound of val. Thus we have

(2.4) val(1;G, 0) ≤ val(1;G, 0) ≤ min
X

τ(X ).

Observe that minX τ(X ) is equal to the RHS of (1.1). Mader’s theorem asserts that the
inequalities (2.4) hold in equality.

Our fractional approach proves Mader’s theorem by establishing the following:

Dual Integrality: val(1;G, 0) = min τ(X ).

Primal Integrality: val(1;G, 0) = val(1;G, 0).

Edge-deletion Property: For an optimal solution (f, ξ) in (2.2) and an edge e with
ξ(e) > 0, we have val(1;G− e, 0) = val(1;G, 0).

In fact, the dual integrality implies two other properties:

Edge-deletion Property ⇒ Primal Integrality. For an optimal solution (f, ξ), if
ξ = 0, then G is necessarily inner Eulerian, and by Lovász-Cherkassky theorem [5, 30]
there is an integral optimal solution. If ξ(e) > 0, then by the induction and the edge-
deletion property we have val(1;G, 0) ≤ val(1;G, 0) = val(1;G−e, 0) = val(1;G−e, 0) ≤
val(1;G, 0), which implies val(1;G, 0) = val(1;G, 0). □

Dual Integrality ⇒ Edge-deletion Property [sketch]. Let (f, ξ) be an optimal
solution in (2.2). Take an edge e = xy ∈ E with ξ(e) > 0. Suppose indirectly val(1;G−
e, 0) < val(1;G, 0). In the following, we use simplified notation: τ ′ := τG−e, and δ′ :=
δG−e. We are going to show:

(♣) If an optimal partition X of G is a nonoptimal feasible partition of G − e, then
there exists a feasible partition X ′ for G− e with τ ′(X ′) < τ ′(X ) such that X ′ or
its small modification X̃ ′ is optimal to G.

Then, by applying the complementary slackness condition for (f, ξ) and X ′ (or X̃ ′), we
can obtain an information of ξ(e), and derive a contradiction.

Take an optimal feasible partition of X of G. Obviously X is feasible to G − e. By
edge-subdivision, we can assume that x and y belong to a common set in X . Then we
have τ ′(X ) = τ(X ) = val(1;G, 0) > val(1;G − e, 0). This means that X is nonoptimal
feasible partition ofG′. Hence there is a feasible partition X ′ ofG−e with τ ′(X ′) < τ ′(X ).

Take X,Y ∈ X ′ such that x ∈ X and y ∈ Y . Consider the case where X,Y ∈ X ′ \X ′
S

Then X ̸= Y . Otherwise X ′ is also feasible to G with τ(X ′) = τ ′(X ′) < τ(X ′); a
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contradiction. Although X ′ is not feasible to G, a partition X̃ ′ := X \{X,Y }∪{X ∪Y }
is feasible to G. If at least one of |δ′X| and |δ′Y | is even, then τ(X̃ ′) = τ ′(X ′), and
τ(X ) ≤ τ(X̃ ′) = τ ′(X ′) < τ(X ); a contradiction. So suppose that both |δ′X| and |δ′Y |
are odd. Then |δ(X ∪ Y )|(= |δ′(X ∪ Y )∪ {e}|) is even, and the second term in the RHS
in (2.3) decreases by 2. Thus τ(X̃ ′) = τ ′(X ′) + 1. Observe that τ is integer-valued.
Hence we have τ(X ) ≤ τ(X̃ ′) = τ ′(X ′) + 1 ≤ τ(X ), and X̃ ′ is optimal to G; now we
arrive at a situation of (♣). By the complementary slackness condition obtained from
τ(X̃ ′) −

∑
f(P ) = 0, we have ξ(δ(X ∪ Y )) = (|δ(X ∪ Y )| mod 2) = 0, which implies

ξ = 0 on δ(X ∪ Y ) = (δX ∪ δY ) \ {e}. Decompose ξ into a convex combination of the
incidence vectors of inner-odd-joins F1, F2, . . . , Fm. Each Fi cannot meet δX \ {e}. On
the other hand, every inner-odd-join must meet an even number of edges of δX (since
|δX| is even). Necessarily each Fi does not meet e, implying ξ(e) = 0; a contradiction
to the first assumption. In this way, one can derive a contradiction for all the other
cases. □

Thus the remaining task is to prove the dual integrality. This needs a thorough
analysis of the LP-dual of (2.2) (even when (µ, a) = (1, 0)), which is the central subject
of Sections 3 and 4.

2.3 Outline

Let us now return the general situation. One can see that a large part of the argument in
Section 2.2 is applicable to the general (µ, a), provided one establishes that val(µ;G, a)
is equal to the minimum of a certain discrete optimization problem.

We first formulate the LP-dual as a continuous optimization problem over a certain
space C with objective function τ . In Sections 3.2 and 3.4, we introduce several notions
to describe C and τ . In Section 4.2 we establish the duality relation:

(2.5) val(µ;G, a) = min
X∈C

τ(X ).

We will define a discrete subset B ⊆ C, which represents special combinatorial solutions;
the relation between B and C is analogous to that between Z and R. In Section 4.3, we
show that the minimum of τ is attained by an element in B.

Dual Integrality: min
X∈B

τ(X ) = min
X∈C

τ(X ) (= val(µ;G, a)).

However the dual integrality itself is not enough to proving the edge-deletion property
and the primal integrality. In the proof of the dual integrality ⇒ the edge-deletion
property above, (♣) was essential. To establish (♣), we need the following property,
which we call the dual stability:

Dual Stability: If X ∈ B is not optimal, then there exists X ′ ∈ B such that τ(X ′) <
τ(X ) and X ′ belongs to a certain neighborhood of X in C.

The precise statement is Lemma 4.7. In the case of (µ, a) = (1, 0) above, we can take a
relatively small space as C, and the dual stability is automatically satisfied.

We will establish the dual integrality/stability by the following way. After establish-
ing (2.5) (Lemma 4.1 in Section 4.2), we also prove the following (Lemma 4.2):

(A) If X ∈ C is not optimal, then there exists X ′ ∈ C such that τ(X ′) < τ(X ) and X ′

belongs to an arbitrary small neighborhood of X in C.
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In Euclidean convex optimization, the property (A) is obvious. The space C, however, is
not a Euclidean space because the formulation of C involves laminar solutions of the LP-
dual of the minimum-cost T -join (inner-odd-join) problem; notice that the set of laminar
solutions is not convex. In Section 3.3, we establish a stability property (Lemma 3.6) of
laminar solutions of the LP-dual of the minimum-cost T -join problem, as a consequence
of Karzanov’s polynomial uncrossing process. In Section 4.3, we prove the following
(Theorem 4.5):

(B) For X ∈ C there exists X ∗ ∈ B such that τ(X ∗) ≤ τ(X ) and X ∗ belongs to a
certain neighborhood of X in C.

Property (B) includes dual integrality. Combining with (A), we can establish the dual
stability in the following way. Suppose that X ∈ B is not optimal (over B), Then this is
not optimal over C by (B). By (A) there is X̃ in an arbitrary small neighborhood of X
with τ(X̃ ) < τ(X ). By (B), there exists X ′ ∈ B such that τ(X ′) ≤ τ(X̃ )(< τ(X )) and
X ′ belongs to a neighborhood of X̃ and of X .

Once one establishes dual integrality and stability, one can prove the primal integral-
ity along the same line of Section 2.2, the formal details of which is given in Section 4.4.

3 Preliminaries

3.1 Laminar locking theorem

In the case where G is inner Eulerian and a = 0, our problem becomes easier; we may
put ξ = 0 in (2.2). So (2.2) coincides with the natural LP-relaxation of µ-EDP. We will
use the following fact as the base case of our inductive argument:

Lemma 3.1. If µ is a tree metric, G is inner Eulerian, and a = 0, then there exists an
integral optimal solution (ξ∗, f∗) in (2.2) with ξ∗ = 0.

This is a special case of themultiflow locking theorem due to Karzanov-Lomonosov [27];
see [43, Section 77.3c]. The multiflow locking theorem says that if a family F ⊆ 2S has
no pairwise crossing triple and G is inner Eulerian, then there exists an integral multiflow
f being simultaneously a maximum (single-commodity) (A,S \ A)-flow for all A ∈ F .
Here a pair of sets X,Y ⊆ S is said to be crossing if X∩Y , X \Y , Y \X, and S \(X∪Y )
are all nonempty. A pair of two sets X,Y ⊆ V is said be intersecting if X ∩ Y , X \ Y ,
and Y \X are all nonempty. A family of sets without intersecting pairs is called laminar.
One can easily see that such a multiflow f is a maximum multiflow with respect to a
terminal weight µ =

∑
X∈F β(X)δX for any β : F → R+. As is well-known, a tree

metric is just a nonnegative sum of cut metrics for a laminar family; see Section 3.4
below.

A simpler and shorter proof of the multiflow locking theorem is available at [11], and
a faster algorithm finding an integer optimal solution is given by [21].

3.2 T -joins and inner-odd-joins

Let G = (V,E) be an undirected graph, and let T be a node subset T ⊆ V having an
even cardinality. For an edge subset F ⊆ E, let odd(F ) denote the set of nodes incident
to an odd number of edges in F . An edge subset F is called a T -join if odd(F ) = T .
See [29, Chapter 12] and [43, Chapter 29] for basics on T -joins. Let S be a terminal
subset of V . An inner-odd-join is an edge subset F such that G − F is inner-Eulerian.
Let G/S be the graph obtained from G by identifying S into one node. Hence E(G/S)
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is naturally identified with E. We observe the following relation between T -joins and
inner-odd-joins.

Lemma 3.2. F is an inner-odd-join in G with terminal set S if and only if F is an
odd(E)-join in G/S.

Thus any argument for inner-odd-joins falls into the theory of T -joins. We are
interested in the minimum cost inner-odd-join problem with a cost vector w : E → R.
Let h[w] = hG[w] be a set function on V \ S defined by

(3.1) h[w](X) :=

{
1 if |δX \ D−w| is odd,
0 if |δX \ D−w| is even, (X ⊆ V \ S).

Lemma 3.3. For w : E → R, the following values are equal:

(1) min{w(F ) | F : inner-odd-join}.

(2) w−(E) + min
{
|w| · ξ | ξ ∈ RE

+, δX · ξ ≥ h[w](X) (X ⊆ V \ S)
}
.

(3) w−(E) + max
{∑

X π(X)h[w](X)
∣∣∣ ∑X π(X)δX ≤ |w|, π : 2V \S → R+

}
.

Proof. (2) ≡ (3) follows from LP-duality. We show (1) ≡ (2). By a well-known trick ([43,
Section 29.1] and [29, Section 12.2]), we first reduce (1) to a minimum cost T -join problem
for a nonnegative cost vector |w|. Observe that, for F,H ⊆ E, symmetric difference
H△F is an odd(E)-join if and only if F is an odd(E \ H)-join. Therefore, by taking
D−w as H, we obtain

min{w(F ) | F : inner-odd-join} = min{w(F ) | F : odd(E)-join in G/S}(3.2)

= min{w(F ′△D−w) | F ′: odd(E \ D−w)-join in G/S}

= min{w(F ′) + w(D−w)− 2w(F ′ ∩ D−w) | F ′: odd(E \ D−w)-join in G/S}

= w−(E) + min{|w|(F ′) | F ′: odd(E \ D−w)-join in G/S}.

Since |w| is nonnegative, the second term of the last equation is equivalent to a linear
minimization over the uphull P + RE

+ of the T -join polytope P for G/S with T :=
odd(E \ D−w). By the Edmonds-Johnson theorem [9], the uphull P +RE is the set of
points ξ satisfying

ξ(e) ≥ 0 (e ∈ E),(3.3)

ξ(δG/SX) ≥ 1 (X ⊆ V (G/S), |X ∩ T | : odd).

A node subset in G/S is identified with a node subset X in G with X ⊆ V \S or S ⊆ X;
clearly δGX = δG/SX. Moreover, for H ⊆ E, |X∩odd(H)| is odd if and only if |δX∩H|
is odd. By substituting (3.3) to the last equation in (3.2), and using h[w], we obtain (1)
≡ (2).

The explicit inequality description of inner-odd-join polytope Q is also given as

0 ≤ ξ(e) ≤ 1 (e ∈ E),(3.4)

ξ(δX \ F ) + (1− ξ)(δX ∩ F ) ≥ h[−1F ](X) (X ⊆ V \ S, F ⊆ E),

where 1F denotes the incidence vector of F . This is also a consequence of Lemma 3.2
and the Edmonds-Johnson theorem.

We end this subsection by noting the following fundamental properties of h = h[w],
which immediately follow from the definition.
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Lemma 3.4. For X,Y ⊆ V \ S, we have the following.

(1) If X ∩ Y = ∅, then h(X ∪ Y ) ≡ h(X) + h(Y ) mod 2.

(2) If h(X) = h(Y ) = 1, then h(X ∩ Y ) = h(X ∪ Y ) = 1 or h(X \ Y ) = h(Y \X) = 1.

3.3 Polynomial uncrossing process

In this subsection, we study the following cut packing program arising from (3) in
Lemma 3.3, where we denote h[w] by h.

(3.5) Max.
∑
X

π(X) s.t.
∑
X

π(X)δX ≤ |w|, π : D+h→ R+.

We are interested in a feasible solution π of (3.5) such that support D+π is laminar.
Such a feasible solution is called laminar.

We are given an arbitrary feasible function π of (3.5). Consider the following process,
called an uncrossing process.

step 0: If D+π is laminar, then stop.

step 1: Choose an intersecting pair X,Y ∈ D+π and let α := min(π(X), π(Y )).

step 2: Choose (X ′, Y ′) ∈ {(X∪Y,X∩Y ), (X \Y, Y \X)} with X ′, Y ′ ∈ D+h, decrease
π by α on X,Y and increase π by α on X ′, Y ′. Go to step 0.

Here the existence of X ′, Y ′ in step 2 is guaranteed by Lemma 3.4 (2). The operation in
step 2 is called an uncrossing. By an arbitrary choice of X,Y,X ′, Y ′ in each iteration,
this process terminates after finitely many iterations. So we can make any feasible
solution π laminar, keeping the feasibility and the objective value. In particular the
maximum of (3.5) is always attained by a laminar solution.

In [25], Karzanov proved that, by an appropriate choice ofX,Y,X ′, Y ′, the uncrossing
process for π terminates so that the number of uncrossings is bounded by a polynomial
of |V | and |D+π| ≤ |2V |. The important point is that this bound does not depend on
the bit size representing the numerical values of π. Hence we have the following.

Theorem 3.5 ([25]). There exists a function p : Z+ → Z+ such that for every fea-
sible solution π in (3.5) some uncrossing process to π terminates after at most p(|V |)
uncrossings.

This result has an unexpected application about a stability of laminar feasible solu-
tions in (3.5); recall that ∥ · ∥ is the l∞-norm.

Lemma 3.6. Let π be a function on D+h having a laminar support. For a sufficiently
small ϵ > 0, suppose that there exists a feasible solution π′ with ∥π−π′∥ ≤ ϵ. Then there
exists a laminar feasible solution π∗ such that ∥π−π∗∥ ≤ (2p(|V |)− 1)ϵ and the objective
value of π∗ is not less than that of π′.

Proof. Since ϵ is small, we can assume

ϵ <
minX∈D+π π(X)/2

2p(|V |)+1 − 1
.

Apply Karzanov’s uncrossing process to π′. Then we get a laminar feasible solution π∗

having an objective value not less than that of π′. By ϵ < minX∈D+π π(X), we have
D+π ⊆ D+π′. Therefore each uncrossing step chooses X,Y so that at least one of X,Y
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does not belong to D+π. In each iteration α takes a value (of current π′) on D+h\D+π,
and the change in the uncrossing is bounded by the maximum value on D+h \ D+π.
Moreover, by Theorem 3.5, the number of uncrossings is bounded by p(|V |). From this
we have

(3.6) ∥π − π∗∥ ≤ ∥π − π′∥+ ∥π′ − π∗∥ ≤ ϵ+

p(|V |)∑
k=1

2kϵ = (2p(|V |)+1 − 1)ϵ.

3.4 Trees and laminar families

A metric-tree T is a metric space isometric to a 1-dimensional contractible complex
endowed with the length metric. The metric function is denoted by dT . For a point p ∈ T
and nonnegative ϵ ≥ 0, the closed ball B(p, ϵ) and the open ball B◦(p, ϵ) are defined as
the subsets of points q ∈ T with dT (p, q) ≤ ϵ and with dT (p, q) < ϵ, respectively. For
two points p, q, the closed interval [p, q] is defined as the set of points t with dT (p, q) =
dT (p, t) + dT (t, q). The open interval (p, q) is defined as [p, q] \ {p, q}. A vertex of T is a
point q such that, for every ϵ > 0, the open ball B◦(q, ϵ) is not an open interval. A metric-
tree of two vertices is called a segment. In the case where T is endowed with a special
point r ∈ T , called a root, we can define a partial order ⪯ by p ⪯ q ⇔ [r, p] ⊆ [r, q]. By
p ≺ q we mean [r, p] ⊂ [r, q] (proper inclusion).

Let Γ be a tree (in the graph-theoretical sense). From Γ we can construct a metric-
tree as follows. For each edge e = uv ∈ E(Γ ), consider segment Fe with two vertices
pe,u, pe,v and unit length dFe(pe,u, pe,v) = 1. Then consider the disjoint union

∪
e∈E Fe,

and for each node u ∈ V (Γ ), identify points pe,u for all edges e incident to u; the image
of pe,u is denoted by pu. The resulting metric-tree is denoted by Γ̄ . Then (V (Γ ), dΓ )
isometrically embeds into (Γ̄ , dΓ̄ ) by v 7→ pv. Hence we can identify v and pv, and can
assume V (Γ ) ⊆ Γ̄ .

Let φ be a map from V to a metric-tree T (with root r). We use the following
notation:

• Let dT · φ denote the metric on V defined by

(dT · φ)(x, y) := dT (φ(x), φ(y)) (x, y ∈ V ).

• Let Eφ,T be the set of inclusion-maximal segment ω ⊆ T not meeting the image of
φ, vertices, and root r (if exists).

• For ω ∈ Eφ,T , let |ω| denote the length of ω, and

• let Xω denote the set of nodes x ∈ V such that φ(x) belongs to the connected
component of T \ ω not containing r.

• For a set function h on V , define h ∗ (φ, T ) by

h ∗ (φ, T ) :=
∑

ω∈Eφ,T

|ω|h(Xω).

One can easily see that

(3.7) {Xω | ω ∈ Eφ,T } is laminar, and dT · φ =
∑

ω∈Eφ,T

|ω|δXω .
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Therefore a tree metric is a nonnegative sum of cut metrics for a laminar family.
Recall the tree representation of a laminar family (see [29, Section 2.2], [43, Section

13.4], and [44]); the converse of (3.7) is also true:

(3.8) For any nonnegative set function π on V having a laminar support, there
exist a metric-tree T with root r and a map φ : V → T such that {Xω |
ω ∈ Eφ,T } = D+π and |ω| = π(Xω) for ω ∈ Eφ,T .

In this case, we say that (φ, T ) realizes π.

4 Combinatorial min-max theorem

The goal of this section is to prove the min-max relation (1.2) in Theorem 1.1. Through-
out this section, G = (V,E) is an undirected graph with terminal set S ⊆ V , µ is
a terminal weight on S, and a is an edge-cost. Since val(2µ;G, 2a) = 2 val(µ;G, a),
val(2µ;G, 2a) = 2val(µ;G, a), it suffices to consider the case where

(4.1) both µ and a are even-valued, and µ is realized by (Γ, {ps}s∈S ; 1).

Also we may assume the following nonredundancy:

(4.2) For each p ∈ V (Γ ) of degree one, there is s ∈ S with p = ps.

Under the assumptions (4.1) and (4.2), we are going to show:

(4.3) val(µ;G, a) = val(µ;G, a) = min
ρ

max
F

(dΓ · ρ− a)(E \ F ).

In Section 4.2, we introduce a special dual of (2.2), which is a continuous relaxation
of the RHS of (1.2). In Section 4.3, we show that the optimal value of this special dual
is always attained by a discrete solution, which implies that the optimal value of (2.2)
is equal to the RHS of (1.2). Finally, in Section 4.4, we prove that (2.2) has an integral
optimal solution, which establishes the formula (1.2).

4.1 Feasible triple (ρ, φ, T )

In this section, we introduce a special dual problem of (2.2). Consider a triple (ρ, φ, T )
of a metric-tree T with root r, maps ρ : V → Γ̄ and φ : V → T . We view (ρ(x), φ(x))
as a node-potential that is a point in the Cartesian product Γ̄ × T of two metric-trees.

A triple (ρ, φ, T ) is said to be feasible (to G) if it satisfies

(4.4) (1) ρ(s) = ps and φ(s) = r for s ∈ S, and

(2) (dT · φ)(e) ≤ |dΓ̄ · ρ− a|(e) for e ∈ E.

A feasible triple (ρ, φ, T ) is said to be rational if the length of each segment in Eρ,Γ̄ and
in Eφ,T is rational. For a feasible triple (ρ, φ, T ), define the objective function τ by

(4.5) τ(ρ, φ, T ) := (dΓ̄ · ρ− a)+(E)− h[dΓ̄ · ρ− a] ∗ (φ, T ).

Consider the optimization problem of minimizing τ :

(4.6) Min. τ(ρ, φ, T ) s.t. (ρ, φ, T ): feasible triple.
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It turns out soon that this is an alternative expression of the LP-dual to (2.2). In the
sequel, we will often use the following simplified notation:

dρ := dΓ̄ · ρ,(4.7)

dφ := dT · φ,
D±

ρ := D±(dΓ̄ · ρ− a),

hρ := h[dΓ̄ · ρ− a].

Recall (3.1) for the definition of h. In particular,

(4.8) hρ(X) =

{
1 if |δX \ D−

ρ | is odd,
0 if |δX \ D−

ρ | is even,
(X ⊆ V \ S).

The problem (4.6) is rewritten as

Min. (dρ − a)+(E)− hρ ∗ (φ, T )(4.9)

s.t. T : metric-tree with root r,

φ : V → T , φ(s) = r (s ∈ S),

ρ : V → Γ̄ , ρ(s) = ps (s ∈ S),

dφ(e) ≤ |dρ − a|(e) (e ∈ E).

4.2 Duality

The goal of this subsection is to establish the duality and the (dual) stability of LP (2.2):

Lemma 4.1. The following values are equal:

(1) val(µ;G, a).

(2) min τ(ρ, φ, T ), where the minimum is taken over all rational feasible triples (ρ, φ, T ).

(3) minmax(d − a)(E \ F ), where the maximum is taken over all inner-odd-joins F ,
and the minimum is taken over all metrics d on V satisfying d(s, t) ≥ µ(s, t) for
s, t ∈ S.

(4) minmax(dρ − a)(E \ F ), where the maximum is taken over all inner-odd-joins F ,
and the minimum is taken over all maps ρ : V → Γ̄ with ρ(s) = ps for s ∈ S.

(5) The optimal value of the following problem:

Min. (d− a)+(E)−
∑
X

π(X)h[d− a](X)(4.10)

s.t.
∑
X

π(X)δX(e) ≤ |d− a|(e) (e ∈ E),

d(s, t) ≥ µ(s, t) (s, t ∈ S),

d: metric on V ,

π : 2V \S → R+.

Lemma 4.2. Let (ρ, φ, T ) be a nonoptimal feasible triple. For every ϵ > 0, there exists
a rational feasible triple (ρ′, φ′, T ′) such that τ(ρ′, φ′, T ′) < τ(ρ, φ, T ), ∥dρ′ − dρ∥ ≤ ϵ,
and ∥(dφ′ − dφ)+∥ ≤ ϵ.
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4.2.1 Proof of Lemma 4.1

(1) ≡ (3). Dualize (2.2) with fixed ξ ∈ Q. Then we get

(4.11) val(µ;G, a) = max
ξ∈Q

min
l
{(l − a)(E)− (l − a) · ξ},

where the minimum is taken over all l : E → R+ satisfying l(P ) ≥ µ(sP , tP ) for P ∈ Π.
By the minimax theorem we obtain

max
ξ∈Q

min
l
{(l − a)(E)− (l − a) · ξ} = min

l
max
ξ∈Q
{(l − a)(E)− (l − a) · ξ}

= min
l

max
F

(l − a)(E \ F ).

Note that the first equality can also be directly obtained by the LP-duality with the help
of the explicit description (3.4) of Q.

Let g : RE
+ → R be defined by

(4.12) g(l) := max
F

(l − a)(E \ F ) (l ∈ RE
+),

where the maximum is taken over all inner-odd-joins F . Here g is monotone nondecreas-
ing. Indeed, for l ≤ l′, take an inner-odd-join F ∗ with g(l) = (l − a)(E \ F ∗). Then
(l − a)(E \ F ∗) ≤ (l′ − a)(E \ F ∗) ≤ g(l′). Therefore we can replace l by the shortest
path metric dG,l on G with respect to l. From this we obtain (1) ≡ (3); obviously the
minimum of g is attained by a rational solution.

(3) ≡ (4). (4) ≥ (3) is obvious. Since g is monotone nondecreasing, (3) ≥ (4) follows
from the following claim; the proof is given for completeness.

Claim 4.3 ([17, 19]). For any metric d on V with d(s, t) ≥ µ(s, t) for s, t ∈ S, there
exists a map ρ : V → Γ̄ such that ρ(s) = ps (s ∈ S) and dρ(x, y) ≤ d(x, y) for x, y ∈ V .

Proof. Suppose V = {x1, x2, . . . , xn} and S = {x1, x2, . . . , xk}. Define ρ : V → Γ̄
recursively by

ρ(xi) :=

{
pxi if i ≤ k,
an arbitrary point in

∩
j<iB(ρ(xj), d(xj , xi)) if i > k,

(1 ≤ i ≤ n).

We show by induction that
∩

j<iB(ρ(xj), d(xj , xi)) is nonempty, i.e., ρ is well-defined.
If this is true, then ρ(xi) ∈ B(ρ(xj), d(xj , xi)) implies dρ(xi, xj) ≤ d(xi, xj).

Recall that any collection of subtrees has the Helly property. So it suffices to show
the pairwise nonempty intersection. Here two balls B(p, r) and B(p′, r′) intersect if and
only if dΓ̄ (p, p

′) ≤ r + r′. Therefore B(ρ(xj), d(xi, xj)) ∩B(ρ(xj′), d(xi, xj′)) ̸= ∅ follows
from d(xi, xj) + d(xi, xj′) ≥ d(xj , xj′) ≥ dρ(xj , xj′), where the last inequality follows
from the induction.

In the proof, if d is rational, then we can choose ρ so that the length of each segment
in Eρ,Γ̄ is rational.

(3) ≡ (5). This follows from Lemma 3.3.
(5) ≡ (2). For a feasible solution (d, π) in (4.10), let τ(d, π) denote the objective

value. For a feasible triple (ρ, φ, T ), let πφ,T : 2V \S → R+ be defined by

(4.13) πφ,T (X) =

{
|ω| if X = Xω for ω ∈ Eφ,T ,
0 otherwise,

(X ⊆ V \ S).

By (3.7) and (4.4) (2), (dρ, πφ,T ) is feasible to (4.10) with τ(dρ, πφ,T ) = τ(ρ, φ, T ).
Conversely, by (4) ≡ (5) we can take an optimal solution (d, π) in (4.10) such that
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d = dρ for a map ρ : V → Γ̄ with ρ(s) = ps for s ∈ S. By the uncrossing process in the
previous section, we can make π laminar, with keeping (dρ, π) feasible (and optimal).
There are a metric-tree T with root r and a map φ : V → T such that (φ, T ) realizes
π. Then we have dφ(e) =

∑
X π(X)δX(e) ≤ |dρ − a|(e) for e ∈ E. Also φ(S) = {r} by

D+π ⊆ 2V \S . This means that (ρ, φ, T ) is a feasible triple with τ(ρ, φ, T ) = τ(d, π). We
can assume that both d and π are rational-valued. Consequently (ρ, φ, T ) can be taken
to be rational. The proof of Lemma 4.1 is complete. □

4.2.2 Proof of Lemma 4.2

Suppose that (ρ, φ, T ) is a nonoptimal feasible triple. We can assume that hρ(Xω) = 1
for every ω ∈ Eφ,T . Otherwise, contract each ω ∈ Eφ,T with hρ(Xω) = 0 to obtain

a feasible triple (ρ, φ̂, T̂ ) with τ(ρ, φ̂, T̂ ) = τ(ρ, φ, T ), dφ̂ ≤ dφ, and hρ(Xω) = 1 for
ω ∈ Eφ̂,T̂ . Applying the statement (of Lemma 4.2) to (ρ, φ̂, T̂ ), we obtain the statement
for (ρ, φ, T ).

Our goal is to show the following claim:

Claim 4.4. For every ϵ̃ > 0, there exists a rational feasible solution (d̃, π̃) in (4.10) such
that

(1) τ(d̃, π̃) < τ(ρ, φ, T ),

(2) ∥d̃− dρ∥ ≤ ϵ̃,

(3) ∥π̃ − πφ,T ∥ ≤ ϵ̃, and

(4) d̃ = dρ̃ for a map ρ̃ : V → V (Γ̄ ) with ρ̃(s) = ps (s ∈ S).

Recall that τ(d, π) is the objective value of (4.10), and πφ,T is defined in (4.13).
Suppose that this claim is true. Take a sufficiently small ϵ̃ > 0, and take (d̃, π̃) with
properties (1-4) in this claim. By (2), Dσ

ρ ⊆ Dσ(d̃−a) holds for σ ∈ {+,−}. By this fact

together with |dρ−a|(e) ≥ dφ(e) ≥ |ω| > 0 (ω ∈ Eφ,T , e ∈ δXω), d
ρ−a and d̃−a have the

same sign pattern on δXω. This means h[d̃−a](Xω) = hρ(Xω) = 1 (ω ∈ Eφ,T ). Therefore
we can assume D+πφ,T ⊆ D+π̃ ⊆ D+h[d̃− a]. Take a sufficiently small ϵ̃ > 0. Applying
Lemma 3.6 to (π, π′) := (πφ,T , π̃) and w := d̃− a, we obtain laminar π̃′ such that (d̃, π̃′)
is (rational) feasible in (4.10), τ(d̃, π̃′) ≤ τ(d′, π′), and ∥π̃′ − πφ,T ∥ ≤ Cϵ̃, where C is
a constant independent of ϵ̃. Take (φ̃, T̃ ) realizing π̃′. Then τ(ρ̃, φ̃, T̃ ) < τ(ρ, φ, T ),
∥dρ̃ − dρ∥ ≤ ϵ̃, and ∥dφ̃ − dφ∥ ≤ 2|V |Cϵ̃. Since ϵ̃ can be taken to be arbitrary small,
(ρ̃, φ̃, T̃ ) is a required rational feasible triple in Lemma 4.2.

We show Claim 4.4. Compare τ(ρ, φ, T ) with g(dρ) (defined by (4.12)). By (the
proof of) Lemma 4.1, g(dρ) ≤ τ(ρ, φ, T ) holds. Suppose that g(dρ) < τ(ρ, φ, T ). This
means that πφ,T is feasible but nonoptimal to (4.10) with d = dρ fixed. By convexity,
there is a feasible π̃ in an arbitrary open neighborhood of π with τ(dρ, π̃) < τ(ρ, φ, T ).

Suppose g(dρ) = τ(ρ, φ, T ). This means that dρ is nonoptimal to the following convex
optimization:

Min. g(d) s.t. d: metric on V with d(s, t) ≥ µ(s, t) for s, t ∈ S.

Take a sufficiently small ϵ′ > 0. By convexity, there exists a rational metric d′ on V
with d(s, t) ≥ µ(s, t) for s, t ∈ S such that g(d′) < g(dρ) and ∥d′ − dρ∥ ≤ ϵ′. According
to Claim 4.3, take a map ρ′ : V → Γ̄ such that ρ′(s) = ps, d

ρ′ ≤ d′, and the length of
each segment in Eρ′,Γ̄ is rational. Then

(4.14) ρ′(x) ∈ B(ρ(x), ϵ′) (x ∈ V ).
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Indeed, by assumption (4.2), there exists s ∈ S with dΓ̄ (ρ
′(x), ρ(x)) + dΓ̄ (ps, ρ(x)) =

dΓ̄ (ps, ρ
′(x)). Thus we have

dΓ̄ (ρ
′(x), ρ(x)) = dρ

′
(s, x)− dρ(s, x) = (d′(s, x)− dρ(s, x)) + (dρ

′
(s, x)− d′(s, x)) ≤ ϵ′,

where the last inequality follows from ∥d′ − dρ∥ ≤ ϵ′ and dρ
′ ≤ d′. Moreover, since ϵ′ is

small,

(4.15) B(ρ(x), ϵ′) ∩B(ρ(y), ϵ′) = ∅ (x, y ∈ V : ρ(x) ̸= ρ(y)).

For α ∈ [0, 1], define ρα : V → Γ̄ by ρα(x) := the (unique) point p in [ρ(x), ρ′(x)] ⊆
B(ρ(x), ϵ′) with dΓ̄ (ρ(x), p) = (1−α)dΓ̄ (ρ(x), ρ

′(x)) and dΓ̄ (p, ρ
′(x)) = αdΓ̄ (ρ(x), ρ

′(x)).
Then, by (4.15), we can take a simple path in Γ̄ containing [ρ(x), ρ′(x)] and [ρ(y), ρ′(y)]
for x, y ∈ V . From this we obtain

(4.16) dρα = (1− α)dρ + αdρ
′
.

Take a rational optimal solution π′ of (4.10) with d = dρ
′
fixed. Then τ(dρ

′
, π′) =

g(dρ
′
) < τ(ρ, φ, T ). For α ∈ [0, 1], define πα by

πα := (1− α)πφ,T + απ′.

We are going to verify that for small rational α > 0, (dρα , πα) is a required rational
solution. By ρα(x) ∈ B(ρ(x), ϵ′), we have ∥dρα − dρ∥ ≤ 2ϵ′. Therefore we have

(4.17) Dσ
ρ ⊆ Dσ

ρα = Dσ
ρ′ (σ ∈ {−,+}, α > 0).

Then (dρα , πα) is feasible to (4.10) since∑
X

παδX(e) ≤ (1− α)|dρ − a|(e) + α|dρ′ − a|(e) = |dρα − a|(e) (e ∈ E),

where the last equality follows from (4.16) and (4.17). Therefore (dρα , πα) satisfies (2),
(3) and (4) of Claim 4.4 for small α > 0. Finally, we verify that τ is linear on α:

(4.18) τ(dρα , πα) = (1− α)τ(ρ, φ, T ) + ατ(dρ
′
, π′).

This implies (1) in Claim 4.4 since τ(dρ
′
, π′) < τ(ρ, φ, T ). We show (4.18). By (4.17)

we have (dρα − a)+(E) = (1 − α)(dρ − a)+(E) + α(dρ
′ − a)+(E). Moreover, by (4.17)

(with the same argument after Claim 4.4), hρα = hρ′ for α > 0, and hρα(Xω) = hρ(Xω)
for ω ∈ Eφ,T . Thus we have∑

hρα(X)πα(X) = (1− α)
∑

hρ(X)πφ,T (X) + α
∑

hρ′(X)π′(X).

This implies (4.18). □

4.3 Dual integrality

A feasible triple (ρ, φ, T ) is said be bipartite if T = T̄ for some graph-theoretical tree
T , φ(V ) ⊆ V (T ), ρ(V ) ⊆ V (Γ ), and dρ + dφ is even-valued. Consider the Cartesian
product graph Γ ×T of two trees Γ and T , which is also a bipartite graph. From the last
condition, the image of (ρ, φ) belongs to the color class containing (ps, r); see Figure 1.
The main result in this section is that the minimum of τ is attained by a bipartite triple.
For r ∈ R, let ⌈r⌉even denote the smallest even integer not less than r.
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Figure 1: Product of two trees

Theorem 4.5 (Dual Integrality). For every rational feasible triple (ρ, φ, T ), there
exists a bipartite feasible triple (ρ∗, φ∗, T ∗) such that

(1) τ(ρ∗, φ∗, T ∗) ≤ τ(ρ, φ, T ), and

(2) (dρ
∗
+ dφ

∗
)(x, y) ≤ ⌈(dρ + dφ)(x, y)⌉even for x, y ∈ V .

In particular, the minimum of τ is attained by a bipartite feasible triple.

Since the image of ρ belongs to V (Γ ), we have the following.

Corollary 4.6. val(µ;G, a) = minmax(dρ − a)(E \ F ), where the maximum is taken
over all inner-odd-joins F and the minimum is taken over all maps ρ : V → V (Γ ) with
ρ(s) = ps for s ∈ S.

Assuming Theorem 4.10 (and Lemma 4.2), we obtain the dual stability:

Lemma 4.7 (Dual Stability). If a bipartite feasible triple (ρ, φ, T ) is not optimal,
then there exists a bipartite feasible triple (ρ′, φ′, T ′) such that τ(ρ′, φ′, T ′) < τ(ρ, φ, T ),
and (dρ

′
+ dφ

′
)(x, y) ≤ (dρ + dφ)(x, y) + 2 for x, y ∈ V .

Proof. By Theorem 4.10, (ρ, φ, T ) is not optimal to (4.6). By Lemma 4.2, there is a
rational feasible triple (ρ̃, φ̃, T̃ ) with τ(ρ̃, φ̃, T̃ ) < τ(ρ, φ, T ) and (dρ̃ + dφ̃)(x, y) ≤ (dρ +
dφ)(x, y) + 2 (x, y ∈ V ). By Theorem 4.10, there is a bipartite feasible triple (ρ′, φ′, T ′)
with τ(ρ′, φ′, T ′) ≤ τ(ρ̃, φ̃, T̃ )(< τ(ρ, φ, T )) and (dρ

′
+dφ

′
)(x, y) ≤ ⌈(dρ̃+dφ̃)(x, y)⌉even ≤

(dρ + dφ)(x, y) + 2 (x, y ∈ V ).

The remainder of this subsection is devoted to the proof of Theorem 4.5, which is the
most technical part of the paper. Readers may skip the rest and proceed to Section 4.4
in the first reading.
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0: Notation. Let (ρ, φ, T ) be a (nonbipartite) feasible triple. We may assume that

(4.19) hρ(Xω) = 1 (ω ∈ Eφ,T ).

Otherwise, by contracting segment ω with hρ(Xω) = 0, we obtain a new (φ̃, T̃ ) with
dφ̃ ≤ dφ. Then (ρ, φ̃, T̃ ) is feasible, and τ(ρ, φ̃, T̃ ) = τ(ρ, φ, T ). Therefore it suffices to
prove Theorem 4.5 for (ρ, φ̃, T̃ ).

By applying repeated local changes to (ρ, φ, T ), we try to construct a bipartite
feasible triple (ρ∗, φ∗, T ∗) satisfying conditions (1) and (2). We need some notation to
describe such local changes. For notational simplicity, we often denote dT , dΓ̄ by d, if
they are distinguished in the context. Let {R,B} be the color classes of (bipartite graph)
Γ . Since µ is even-valued, we may assume {ps}s∈S ⊆ B. By rationality of (ρ, φ, T ), the
length of each segment in Eρ,Γ̄ and in Eφ,T is a multiple of ϵ := 1/M for a positive integer
M . An ϵ-point is a point q in T such that dT (q, p) is a multiple of ϵ for some (every)
vertex p in T ; the image of φ belongs to the set of ϵ-points. Similarly we can consider
ϵ-points in Γ̄ . So we can regard T (and Γ̄ ) as a (graph-theoretical) tree on the set of
ϵ-points with uniform edge-length ϵ. For an ϵ-point p in Γ̄ \ V (Γ ), there is a unique
edge uv in Γ with p ∈ [u, v] and (u, v) ∈ R × B. Let p→B,ϵ denote the adjacent ϵ-point
p′ close to B, the unique point p′ satisfying d(p, v) = d(p′, v) + ϵ. Similarly, let p→R,ϵ

denote the unique point p′ with d(p, u) = d(p′, u) + ϵ.
Recall the partial order ⪯ (Section 3.4). For q ∈ T , let Xq, Xq,⪯, and Xq,≺ denote

the sets of nodes x ∈ V with q = φ(x), q ⪯ φ(x), and q ≺ φ(x), respectively. For an
ϵ-point q ∈ T , let C = Cq be the set of connected components of T \ B◦(q, ϵ). Let C0

denote the (unique) component in C containing r; it exists exactly when q ̸= r. By (4.19)
and Lemma 3.4 (1) we have:

hρ(Xq,⪯) = 1,(4.20)

hρ(Xq,≺) ≡ |C \ {C0}| mod 2 (q ∈ T \ {r}).(4.21)

1: Critical points. Consider an ϵ-point q ∈ T with the following properties:

(4.22) (i) ρ(Xq,≺) ⊆ V (Γ ).

(ii) For each ω ∈ Eφ,T belonging to a component in C \ {C0}, the length |ω| is
an integer.

(iii) For x, y ∈ Xq,≺, (d
ρ + dφ)(x, y) is an even integer if φ(x) and φ(y) belong

to the same component in C \ {C0}.

This means that the restriction of (ρ, φ, T ) to (the preimage of) each component in
C \ {C0} is bipartite. Therefore we can draw a grid on C × Γ̄ (as in Figure 2) so that
its vertices are points having even distance-sum dΓ̄ + dT from some (every) image of
(ρ, φ) in C × Γ̄ . We try to extend these partial grids to the whole grid; the subsequent
argument is based on this intuition. A critical point is a minimal ϵ-point having the
property (4.22). We will make local changes on (ρ, φ, T ) at critical points, and move
critical points toward r.

Let q ∈ T be a critical point. Fix b ∈ B. For a component C ∈ C \ {C0}, take a
node x with φ(x) ∈ C (it exists by (4.19)). By condition (4.22), we see that d(q, φ(x))−
⌊d(q, φ(x))⌋ and the parity of d(b, ρ(x)) + ⌊d(q, φ(x))⌋ are determined independent of
the choice of x and b. We denote them by ∆C and DC , respectively. Partition C \ {C0}
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Figure 2: Drawing grids in C × Γ̄ for (B) C ∈ CB ∪ IB and (R) C ∈ CR ∪ IR

Figure 3: Tree modification I

according to ∆C , DC as:

CB := {C | ∆C ̸= 0, DC = even}, CR := {C | ∆C ̸= 0, DC = odd},
IB := {C | ∆C = 0, DC = even}, IR := {C | ∆C = 0, DC = odd}.

Figure 2 illustrates a portion of C × Γ̄ for C ∈ C \ {C0}.
Let XB be the set of nodes x ∈ Xq,⪯ such that d(b, ρ(x)) + d(q, φ(x)) is even. XB

consists of nodes x ∈ Xq with ρ(x) ∈ B and nodes x ∈ Xq,≺ with φ(x) ∈ C ∈ IB.
Similarly, let XR be the set of nodes x ∈ Xq,⪯ such that d(b, ρ(x)) + d(q, φ(x)) is odd.
For C ∈ C let qC denote the (unique) point in C meeting B(q, ϵ).

2: Local changes at q ̸= r. Take a critical point q. We first consider the case
q ̸= r. Suppose that XB ̸= ∅ and hρ(X

B) = 0. This implies hρ(Xq,⪯ \ XB) = 1 by
Lemma 3.4 (1) and (4.20). We construct modification (φ′, T ′) of (φ, T ) as follows. First
let φ′(x) := φ(x) for x ∈ V \Xq. Next delete open ball B◦(q, ϵ) from T . Let C be the set of
the resulting connected components. As above, partition C into {C0}∪CB∪CR∪IB∪IR.
For each C ∈ IB, join qC and qC0 by a segment of length ϵ. Add a new point q̄, and join
it with qC0 by a segment of length ϵ. For each C ∈ C \IB, join q̄ and qC by a segment of
length ϵ. Now we obtain a new tree T ′ and obtain a map φ′ : V \Xq → T ′. We extend
φ′ to V → T ′ by defining φ′(x) := qC0 for x ∈ XB ∩Xq and φ′(x) := q̄ for x ∈ Xq \XB.
See the middle of Figure 3. We claim

Claim 4.8. (ρ, φ′, T ′) is feasible, and τ(ρ, φ′, T ′) = τ(ρ, φ, T ).
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Figure 4: Tree modification II

Proof. To see the feasibility (4.4) (2), take an edge e = xy ∈ E. It suffices to consider
the case where x ∈ XB and y ∈ Xq,⪯ \ XB; for the other cases we have dφ

′
(e) ≤

dφ(e), and thus (4.4) (2) is preserved. Then dφ
′
(e) = dφ(e) + ϵ. So it suffices to show

dφ(e) < |dρ − a|(e). This follows from the fact that a(e) is even and (dρ + dφ)(e)
is not even. The latter part of Claim 4.8 follows from: hρ ∗ (φ′, T ′) − hρ ∗ (φ, T ) =
ϵ{hρ(Xq,⪯ \XB) − hρ(Xq,⪯)} = 0, where we use Lemma 3.4 (1) with hρ(X

B) = 0 and
hρ(Xq,⪯) = 1 (4.20).

Let (ρ, φ, T ) ← (ρ, φ′, T ′). Then XB becomes empty at q. Suppose that XB ̸= ∅
and hρ(X

B) = 1. This implies hρ(Xp,⪯ \XB) = 0. Therefore we can apply the above-
described process by changing the roles of XB and Xp,⪯ \XB. See the right of Figure 3.
Then we get a feasible triple (ρ, φ′, T ′). Let (ρ, φ, T ) ← (ρ, φ′, T ′). Suppose XR ̸= ∅.
Then apply the above-described procedure by changing roles of B and R. We remark
that (4.19) is preserved.

So consider the case of XB ∪XR = ∅, which implies IB ∪IR = ∅. Here we construct
two modifications (ρ′, φ′, T ′) and (ρ′′, φ′′, T ′′) as follows. First let (ρ′, φ′)(x) := (ρ, φ)(x)
for x ∈ V \ Xq. Next delete open ball B◦(q, ϵ) from T . Let C = {C0} ∪ CB ∪ CR be
the set of resulting connected components. For each C ∈ CR, join qC and qC0 by a
segment of length 2ϵ. For each C ∈ CB, identify (glue) qC and qC0 . For each x ∈ Xq, let
φ′(x) := qC0 and let ρ′(x) := (ρ(x))→B,ϵ (well-defined by XB ∪XR = ∅). Let (ρ′, φ′, T ′)
be the resulting triple. See Figure 4 for the construction of T ′. Namely T ′ is also
obtained from T by contracting by ϵ each segment connecting q and C ∈ {C0}∪CB and
extending by ϵ each segment connecting q and C ∈ CR. The second triple (ρ′′, φ′′, T ′′) is
obtained by changing roles of B and R.

Claim 4.9. (1) Both (ρ′, φ′, T ′) and (ρ′′, φ′′, T ′′) are feasible.

(2) Dσ
ρ′ ⊆ Dσ

ρ and Dσ
ρ′′ ⊆ Dσ

ρ for σ ∈ {−,+}.

(3) Either τ(ρ′, φ′, T ′) ≤ τ(ρ, φ, T ) or τ(ρ′′, φ′′, T ′′) ≤ τ(ρ, φ, T ) holds.

Let (ρ, φ, T )← (ρ′, φ′, T ′) if τ(ρ′, φ′, T ′) ≤ τ(ρ, φ, T ), and let (ρ, φ, T )← (ρ′′, φ′′, T ′′)
otherwise. Repeat this process. Then critical points move toward r. After finitely many
steps, r becomes critical; go to paragraph 3 after the proof of Claim 4.9.

Proof. (1). It suffices to show the feasibility of (ρ′, φ′, T ′). Take an edge e = xy ∈ E
with (ρ, φ)(x) ̸= (ρ, φ)(y). We verify condition (∗) dφ′

(e) ≤ |dρ′(e)− a(e)| for the cases
(i) φ(x) = q ≺ φ(y) ∈ C ∈ CR, and (ii) φ(x) ∈ C ∈ CR, φ(y) ∈ C ′ ∈ CR, and C ̸= C ′.

22



For the other cases, dφ
′
(e) < dφ(e), or dφ

′
(e) = dφ(e) and dρ

′
(e) = dρ(e); the condition

(∗) is easily verified.
Case (i): φ(x) = q ≺ φ(y) ∈ C ∈ CR. In this case, dφ

′
(e) = dφ(e) + ϵ. We are

going to show that (∗1)|dρ′ − a|(e) = |dρ − a|(e) + ϵ or (∗2) |dρ − a|(e) − dφ(e) ≥ 2ϵ,
which implies the feasibility (∗). Take uv ∈ E(Γ ) with ρ(x) ∈ (u, v). We may assume
dρ(e) = d(ρ(x), u) + d(u, ρ(y)) (since ρ(y) ∈ V (Γ )). By the tree structure, we have
u ∈ B ⇔ dρ

′
(e) = dρ(e)− ϵ, and u ∈ R⇔ dρ

′
(e) = dρ(e) + ϵ. If u ∈ B and dρ(e) < a(e)

then (∗1) holds. Also, if u ∈ R and dρ(e) > a(e) then (∗1) holds. So suppose that u ∈ B
and dρ(e) > a(e). Let t := dφ(e)− ⌊d(φ(y), q)⌋. Then we obtain

|dρ − a|(e)− dφ(e) = d(u, ρ(y)) + d(ρ(x), u)− a(e)− ⌊d(φ(y), q)⌋ − t.

By ρ(y) ∈ C ∈ CR, u ∈ B, and a(e) ∈ 2Z, integer N := d(u, ρ(y)) − ⌊d(q, φ(y))⌋ − a(e)
is odd. Furthermore, both d(ρ(x), u) and t belong to [ϵ, 1− ϵ]. Hence we have

N − 1 + 2ϵ ≤ |dρ − a|(e)− dφ(e) ≤ N + 1− 2ϵ.

Here N ≤ −1 is impossible; otherwise |dρ−a|(e)−dφ(e) < 0, contradicting the feasibility
of (ρ, φ, T ). Thus N ≥ 1, implying (∗2). The analysis for the case of u ∈ R and
dρ(e) < a(e) is similar.

Case (ii): φ(x) ∈ C ∈ CR, φ(y) ∈ C ′ ∈ CR, and C ̸= C ′. In this case, dρ
′
(e) = dρ(e)

and dφ
′
(e) = dφ(e) + 2ϵ. Here dφ(e) = d(φ(x), q) + d(φ(y), q). Let t := d(φ(x), q) −

⌊d(φ(x), q)⌋ and t′ := d(φ(y), q)− ⌊d(φ(y), q)⌋. Then we have

|dρ − a|(e)− dφ(e) = |dρ − a|(e)− ⌊d(φ(x), q)⌋ − ⌊d(φ(y), q)⌋ − t− t′.

The integer N := |dρ − a|(e) − ⌊d(φ(x), q)⌋ − ⌊d(φ(y), q)⌋ is even since C,C ′ ∈ CR and
|dρ − a|(e) ≡ d(b, ρ(x)) + d(b, ρ(y)) mod 2. By t, t′ ∈ [ϵ, 1− ϵ], we have

N − 2 + 2ϵ ≤ |dρ − a|(e)− dφ(e) ≤ N − 2ϵ.

From this, N ≥ 2 is necessary, and we have |dρ − a|(e)− dφ(e) ≥ 2ϵ, implying (∗).
(2). Take an edge e = xy ∈ E. We show that (∗∗) neither (dρ′−a)(e) < 0 ≤ (dρ−a)(e)

nor (dρ
′ − a)(e) > 0 ≥ (dρ − a)(e) occurs. We may consider the case ρ(x) = q. Suppose

ρ(y) ̸= q. Then |dρ − a|(e) ≥ dφ(e) ≥ ϵ, and dρ
′
(e)− dρ(e) ∈ {ϵ,−ϵ}, implying (∗∗). So

suppose φ(x) = φ(y) = q. Then dφ
′
(e) = dφ(e) = 0, and dρ

′
(e) − dρ(e) = {2ϵ, 0,−2ϵ}.

We may consider the case where ρ(x) ∈ (u, p) and ρ(y) ∈ (u′, p′) for different edges
e = up, e′ = u′p′ ∈ E(Γ ) (otherwise dρ

′
(e)− dρ(e) = 0). We can assume that dρ(x, y) =

d(ρ(x), p) + d(p, p′) + d(p′, ρ(y)). If p and p′ belong to different color classes, then ρ(x)
and ρ(y) move toward the same direction in the path from ρ(x) to ρ(y), and hence we
have dρ

′
(e) = dρ(e) implying (∗∗). Suppose that p and p′ belong to the same color class.

Then N := d(p, p′) is even. By d(ρ(x), p), d(p′, ρ(y)) ∈ [ϵ, 1− ϵ] we have

N − a(e) + 2ϵ ≤ (dρ − a)(e) ≤ N − a(e) + 2− 2ϵ.

Since a(e) is even, we have |dρ − a|(e) ≥ 2ϵ implying (∗∗).
(3). We first compare (dρ

′ − a)+(E) with (dρ − a)+(E). For a node x ∈ V with
ρ(x) ̸∈ V (Γ ), define disjoint subsets δBx, δRx of δx as follows. Take edge uv ∈ E(Γ )
with ρ(x) ∈ [u, v]. Suppose u ∈ B and v ∈ R. Let δBx (resp. δRx) be the set of edges
e = xy ∈ δx such that ρ(y) belongs to the connected component of Γ̄ \{ρ(x)} containing
u (resp. v). Then we have

(dρ
′ − a)+(E)− (dρ − a)+(E) = (dρ

′ − dρ)(E \ D−
ρ )(4.23)

= ϵ
∑
x∈Xq

(
|δRx \ D−

ρ | − |δBx \ D−
ρ |
)

= (dρ − a)+(E)− (dρ
′′ − a)+(E).

23



Here we use (2) for the first equality. To see the second equality, consider an edge
e ∈ E \ D−

ρ joining Xq; the other edges do not contribute. Further we may assume
dρ(e) > 0; otherwise dρ(e) = dφ(e) = 0 (by a(e) ≥ 0) and e does not contribute.
Suppose e = xy and x ∈ Xq. Then e ∈ δRx ∪ δBx. By the case-by-case analysis, we see

(4.24) dρ
′
(e)− dρ(e) =


−ϵ if e ∈ δBx, y ̸∈ Xq,
+ϵ if e ∈ δRx, y ̸∈ Xq,
−2ϵ if e ∈ δBx ∩ δBy, y ∈ Xq

+2ϵ if e ∈ δRx ∩ δRy, y ∈ Xq

0 otherwise.

By a simple counting argument, we see the second equality. The third equality is obtained
by changing the roles of R and B.

Next we compare hρ′ ∗ (φ′, T ′) with hρ ∗ (φ, T ). Here T ′ is obtained from T by
contracting and extending segments in Eφ,T ; so we can naturally regard Eφ′,T ′ as Eφ′,T ′ ⊆
Eφ,T . Moreover it holds that

(4.25) hρ′(Xω) = hρ(Xω) = 1 (ω ∈ Eφ′,T ′).

Indeed, for ω ∈ Eφ′,T ′ , we have |dρ′ − a|(e) ≥ dφ
′
(e) > 0 (e ∈ δXω), and by (2) dρ

′ − a
and dρ − a must have the same sign pattern on δXω. This implies (4.25).
T ′ is obtained from T by decreasing the length of ω by ϵ if ω connects q and a

component in {C0} ∪ CB and by increasing the length of ω by ϵ if ω connects q and a
component in CR. By this fact together with (4.25), we have

(4.26) hρ′ ∗ (φ′, T ′)− hρ ∗ (φ, T ) = ϵ|CR| − ϵ|CB| − ϵ.

Similarly we have

(4.27) hρ′′ ∗ (φ′′, T ′′)− hρ ∗ (φ, T ) = ϵ|CB| − ϵ|CR| − ϵ.

Let ∆′ := {τ(ρ′, φ′, T ′)− τ(ρ, φ, T )}/ϵ and ∆′′ := {τ(ρ′′, φ′′, T ′′)− τ(ρ, φ, T )}/ϵ. By
(4.23), (4.26), and (4.27), we have

∆′′ = −∆′ + 2.

Therefore it suffices to show that ∆′ is an even integer, which implies (3) either ∆′ ≤ 0
or ∆′′ ≤ 0. By (4.23) and (4.26), we have

∆′ ≡
∑
x∈Xq

(
|δRx \ D−

ρ |+ |δBx \ D−
ρ |
)
+ |CB|+ |CR|+ 1

≡
∑
x∈Xq

|δx \ D−
ρ |+ hρ(Xq,≺) + 1

≡
∑
x∈Xq

hρ(x) + hρ(Xq,≺) + 1 ≡ hρ(Xq,⪯) + 1 ≡ 0 mod 2.

In the second equality, we use the observation that for e = xy ∈ E \ D−
ρ , x ∈ Xq and

e ̸∈ δBx ∪ δRx imply dρ(e) = dφ(e) = 0, y ∈ Xq and e ̸∈ δBy ∪ δRy. Also we use (4.20),
(4.21), and Lemma 3.4 (1).
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3: Local changes at r. Suppose that r is the unique critical point. Let q := r.
The argument is essentially the same (or simpler). Suppose Xq,⪯ \ (XB ∪XR) ̸= ∅. As
above, we construct (ρ′, φ′, T ′) and (ρ′′, φ′′, T ′′) in the following way. Define ρ′ : V → Γ̄
by ρ′(x) := (ρ(x))→B,ϵ for x ∈ Xq \ (XB ∪ XR), and ρ′(x) := ρ(x) for x ∈ XB ∪ XR.
Also define φ′(x) := φ(x) for x ∈ V \ Xq. Next delete open ball B◦(q, ϵ) from T . Let
C = CB ∪ CR ∪ IB ∪ IR be the set of the resulting connected component in T . Add a
new root r. For all C ∈ IB ∪ IR, join qC and r by a segment of length ϵ. For each
C ∈ CB, join qC and r by a segment of length 2ϵ. For each C ∈ CR, identify (glue) qC
and r. Define φ′(x) = r for x ∈ Xq. Then we obtain a triple (ρ′, φ′, T ′). The second
triple (ρ′′, φ′′, T ′′) is obtained by changing the roles of B and R. By a similar analysis in
Claim 4.9, both (ρ′, φ′, T ′) and (ρ′′, φ′′, T ′′) are feasible, and τ(ρ′, φ′, T ′)− τ(ρ, φ, T ) =
−τ(ρ′′, φ′′, T ′) + τ(ρ, φ, T ) (in (4.23) and (4.24), replace Xq by Xq \ (XB ∪XR) and in
(4.26) and (4.27), delete −ϵ in RHS since C0 does not arise). Let (ρ, φ, T )← (ρ′, φ′, T ′)
if τ(ρ′, φ′, T ′) ≤ τ(ρ, φ, T ) and let (ρ, φ, T ) ← (ρ′′, φ′′, T ′′) otherwise. Increase ϵ to its
multiple until XB ∪XR increases. Repeat it until Xr,⪯ = XB ∪XR. Also these changes
keep (2) in Claim 4.9.

If XR = ∅, then the current (ρ, φ, T ) is bipartite, as required. So suppose XR ̸= ∅.
Delete open ball B◦(r, ϵ) from T . Then C = IR ∪ IB. Consider a segment of length
1 with vertices r, q; r is a new root. For each C ∈ CB, join qC and r by a segment of
length ϵ. For each C ∈ CR, join qC and q by a segment of length ϵ. For x ∈ Xq, define
φ′(x) := r if x ∈ XB, and φ′(x) := q if q ∈ XB. The resulting (ρ, φ′, T ′) is feasible.
Indeed, if e joins XB and XR, then dφ(e) and |dρ(e) − a(e)| have different parity, and
this implies dφ(e)+1 ≤ |dρ(e)−a(e)|. From this we see the feasibility. Now (ρ, φ′, T ′) is
bipartite, and τ(ρ, φ′, T ′) = τ(ρ, φ, T )−hρ(X

B) ≤ τ(ρ, φ, T ). Hence (1) of Theorem 4.5
is proved.

4: Stability. Finally we verify that the resulting (ρ∗, φ∗, T ∗) satisfies the condition (2)
in Theorem 4.5. It suffices to verify that for each change (ρ, φ, T ) ← (ρ′, φ′, T ′) above,
(dρ + dφ)(x, y) ≤ L implies (dρ

′
+ dφ

′
)(x, y) ≤ L for an even integer L. This has already

been done. Add an edge e joining x and y with even cost a(e) = L. Then (ρ, φ, T ) is
feasible to the new graph, and then so does (ρ′, φ′, T ′) with property (2) in Claim 4.9.
In any change, we have (dρ

′
+ dφ

′
)(x, y) ≤ a(e) = L. Thus the proof of Theorem 4.5 is

complete. □

4.4 Primal integrality

Here we prove the existence of an integral optimal solution in (2.2):

Theorem 4.10 (Primal Integrality). Suppose that µ is a tree metric. Then there
exists an integral optimal solution in (2.2). In particular, val(µ;G, a) = val(µ;G, a).

Together with Corollary 4.6, this establishes the min-max formula (1.2). The proof
of Theorem 4.10 is based on an inductive approach by edge-deletion, along the line
described in Section 2.2. Take an edge e ∈ E, consider G− e. Then we have

(4.28) val(µ;G− e, a) ≤ val(µ;G, a).

To see this, take any optimal solution (ξ, f) in (2.2) for G− e. Extend ξ to ξ̄ : E → R+

by defining ξ(e) := 1. The resulting (ξ̄, f) is feasible to (2.2) for G. In particular, if
(4.28) holds with equality and there exists an integral optimal solution in (2.2) for G−e,
then there also exists an integral optimal solution in (2.2) for G.

An edge e ∈ E is called deletable if val(µ;G − e, a) = val(µ;G, a). Our goal is to
prove the following criterion of deletable edges.
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Proposition 4.11 (Edge-deletion Property). Let (ξ, f) be an optimal solution in
(2.2). For an edge e ∈ E, if ξ(e) > 0, then e is deletable.

As in Section 2.2, we first prove Theorem 4.10 assuming Proposition 4.11 and then
prove Proposition 4.11.

4.4.1 Proof of Theorem 4.10

We use the induction on the number of edges. Take any optimal solution (ξ, f) in (2.2).
Suppose ξ = 0. Then val(µ;G, a) = val(µ;G, 0) − a(E). Moreover G is necessarily
inner Eulerian. By the laminar locking theorem (Lemma 3.1), we can take an edge-
disjoint set P of S-paths with

∑
P∈P µ(sP , tP ) = val(µ;G, 0). Then P attains the max-

imum since
∑

P∈P µ(sP , tP )− a(P ) ≤ val(µ;G, a) ≤ val(µ;G, a) = val(µ;G, 0)− a(E) ≤∑
P∈P µ(sP , tP )− a(P ).
Suppose that there is an edge e ∈ E with ξ(e) > 0. By Proposition 4.11, e is

deletable. By induction together with the construction above, there exists an integral
optimal solution. □

4.4.2 Proof of Proposition 4.11

We need two lemmas below, the first is about the parity and the second is the comple-
mentary slackness condition. In the following, we often compare parameters of G − e
with that of G. Hence we denote τG−e and hG−e by τ ′ and h′, respectively. We note:

(4.29) (1) h′ρ(X) ̸= hρ(X) if and only if e ∈ δX \ D−
ρ .

(2) h′ρ ∗ (φ, T ) = hρ ∗ (φ, T ) +
∑

ω∈Eφ,T :e∈δXω

|ω|(h′ρ(Xω)− hρ(Xω)).

This follows from the definition of hρ; see (4.8).

Lemma 4.12. If a feasible triple (ρ, φ, T ) is bipartite, then τ(ρ, φ, T ) is an even integer.

Proof. We use the induction on the number of edges; if E = ∅ then the statement
is obvious. Take an edge e = xy ∈ E. (ρ, φ, T ) is feasible to G − e. If e ∈ D−

ρ

then τ ′(ρ, φ, T ) = τ(ρ, φ, T ) by (4.29). Suppose e ̸∈ D−
ρ . By (4.29) (1), the second

term of RHS in (4.29) (2) is equal to dφ(e) modulo 2; recall (3.7) in Section 3.4. Also
(dρ − a)+(E) − (dρ − a)+(E \ e) = (dρ − a)+(e) ≡ dρ(e) mod 2. Since dρ(e) ≡ dφ(e)
mod 2 by bipartiteness, we have τ ′(ρ, φ, T ) ≡ τ(ρ, φ, T ) mod 2, as required.

Lemma 4.13. Let (ξ, f) be a feasible solution in (2.2) and (ρ, φ, T ) a feasible triple.
Then (ξ, f) and (ρ, φ, T ) are both optimal if and only if the following conditions hold:

(a) For each e ∈ E with dρ(e) > 0 we have ξ(e) +
∑

P∈Π,e∈P f(P ) = 1.

(b) For each e ∈ E with dφ(e) < |dρ − a|(e) we have

ξ(e) =

{
1 if e ∈ D−

ρ ,

0 otherwise.

(c) For each ω ∈ Eφ,T , we have

ξ(δXω \ D−
ρ ) + (1− ξ)(δXω ∩ D−

ρ ) = hρ(Xω).
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(d) For each P ∈ Π with f(P ) > 0 we have dρ(P ) = µ(sP , tP ).

Proof. By direct calculations, we obtain

(dρ − a)+(E)− hρ ∗ (φ, T )−
∑
P∈Π

µ(sP , tP )f(P ) + a(E)−
∑
e∈E

a(e)ξ(e)(4.30)

=
∑
e∈E

dρ(e)(1− ξ(e)− f(e)) +
∑
P∈Π

f(P ) (dρ(P )− µ(sP , tP ))

+
∑

e∈E\D−
ρ

ξ(e)(|dρ − a| − dφ)(e) +
∑
e∈D−

ρ

(1− ξ(e))(|dρ − a| − dφ)(e)

+
∑

ω∈Eφ,T

|ω|
(
ξ(δXω \ D−

ρ ) + (1− ξ)(δXω ∩ D−
ρ )− hρ(Xω)

)
,

where f(e) :=
∑

P∈Π,e∈P f(P ). To see this, use the relations:∑
P∈Π

f(P )dρ(P ) =
∑
e∈E

f(e)dρ(e),

∑
e∈E\D−

ρ

ξ(e)dφ(e)+
∑
e∈D−

ρ

(1−ξ(e))dφ(e) =
∑

ω∈Eφ,T

|ω|
(
ξ(δXω \ D−

ρ ) + (1− ξ)(δXω ∩ D−
ρ )
)
,

and

(dρ − a)+(E) + a(E)−
∑
e∈E

a(e)ξ(e)

=
∑
e∈E

dρ(e)(1− ξ(e)) +
∑

e∈E\D−
ρ

ξ(e)(dρ − a)(e) +
∑
e∈D−

ρ

(1− ξ(e))(a− dρ)(e).

By feasibility, all terms in RHS of (4.30) are nonnegative; see also (3.4). Therefore
(ρ, φ, T ) and (ξ, f) are both optimal if and only if all the terms are zero, which is
equivalent to the case where (a), (b), (c), and (d) hold.

Proof of Proposition 4.11. We are ready to prove Proposition 4.11. Take an optimal
solution (ξ, f) in (2.2) and take a bipartite optimal triple (ρ, φ, T ). Let e = xy ∈ E be
an edge with ξ(e) > 0. Here we can assume

(4.31) dρ(e) = dφ(e) = 0 = a(e).

Indeed, replace e by a series of two edges xz and zy, and define a(xz) := 0 and a(zy) :=
a(e). Then the problem (2.2) does not change; from any feasible solution (ξ, f) in the
original instance we get a feasible solution in the new one with the same objective value
by setting ξ(xz) = ξ(zy) := ξ(e), and the converse is also possible by contracting edge
xz. In particular e is deletable in the original graph if and only if xz is deletable in the
new graph. Also we can extend (ρ, φ) by defining (ρ, φ)(z) := (ρ, φ)(x), which is optimal
to the new instance (since it is feasible and has the same objective value).

Suppose indirectly that e is not deletable. Then (ρ, φ, T ) is obviously feasible to
G − e. Moreover τ ′(ρ, φ, T ) = τ(ρ, φ, T ). Indeed, by dρ(e) = a(e) = 0, we have
(dρ− a)+(E \ e) = (dρ− a)+(E). Also dφ(e) = 0 implies e ̸∈ δXω for ω ∈ Eφ,T , which in
turn implies hρ(Xω) = h′ρ(Xω) by (4.29) (1). Thus h′ρ ∗ (φ, T ) = hρ ∗ (φ, T ).

Therefore (ρ, φ, T ) is feasible and not optimal to G− e. According to Lemmas 4.12
and 4.7, we can take a bipartite feasible triple (ρ′, φ′, T ′) for G− e such that
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τ ′(ρ′, φ′, T ′) + 2 ≤ τ ′(ρ, φ, T ) = τ(ρ, φ, T ) = val(µ,G, a) and,

(dρ
′
+ dφ

′
)(u, v) ≤ (dρ + dφ)(u, v) + 2 (u, v ∈ V ).

In particular,
dρ

′
(e) + dφ

′
(e) ≤ dρ(e) + dφ(e) + 2 = 2.

So there are four cases (dρ
′
(e), dφ

′
(e)) = (0, 0), (2, 0), (1, 1), (0, 2). The first case is im-

possible. Otherwise (ρ′, φ′, T ′) is also feasible to G with τ(ρ′, φ′, T ′) = τ ′(ρ′, φ′, T ′) <
val(µ;G, a) ≤ τ(ρ′, φ′, T ′); a contradiction. As in Section 2.2, we are going to show that
(ρ′, φ′, T ′) or a small modification (ρ′, φ̃′, T̃ ′) is also optimal to G (see claim (♣)), apply
the complementary slackness (Lemma 4.13) to (ξ, f) and (ρ′, φ′, T ′) (or (ρ′, φ̃′, T̃ ′)), and
derive a contradiction. For simplicity, we denote hρ′ , h

′
ρ′ , and D

−
ρ′ by h, h′, and D−.

Case 1: (dρ
′
(e), dφ

′
(e)) = (2, 0). In this case, triple (ρ′, φ′, T ′) is also feasible to G (by

0 = dφ
′
(e) ≤ |dρ′ − a|(e) = 2). Hence

(4.32) τ ′(ρ′, φ′, T ′) + 2 ≤ val(µ;G, a) ≤ τ(ρ′, φ′, T ′).

Moreover (dρ
′−a)+(E) = (dρ

′−a)+(E\e)+2, and h∗(φ′, T ′) = h′∗(φ′, T ′) by (4.29) (2)
and e ̸∈ δXω for ω ∈ Eφ′,T ′ (otherwise dφ

′
(e) > 0). Thus we have

(4.33) τ(ρ′, φ′, T ′) = τ ′(ρ′, φ′, T ′) + 2.

By (4.32) and (4.33), (ρ′, φ′, T ′) is also optimal to G. In particular (ρ′, φ′, T ′) satisfies
the optimality criterion (Lemma 4.13) with (ξ, f). By (b) in Lemma 4.13, 0 = dφ

′
(e) <

|dρ′ − a|(e) = 2 implies ξ(e) = 0, which contradicts ξ(e) > 0.

Case 2: (dρ
′
(e), dφ

′
(e)) = (1, 1). Also in this case, triple (ρ′, φ′, T ′) is feasible to G.

Hence (4.32) holds. Obviously (dρ
′−a)+(E) = (dρ

′−a)+(E \e)+1. There is unique ω ∈
Eφ′,T ′ with |ω| = 1 and e ∈ δXω. By (4.29), h ∗ (φ′, T ′) = h′ ∗ (φ′, T ′)−h′(Xω)+h(Xω).
Hence we have

(4.34) τ(ρ′, φ′, T ′) = τ ′(ρ′, φ′, T ′) + 1 + h′(Xω)− h(Xω).

By (4.32) and (4.34), h′(Xω) = 1 and h(Xω) = 0, and (ρ′, φ′, T ′) is also optimal to G. By
|ω| > 0, h(Xω) = 0, and (c) in Lemma 4.13, we have ξ(δXω\D−)+(1−ξ)(δXω∩D−) = 0,
implying

ξ(e′) =

{
0 if e′ ∈ δXω \ D−,
1 if e′ ∈ δXω ∩ D−.

Thus ξ(e) = 0 since e ∈ δXω \ D−. Again this contradicts ξ(e) > 0.

Case 3: (dρ
′
(e), dφ

′
(e)) = (0, 2). In this case, (ρ′, φ′, T ′) is not feasible to G. We

modify (φ′, T ′) as follows. Let q := φ′(x) and q′ := φ′(y). Let q̄ ∈ T ′ be the unique
point with dT ′(q̄, q) = dT ′(q′, q̄) = 1. We may assume q̄ ≺ q. Also we may assume that
q̄ is a vertex of T ′; attach a unit segment to q̄ if necessary. Then segments ω := (q̄, q)
and ω′ := (q̄, q′) belong to ET ′,φ′ . Delete open segment (q̄, q) from T ′, and identify q and
q′. Let (T̃ ′, φ̃′) be the resulting metric-tree with a map. Then (ρ′, φ̃′, T̃ ′) is bipartite
feasible to G, since dφ̃

′
(e) = 0 and dφ̃

′
(e′)− dφ

′
(e′) ∈ {−2, 0} (e′ ∈ E). Hence we have

(4.35) τ ′(ρ′, φ′, T ′) + 2 ≤ val(µ;G, a) ≤ τ(ρ′, φ̃′, T̃ ′).
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Obviously (dρ
′ − a)+(E) = (dρ

′ − a)+(E \ e) (by dρ
′
(e) = 0 = a(e)). Next we estimate

h′∗(φ′, T ′) and h∗(φ̃′, T̃ ′). We first consider the case q̄ ≺ q′. Let X := Xω and Y := Xω′ .
Then h ∗ (φ̃′, T̃ ′) = h′ ∗ (φ′, T ′)− h′(X)− h′(Y ) + h(X ∪ Y ) by construction. Hence we
have

(4.36) τ(ρ′, φ̃′, T̃ ′) = τ ′(ρ′, φ′, T ′) + h′(X) + h′(Y )− h(X ∪ Y ).

By (4.35), h′(X) = h′(Y ) = 1, h(X ∪ Y ) = 0, and (ρ′, φ̃′, T̃ ′) is optimal to G. Consider
edge e′ ∈ δX \ {e}. If e′ joins X and Y , then dφ̃

′
(e′) < dφ

′
(e′) ≤ |dρ′ − a|(e′), and (b) in

Lemma 4.13 is applicable. Otherwise e′ ∈ δ(X ∪Y ), and (c) in Lemma 4.13 is applicable
with h(X ∪ Y ) = 0. Hence we have

(4.37) ξ(e′) =

{
1 if e′ ∈ D−,
0 otherwise,

(e′ ∈ δX \ {e}).

Decompose ξ into a convex combination of the incidence vectors of inner-odd-joins
F1, F2, . . . , Fk. By (4.37), Fi ∩ (δX \ {e}) = δX ∩ D− for i = 1, 2, . . . , k. By h′(X) = 1
and e ∈ δX \D−, we have h(X) = 0 ((4.29) (1)), implying that |δX \D−| is even. Hence,
for every i = 1, 2, . . . , k, we have

|δX| = |δX ∩ D−|+ |δX \ D−| ≡ |Fi ∩ (δX \ {e})| mod 2.

Here |δX| ≡ |F ∩δX| mod 2 must hold for every inner-odd-join F and every X ⊆ V \S.
Hence e ̸∈ Fi for i = 1, 2, . . . , k, which implies ξ(e) = 0; a contradiction to the initial
assumption. The argument for the case q′ ≺ q̄ is essentially the same; replace X ∪ Y by
Y \X in the argument above. Then the proof of Proposition 4.11 is complete. □

5 Polynomial solvability and NP-hardness

In this section, we prove the polynomial time solvability of µ-CEDP for a tree metric µ,
and the NP-hardness of µ-EDP when µ is not a truncated tree metric.

5.1 Polynomial time solvability

Our approach is based on the polynomial equivalence between separation and optimiza-
tion [13] as in [28], We are given an instance (G = (V,E), S, a, µ) of µ-CEDP. Suppose
that µ is a tree metric. Although the linear programming problem (2.2) has an ex-
ponential number of variables and inequalities, the multiflow-variable f has a compact
edge-node formulation, and the separation of the inner-odd-join polytope Q can be done
in polynomial time by Padberg-Rao’s algorithm for minimum odd cuts [36]; see [29,
Section 12.4] (and Exercise 8). Consequently the separation of (f, ξ) can be done in
polynomial time. Thus, by the ellipsoid method [13], we can evaluate val(µ;G, a) in
polynomial time. Consequently, for an edge e ∈ E, we can determine whether e is
deletable or not. If e is deletable, then delete it. Repeat it at most |E| times until all
edges are not deletable. By Proposition 4.11, the resulting graph G is inner Eulerian.
By any algorithm for the laminar locking theorem, e.g., [21], we can find an edge-disjoint
set of S-paths attaining val(µ;G, 0) in polynomial time. This is our desired solution for
µ-CEDP.

A generalization to the capacitated setting is straightforward. Now we are also
given an integer-valued edge-capacity c : E → Z+. The problem is to maximize∑

P∈Π f(P )(µ(sP , tP ) − a(P )) over f : Π → Z+ satisfying the capacity constraint∑
P∈Π,e∈P f(P ) ≤ c(e) for e ∈ E. Let val(µ;G, c, a) denote the maximum value. The
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LP-relaxation is constructed as follows. Let Qc be the convex hull of all integer-valued
functions ξ : E → Z+ such that 0 ≤ ξ(e) ≤ c(e) for e ∈ E and ξ(δx) ≡ c(δx) mod 2 for
x ∈ V \S. In (2.2), replace ξ(e)+

∑
P∈Π,e∈P f(P ) ≤ 1 by ξ(e)+

∑
P∈Π,e∈P f(P ) ≤ c(e),

and replace ξ ∈ Q by ξ ∈ Qc. The resulting LP also has an integer optimal solution
if µ is a tree metric. Since Qc is a parity-constraint capacitated b-matching polytope,
the separation for Qc can also be done in polynomial time, as above. Thus we can
evaluate val(µ;G, c, a) in polynomial time. Consequently, for each edge e ∈ E, we can
determine the maximum deletion αc(e) := max{α ∈ [0, c(e)] ∩Z | val(µ;G, c− α1e, a) =
val(µ;G, c, a)} in polynomial time by the bisection method, where 1e is the incidence
vector of e. The rest is the same as above.

5.2 NP-hardness

The goal of this subsection is to prove the NP-hardness of µ-EDP when µ is not a
truncated tree metric (Theorem 1.3). We will prove two auxiliary results. The first one
is a 4-point characterization of truncated tree metrics.

Theorem 5.1. A weight µ is a truncated tree metric if and only if for all sets of four
distinct elements s, t, u, v ∈ S, at least one of the following inequalities holds:

µ(s, t) = 0,(5.1)

µ(u, v) = 0,(5.2)

µ(s, t) + µ(u, v) ≤ µ(s, v) + µ(t, u),(5.3)

µ(s, t) + µ(u, v) ≤ µ(s, u) + µ(t, v).(5.4)

Note that here we do not require the triangle inequality to hold. Therefore, if µ is not
a truncated tree metric, then there are four elements s, t, u, v such that all inequalities
(5.1)-(5.4) do not hold. From this violating quadruple (s, t, u, v), we will reduce some
NP-hard problem to µ|{s,t,u,v}-EDP. For the reduction, we use the following version of
the integer 2-commodity flow feasibility problem for which one of the commodities is
unit:

Problem 5.2. The (1, ∗)-edge-disjoint paths problem takes the input of an undirected
graph G = (V,E), nodes r, q ∈ V , and disjoint sets R,Q ⊆ V such that {r}, {q}, R,Q
are disjoint and |R| = |Q|. The goal is to determine paths P0, P1, · · · , P|R| such that
they are pairwise edge-disjoint, and P0 connects r with q, and Pi connects a node in R
with a node in Q, for i = 1, · · · , |R|, or establish that there is no such a family of paths.

Even, Itai, and Shamir [10] actually proved that a directed version of (1, ∗)-edge-
disjoint paths problem is NP-hard. Their reduction works for our undirected version
with small change.

Theorem 5.3 (essentially [10]). The (1, ∗)-edge-disjoint paths problem is NP-hard.

We first prove Theorem 1.3 assuming Theorems 5.1 and 5.3 in Section 5.2.1, and
then prove Theorems 5.1 and 5.3 in Sections 5.2.2 and 5.2.1, respectively.
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5.2.1 Proof of Theorem 1.3

Suppose that µ is not a truncated tree metric. Then Theorem 5.1 implies that there are
four distinct elements s, t, u, v such that each of the following inequalities holds:

µ(s, t) > 0,(5.5)

µ(u, v) > 0,(5.6)

µ(s, t) + µ(u, v) > µ(s, v) + µ(t, u),(5.7)

µ(s, t) + µ(u, v) > µ(s, u) + µ(t, v).(5.8)

Then either both of

2µ(s, t) + 2µ(u, v) > µ(s, u) + µ(s, v) + µ(u, v),(5.9)

2µ(s, t) + 2µ(u, v) > µ(t, u) + µ(t, v) + µ(u, v),(5.10)

or both of

2µ(s, t) + 2µ(u, v) > µ(s, t) + µ(s, v) + µ(t, v),(5.11)

2µ(s, t) + 2µ(u, v) > µ(s, t) + µ(s, u) + µ(t, u)(5.12)

hold. Indeed, assume that at most one of (5.9)-(5.10), and at most one of (5.11)-(5.12)
holds. By symmetry, we may assume that (5.9) and (5.11) do not hold. Summing them
implies that

3µ(s, t) + 3µ(u, v) ≤ µ(s, u) + 2µ(s, v) + µ(t, v).

On the other hand, (5.5)-(5.8) imply that

3µ(s, t) + 3µ(u, v) > 2µ(s, v) + 2µ(t, u) + µ(s, u) + µ(t, v) ≥ µ(s, u) + 2µ(s, v) + µ(t, v).

This is a contradiction. So, by symmetry, we may assume that each of the inequalities
(5.9)-(5.10) hold.

Now consider an instance of the (1, ∗)-edge-disjoint paths problem, that is an undi-
rected graph G = (V,E), nodes r, q ∈ V , and disjoint sets R,Q ⊆ V , such that
{r}, {q}, R,Q are disjoint and |R| = |Q|. Define G′ := (V ′, E′) by adding 4 new nodes
to G, namely s, t, u, v, and add new edges ur and vq, and sx for all x ∈ R, ty for all
y ∈ Q. A solution to the µ|S′-EDP with G′, S′ := {s, t, u, v} defines a set of paths so
that each path has both its endpoints in S′. If this set of paths contains exactly 1 path
from u to v, and |R| paths from R to Q, then the weight is equal to |R|µ(s, t) + µ(u, v).
We claim that this routing – i.e. having 1 path from u to v, and |R| paths from s to t –
is the only way to achieve a weight of at least |R|µ(s, t) + µ(u, v). This follows from the
following claim.

Claim 5.4. Consider the perfect graph KS′ with node set S′ := {s, t, u, v}, and edge
weights given by µ, and node-capacity b(s) = b(t) = |R| and b(u) = b(v) = 1. Then
ξ(st) = |R| and ξ(uv) = 1 and ξ(e) = 0 for other edge e gives the unique maximum
integral b-matching in KS′ .

Proof. Recall that an integral b-matching is a vector ξ : E(KS′)→ Z+ such that ξ·δ{w} ≤
b(w) for all w ∈ S′. Let ξ be a maximum weight integral b-matching with respect to
weight µ|s,t,u,v. First suppose that ξ(su) ≥ 1 and ξ(tv) ≥ 1. Then, by (5.8), decreasing
ξ on su and tv by one, and increasing x on st and uv by one will increase the weight of
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ξ. This is a contradiction. This implies that ξ(su) = 0 or ξ(tv) = 0. By symmetry we
may assume ξ(su) = 0. Similarly we have (i) ξ(sv) = 0 or (ii) ξ(ut) = 0.

Case (i): ξ(sv) = 0. Now suppose that ξ(tu) ≥ 1 and ξ(tv) ≥ 1. Then decrease
ξ on tu and tv by one, increase ξ on st by two, and increase ξ on uv by one. This,
by (5.10), implies that the weight of ξ increases, a contradiction. Thus we get that
ξ(tu) = 0 or ξ(tv) = 0. Say, by symmetry, ξ(tu) = 0. To sum up, we now have
ξ(su) = ξ(sv) = x(tu) = 0. If ξ(tv) ≥ 1, then decrease ξ on tv by one, and increase ξ on
st and uv by one. The weight of ξ increases by (5.7), and this is a contradiction. Hence
ξ(su) = ξ(sv) = ξ(tu) = ξ(tv) = 0. By (5.5) and (5.6), and by the assumption that ξ
has maximum weight, we get that ξ(st) = |R| and ξ(uv) = 1.

Case (ii): ξ(ut) = 0. Since b(v) = 1, at most one of ξ(sv) and ξ(tv) is positive. By
the same argument, we get ξ(sv) = ξ(tv) = 0, and hence ξ(st) = |R| and ξ(uv) = 1, as
required. This completes the proof.

Thus we conclude that there is a polynomial reduction from the (1, ∗)-edge-disjoint
paths problem to µ-EDP, implying that µ-EDP is NP-hard, proving Theorem 1.3.

5.2.2 Characterization of truncated tree metrics: Proof of Theorem 5.1

Here we prove Theorem 5.1. We start with a well-known 4-point characterization of tree
metrics; see [44].

Theorem 5.5. A weight µ is a tree metric if and only if it satisfies the triangle inequality,
and for all sets of four distinct elements s, t, u, v ∈ S, at least one of the following
inequalities holds:

µ(s, t) + µ(u, v) ≤ µ(s, v) + µ(t, u),(5.13)

µ(s, t) + µ(u, v) ≤ µ(s, u) + µ(t, v).(5.14)

Hirai [15] considered the distance among subtrees in a tree, and derived a similar
4-point characterization for it. A weight µ is called a subtree distance if there are a
metric-tree T and a family {Rs}s∈S of its subtrees (connected subsets) indexed by S
such that

µ(s, t) = dT (Rs, Rt) (s, t ∈ S).

In this case we say that (T , {Rs}s∈S) realizes µ or is a realization of µ. A truncated tree
metric is exactly a subtree distance so that each subtree is a ball around some point.
Hirai provided the following characterization of subtree distances.

Theorem 5.6 ([15]). A weight µ is a subtree distance if and only if for all sets of four
distinct elements s, t, u, v ∈ S, at least one of the following inequalities holds:

µ(s, t) = 0,(5.15)

µ(u, v) = 0,(5.16)

µ(s, t) + µ(u, v) ≤ µ(s, v) + µ(t, u),(5.17)

µ(s, t) + µ(u, v) ≤ µ(s, u) + µ(t, v),(5.18)

2µ(s, t) + 2µ(u, v) ≤ µ(s, u) + µ(s, v) + µ(u, v),(5.19)

2µ(s, t) + 2µ(u, v) ≤ µ(t, u) + µ(t, v) + µ(u, v),(5.20)

2µ(s, t) + 2µ(u, v) ≤ µ(s, t) + µ(s, v) + µ(t, v),(5.21)

2µ(s, t) + 2µ(u, v) ≤ µ(s, t) + µ(s, u) + µ(t, u).(5.22)
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Note that if a weight function satisfies (5.1)-(5.4), it will clearly also satisfy (5.15)-
(5.22).

We are ready to prove Theorem 5.1. First we prove the “only if” part. Consider a
realization (T , {Rs}s∈S) of the truncated tree metric as a subtree distance. Now each
subtree Rs is a ball B(ps, rs) with center ps and radius rs. Let µ̄(s, t) := dT (ps, pt)
for s, t ∈ S. Then µ̄ is a tree metric. Take any quadruple s, t, u, v ∈ S. We may
assume that µ(s, t) > 0 and µ(u, v) > 0, for otherwise (5.1) or (5.2) holds. That implies
µ(s, t) = µ̄(s, t)− rs − rt and µ(u, v) = µ̄(u, v)− ru − rv. By Lemma 5.5, at least one of
(5.13) and (5.14) holds for µ̄. Say, µ̄(s, t)+ µ̄(u, v) ≤ µ̄(s, u)+ µ̄(t, v), for example. Then
µ(s, t)+µ(u, v) = µ̄(s, t)+ µ̄(u, v)−rs−rt−ru−rv ≤ µ̄(s, u)+ µ̄(t, v)−rs−rt−ru−rv ≤
µ(s, u) + µ(t, v). This implies (5.4).

Second, using Lemma 5.6, we prove the “if” part. By Lemma 5.6, if µ satisfies at
least one of (5.1)-(5.4) for every s, t, u, v ∈ S, then it must be a subtree distance. Now
suppose that µ is realized by (T , {Rs}s∈S). Moreover we may assume that every leaf
p ∈ T of the tree appears as a single-node subtree Rs = {p} (for some s ∈ S) – otherwise
we could chop off part of T , and retain a realization of µ. Then we claim that every
subtree Rs actually is a ball, which will prove the Lemma. For a fixed s ∈ S, if the
diameter of Rs is zero, then we are done. Otherwise consider the median of Rs, that
is a point x ∈ Rs such that there are two distinct points x1, x2 in Rs at maximum
distance from x. Let r := dT (x, x1) = dT (x, x2) = maxx′∈Rs dT (x, x

′). We can take
leaves y1, y2 of T such that dT (y1, y2) = dT (y1, Rs) + dT (x1, x2) + dT (Rt, y2). We claim
that Rs = B(x, r). If by contradiction this were not true, then there would be a leaf y3
such that dT (Rs, y3) > dT (B(x, r), y3). Clearly y3 ̸= y1, y2. By our assumption, there
must be s1, s2, s3 such that Rs1 = {y1}, Rs2 = {y2}, Rs3 = {y3}. Clearly, s, s1, s2, s3 are
four distinct elements of S. We claim that for s = s, t = s3, u = s2, v = s1, none of the
inequalities (5.1)-(5.4) holds: To check this, note that y1 ̸= y2, which proves that (5.2)
does not hold. From dT (Rs, y3) > dT (B(x, r), y3) we get that y3 /∈ Rs, which proves
that (5.1) does not hold. We also see that µ(s, t) + µ(u, v) = dT (y1, y2) + dT (Rs, y3) =
dT (y1, x) + dT (x, y2) + dT (Rs, y3) > dT (y1, x) + dT (x, y2) + dT (x, y3)− r ≥ dT (y1, y3) +
dT (x, y2)− r = dT (y1, y3)+dT (Rs, y2) = µ(s, u)+µ(t, v), that is, (5.4) does not hold. A
similar computation shows that (5.3) does not hold either. The contradiction proves that
Rs is a ball for all s ∈ S, completing the proof of the Lemma. Based on the algorithm
from Hirai [15], and the above proof, we get the following.

Corollary 5.7. There is a polynomial time algorithm to decide whether a given weight
µ is a truncated tree metric, and if so, also provide a realization (T , {B(ps, rs)}s∈S).

5.2.3 Hardness of (1, ∗)-edge-disjoint paths problems: Proof of Theorem 5.3

The proof of Theorem 5.3 is a slight modification of [10]. Consider an instance of 3-SAT
with variables x1, · · · , xn, and clauses c1, · · · , cm. Each clause cj has three literals like
xi or xi.

Now we construct an instance of the (1, ∗)-edge-disjoint paths problem. We introduce
nodes r, q. For all i = 1, · · · , n, we introduce nodes si, ti. For all i = 1, · · · , n and j =
1, · · · ,m, we introduce nodes pi2j−1, p

i
2j , q

i
2j−1, q

i
2j . We introduce edges to create paths

si, p
i
1, p

i
2, · · · , pi2m, ti, and edges to create paths si, q

i
1, q

i
2, · · · , qi2m, ti. We add edges rs1,

tisi+1, tnq. For all j = 1, · · · ,m, we add nodes aj , bj , and for k = 1, 2, 3, we add nodes
bj,k, aj,k, aj,k, bj,k and edges ajbj,k, bj,kaj,k, bj,kaj,k, aj,kbj . For a literal cj = xu1∨xu2∨xu3 ,
and for k = 1, 2, 3, we add edges aj,kpuk

2j−1 and bj,kp
uk
2j . If instead of xuk

, we have xuk
in

literal cj , then, instead, we add edges aj,kquk
2j−1 and bj,kq

uk
2j . Let G = (V,E) denote the

graph constructed this way. Let R′ be the set of all nodes aj , aj,k, aj,k, and let Q′ be the
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set of all nodes bj , b
j,k, bj,k. Let R and Q be sets introducing a copy of a node in R′ and

Q′, respectively, and connect each of the nodes in R′ and Q′ with its copy.
The purpose of the construction is the following claim: the 3-SAT formula is satisfi-

able if and only if there is a set of edge-disjoint paths such that one of the paths goes
from r to q, and the remaining paths are connecting a node in R with a node in Q. For
the if part, consider a satisfying assignment. Then we use a path from s to t traversing
all nodes si, ti in this order, using the paths qil if xi was “true”, and using the paths pil if
xi was “false”. For each j, clause cj has a true literal xuk

= “true” or xuk
= “true”. Use

path aj,k, puk
2j−1, p

uk
2j , bj,k if xuk

= “true”, and use path aj,k, quk
2j−1, q

uk
2j , bj,k if xuk

=“true”.

So we get a path connecting aj,k and bj,k. Furthermore aj is matched to bj,k and bj is
matched aj,k by one edge. Also for k′ ∈ {1, 2, 3} \ k, bj,k′ is matched to aj,k

′
, and bj,k′

is matched to aj,k′ . Finally add a perfect matching between R,Q and R′, Q′. We get a
solution of the instance of the (1, ∗)-edge-disjoint paths problem. Conversely, suppose
there is a solution to the (1, ∗)-edge-disjoint paths problem. This contains one path P0

from r to q, and a set of paths connecting each node in R with a node in Q. This path
must go via the paths pil or the paths qil , for otherwise one of the terminals in R or Q
would be cut off. We set xi = “true” if P0 use qil , and xi = “false” if P0 use qil . We
show that this assignment is satisfiable. It is also straightforward that for each j, the
copies of nodes aj , bj , b

j,k, aj,k, aj,k, bj,k(k = 1, 2, 3) are paired with each other, except for
one of the nodes aj,k, and one of the nodes bj,k. In particular the unpaired node aj,k is
necessarily incident to puk

2j or quk
2j not used by P0. This means that clause cj has a true

literal in this assignment for each j.

6 Concluding remarks

Here we discuss several related issues and raise open problems.

6.1 Node-disjoint S-paths

Mader [35] extended the formula (1.1) to openly node-disjoint S-paths packing, where
S-paths are said to be openly node-disjoint if each pair of the S-paths has no common
node other than the end nodes; observe that edge-disjoint S-paths packing problem
on Γ is reduced to openly node-disjoint S-paths packing problem on the line-graph of
Γ . One may naturally ask a node-disjoint generalization of our results. Node-disjoint
problems have a quite different nature from edge-disjoint problems. Indeed, an LP-
based approach to Mader’s node-disjoint S-paths theorem is not known. Also there are
algebraic generalizations to group-labeled graphs [8, 37]; see also a recent work [46] for a
relation to matroid matching.

In [26, Section 6], Karzanov announced a min-cost generalization of Mader’s node-
disjoint S-paths theorem. This can be seen as a conjecture since his proof has not been
completed (personal communication with A. Karzanov, 2009).

Pap [39] announced a proof of a min-max theorem and the polynomial solvability of
node-disjoint S-paths packing with truncated tree metric weights. His approach is quite
different from that presented in this paper, and their relation is not clear. We do not
know whether his approach can be extended to a min-cost version and whether it has a
polyhedral interpretation.

6.2 Combinatorial polynomial time algorithm

Our algorithm crucially depends on the ellipsoid method. Karzanov’s algorithm [24]
for min-cost edge-disjoint S-paths is complicated, though it is combinatorial. So it is
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desirable to find a combinatorial polynomial time algorithm of a concise description.
Such algorithms for disjoint S-paths packing are (i) (a reduction to) Lovasz’s linear
matroid matching [32, 43], (ii) Chudnovsky-Cunningham-Geelen’s algorithm for non-
zero A-paths [7], and (iii) Pap’s algorithm for non-returning A-paths [38]. They solve
node-disjoint problems (on group-labeled graphs for (ii) and (iii)). A natural approach
is to modify or extend (i-iii) to our setting.

Here we suggest an alternative approach. As mentioned in the introduction, our
formula includes a discrete minimax relation for inner-odd-joins F and tree locations ρ:

(6.1) max
F

min
ρ

(
1

2
dΓ · ρ− a

)
(E \ F ) = min

ρ
max
F

(
1

2
dΓ · ρ− a

)
(E \ F ).

Here the LHS coincides with val(µ;G, a) by (2.1). So our problem also reduces to finding
a saddle point in (6.1). Once a saddle point (F, ρ) is found, an optimal S-paths packing
is obtained by solving an easy multiflow problem on an inner Eulerian graph G − F ,
according to Lemma 3.1. Such a game-theoretic consideration may bring a new algorithm
to this problem.

6.3 Integrality gap of the LP-relaxation

The LP-relaxation (2.2) is applicable to µ-EDP/CEDP for any weight µ. Many existing
approximation algorithms for µ-EDP use the natural LP-relaxation [4, 14, 47], which is
known to have Ω(

√
|V |)-integrality gap [12]. Our LP-relaxation (2.2) is stronger than

the natural LP. So it would be interesting to estimate the integrality gap of (2.2) and
its dependency on µ, and to design approximation algorithms based on it. For example,
consider the integer 2-commodity flow maximization µ2com-EDP; see Introduction for
definition of µ2com. By Rothschild-Winston theorem [41], for every inner Eulerian graph,
the natural multiflow relaxation has an integral optimal solution with the value equal to
the minimum 2-commodity cut. Thus the inequality (generally strict) holds:

val(µ2com;G, 0) = max
F

val(µ2com;G− F, 0) = max
F

min
X
|δG−FX|

≤ max
ξ∈Q

min
X

(1− ξ)(δGX) ≤ min
X

max
F
|δG−FX|,

where F denotes an inner-odd-join and X denotes a vertex subset with s, s′ ∈ X ̸∋ t, t′

or s, t′ ∈ X ̸∋ t, s′. Based on it, can we design a better approximation algorithm than
the trivial 2-approximation algorithm?

6.4 Relation to Karzanov’s approach

In [24], Karzanov established a min-max relation for µ-CEDP with µ = p1 (p > 0); see
also [26]. His min-max formula takes a form different from our min-max formula (1.2)
or Theorem 4.5. Here we discuss their relationship. We need some notions to explain
Karzanov’s min-max formula. An inner fragment ϕ is a pair (Xϕ, Uϕ) of Xϕ ⊆ V \S and
Uϕ ⊆ δXϕ with |Uϕ| odd. Let F0 denote the set of all inner fragments. The characteristic
function χϕ of an inner fragment ϕ is a function on E defined by

χϕ(e) =


1 if e ∈ Uϕ,
−1 if e ∈ δXϕ \ Uϕ,
0 otherwise,

(e ∈ E).

Given β : F0 → R+ and γ : E → R+, define the function lβ,γ on E by

lβ,γ := a+ γ +
∑
ϕ∈F0

β(ϕ)χϕ.
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We say that (β, γ) is p-admissible if lβ,γ ≥ 0 and lβ,γ(P ) ≥ p for all P ∈ Π.

Theorem 6.1 ([24]). For any p ≥ 0, we have

(6.2) val(p1;G, a) = min γ(E) +
∑
ϕ∈F0

βϕ(|Uϕ| − 1),

where the minimum is taken over all p-admissible pairs (β, γ).

In fact, the minimization problem in RHS of (6.2) is the LP-dual of the LP obtained
from (2.2) by substituting (3.4) to it and eliminating variable ξ. Then Theorem 6.1
follows from Theorem 4.10. Instead of detailed calculations, we explain how to obtain
(β, γ) from our (ρ, φ, T ), and answer affirmatively Karzanov’s question [26, Section 6,
(2)]: does there exist a half-integral optimal p-admissible pair (β, γ) when p and a are
both integral?

Suppose that p is even and a is even-valued. We show the existence of an integral
optimal p-admissible pair (β, γ). For each s ∈ S, consider a path Ps with length p/2 and
ends qs, ps. Next identify qs over all s ∈ S. The resulting tree (a subdivision of a star) is
denoted by Γ . Then (Γ, {ps}s∈S ; 1) realizes p1. By Theorem 4.5, we can take an optimal
bipartite feasible triple (ρ, φ, T ); see also Section 4.1 for notation. Contract segment
ω ∈ Eφ,T with hρ(Xω) = 0. Then (ρ, φ, T ) is an optimal (not necessarily bipartite)
feasible triple such that dρ, dφ, and |ω| are integral, and hρ(Xω) = 1 for each ω ∈ Eφ,T .

Define (β, γ) by

β(ϕ) :=

{
|ω| if ∃ω ∈ Eφ,T : Xϕ = Xω, Uϕ = δXω \ D−

ρ ,

0 otherwise,
(ϕ ∈ F0),

γ(e) :=

{
(dρ − a− dφ)(e) if e ̸∈ D−

ρ ,

0 if e ∈ D−
ρ ,

(e ∈ E).

Then lβ,γ is given by

lβ,γ(e) =

{
dρ(e) if e ̸∈ D−

ρ ,

(a− dφ)(e) if e ∈ D−
ρ ,

(e ∈ E),

where we use dφ(e) = −
∑

ϕ β(ϕ)χϕ(e) if e ∈ D−
ρ and dφ(e) =

∑
ϕ β(ϕ)χϕ(e) if e ̸∈ D−

ρ .

In particular lβ,γ(e) ≥ dρ(e) ≥ 0 (by |dρ − a|(e) ≥ dφ(e)). Hence lβ,γ(P ) ≥ dρ(P ) = p
for P ∈ Π, implying that (β, γ) is admissible. Moreover,

γ(E) +
∑
ϕ∈F0

βϕ(|Uϕ| − 1) = (dρ − a)+(E)− dφ(E \ D−
ρ )

+
∑

ω∈Eφ,T

|ω|{δXω(E \ D−
ρ )− hρ(Xω)}

= (dρ − a)+(E)− hρ ∗ (φ, T ) = τ(ρ, φ, T ).

Thus (β, γ) is optimal, and also integral by construction.
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Matematicheskie Metody 13 (1977), 143–151, (in Russian).

[6] V. Chepoi, F. Dragan, I. Newman, Y. Rabinovich, and Y. Vaxes, Constant approximation
algorithms for embedding graph metrics into trees and outerplanar graphs, Discrete & Com-
putational Geometry 47 (2012), 187–214.

[7] M. Chudnovsky, W. H. Cunningham, and J. Geelen, An algorithm for packing non-zero
A-paths in group-labelled graphs, Combinatorica 28 (2008), 145–161.

[8] M. Chudnovsky, J. Geelen, B. Gerards, L. Goddyn, M. Lohman, and P. Seymour, Packing
non-zero A-paths in group-labelled graphs, Combinatorica 26 (2006), 521–532.

[9] J. Edmonds and E. L. Johnson, Matching, Euler tours and the Chinese postman, Mathemat-
ical Programming 5 (1973), 88–124.

[10] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SIAM Journal on Computing 5 (1976), 691–703.
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[35] W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Archiv der Mathematik 31
(1978/79), 387–402.

[36] M. W. Padberg and M. R. Rao, Odd minimum cut-sets and b-matching, Mathematics of
Operations Research 7 (1982), 67–80.

[37] G. Pap, Packing non-returning A-paths, Combinatorica 27 (2007), 247–251.

[38] G. Pap, Packing non-returning A-paths algorithmically, Discrete Mathematics 308 (2008),
1472–1488.

[39] G. Pap, A polynomial time algorithm for weighted node-disjoint S-paths, in Proceedings
of the 7th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications,
322–331, Kyoto, 2011.

38



[40] Y. Rabinovich and R. Raz, Lower bounds on the distortion of embedding finite metric spaces
in graphs, Discrete & Computational Geometry 19 (1998), 79–94.

[41] B. Rothschild and A. Whinston, On two-commodity network flows, Operations Research 14
(1966), 377–387.

[42] A. Schrijver, A short proof of Mader’s S-paths theorem, Journal of Combinatorial Theory,
Series B 82 (2001), 319–321.

[43] A. Schrijver, Combinatorial Optimization—Polyhedra and Efficiency, Springer-Verlag,
Berlin, 2003.

[44] C. Semple and M. Steel, Phylogenetics, Oxford University Press, Oxford, 2003.

[45] P. D. Seymour, On odd cuts and plane multicommodity flows, Proceedings of the London
Mathematical Society 42 (1981), 178–192.

[46] Y. Yamaguchi and S. Tanigawa, Packing Non-zero A-paths via Matroid Matching, preprint,
METR 2013-08, 2013.

[47] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, Berlin, 2001.

39


