Some Combinatorial Optimization Problems Related to Metric Spaces of Nonpositive Curvature

Hiroshi Hirai The University of Tokyo

Geometry Seminar Wroclaw, September 3, 2015 CAT(0) complexes appear in some combinatorial optimization problems:

1. Multicommodity flow ~~ folder complex

2. Multifacility location ~~ orthoscheme complex

But I don't know the reason of these appearances…

N = (V, E, c, s,t): undirected network c: E → Z+: edge-capacity s,t ∈ V: terminal pair

Def: (s,t)-flow \Leftrightarrow f: { (s,t)-paths } \rightarrow R+, Σ { f(P) | P: e in P } \leq c(e) (e in E)

N = (V, E, c, s,t): undirected network c: E → Z+: edge-capacity s,t ∈ V: terminal pair

Def: (s,t)-flow \Leftrightarrow f: { (s,t)-paths } \rightarrow R+, Σ { f(P) | P: e in P } \leq c(e) (e in E)

Maximum flow problem

Maximize $\Sigma f(P)$ over (s,t)-flows f

Maximum flow problem

Maximize $\Sigma f(P)$ over (s,t)-flows f

Maximum flow problem

Maximize $\Sigma f(P)$ over (s,t)-flows f

Def: (s,t)-cut <=> $X \subseteq V$: s in X , t not in X Cut capacity c(X) := Σ { c(xy) | x in X, y not in X }

Minimum cut problem Minimize c(X) over all (s,t)-cuts X

Max-Flow Min-Cut Theorem (Ford-Fulkerson 56)

$\begin{array}{ll} Max \ \Sigma f(P) &= Min \ c(X) \\ f: (s,t) \text{-flow} & X: (s,t) \text{-cut} \end{array}$

∃ integer-valued max-flow (integrality)∃ Polynomial time algorithm for max-flow/min-cut

- Many practical applications: trafic, internet, communication networks, …
- One of prominent research areas in TCS & combinatorial optimization
- Many problem formulations
- Various extensions of MFMC to multiflows

Our multiflow problem

 μ : { terminal pairs } \rightarrow Z+

Maximize $\Sigma \mu$ (st) f(P) over all multiflows f s,t, (s,t)-path P

MMP[μ]: Maximize $\Sigma \mu$ (st) f(P) over all multiflows f

MMP[μ]: Maximize $\Sigma \mu$ (st) f(P) over all multiflows f

Thm [H. 09-14, build on works of Karzanov, Chepoi,…] MFMC-type formula holds in MMP[μ]

 \Leftrightarrow

 μ "embeds" into a folder complex (= CAT(0)B2-complex)

"MFMC-type formula holds in MMP[μ]"

means

 $\exists k, 1/k-integer max-flow$ for every instance of MMP[μ]

Max $\Sigma \mu$ (st) f(P) = Min ***

Optimization over

"combinatorial objects"

CAT(0) space

~ geodesic metric space such that every geodesic triangle is "thin"

Folder complex

- := CAT(0) complex obtained by gluing folders
- ~ simply connected & without corner of cube

"μ embeds into a folder complex" means

∃ K : folder complex, ∃{ Fs : s in S }: convex sub-complexes with longer boundary edges

such that

 μ (st) = D(Fs, Ft) (s,t in S)

D: ℓ_1 -length metric on K

Thm: [H. SIDMA11] K, {Fs}: embedding of μ Max $\Sigma \mu$ (st) f(P) = Min Σ c(xy) D(p(x), p(y)) s.t. p: $V \rightarrow V(K)$, p(s) in Fs (s in S)

$$\begin{array}{ccc} & s & t \\ & s & \begin{bmatrix} & 1 \\ 1 & \end{bmatrix} \end{array}$$

Max $\Sigma \mu$ (st) f(P) =) Min Σ c(xy) D(p(x), p(y)) s.t. p: V \rightarrow V(K), p(s) in Fs (s in S)

Thm [H. STOC10, MOR14] μ embeds into a folder complex

 \Rightarrow 31/24-integral max-flow

Thm [H. JCTB09, SIDMA11] Otherwise, no k:1/k-integral max-flow

Thm [H. STOC10, MOR14] μ embeds into a folder complex \Rightarrow \exists 1/24-integral max-flow

Thm [H. JCTB09, SIDMA11] Otherwise, no k:1/k-integral max-flow

Proof tools: linear programming duality + α

LP-dual = LP over (semi)metrics on V

(Onaga-Kakusho, Iri 71),

Tight span (Isbell 64, Dress 84)

Splitting-off technique, \cdots

Multifacility Location Problem

G: graph (city), d: path-metric

We are going to locate n facilities on V(G) such that the communication cost is minimum.

$\Sigma b(iv) d(p(i), v) + \Sigma c(ij) d(p(i), p(j))$

cost between facilities and places

cost between facilities

p(i): location of facility i

Formulated in 70's

Extending minimum-cut problem

Recent applications: Labeling tasks in machine learning, computer vision, …

Min. Σb d(y(i), x(i)) + Σc d(x(i),x(j)) i,j:adjacent

s.t. x(i) in { white, black} (i: pixel)

Multifac[G]:

min. $\Sigma b(iv) d(p(i), v) + \Sigma c(ij) d(p(i), p(j))$ s.t. p(i) in V(G) (i=1,2,...,n)

Multifac[G]:

min. $\Sigma b(iv) d(p(i), v) + \Sigma c(ij) d(p(i), p(j))$ s.t. p(i) in V(G) (i=1,2,...,n)

What is G for which Multifac[G] is in P ? (Karzanov 98)

What is G for which Multifac[G] is in P ? (Karzanov 98)

A dichotomy

Thm [H. SODA13, MPA to appear] If G is orientable modular, then Multifac[G] is in P.

Thm [Karzanov 98] Otherwise Multifac[G] is NP-hard. Def: G is modular \Leftrightarrow every triple of vertices has a median median u of x,y,z: \Leftrightarrow d(x,y) = d(x,u) + d(u,y), d(y,z) = d(y,u) + d(u,z), d(z,x) = d(z,u) + d(u,x)

Def: G is orientable ⇔ ∃ orientation such that ∀ 4-cycle is oriented as

Orientable modular graph

Ex: tree, cube, grid graph, modular lattice, median graph, their products and "gluing"

Orientable modular graph

Ex: tree, cube, grid graph, modular lattice, median graph, their products and "gluing"

Proof tools:

lattice theory, metric graph theory (Bandelt-Chepoi) discrete convex analysis (Murota), valued CSP (Thapper-Zivny),…

My intuition behind the proof: View Multifac[G] as an optimization over a complex associated with om-graph G × G × … × G

Orthoscheme complex (Brady-McCammond10)

P: graded poset K(P): = complex obtained by filling

to each maximal chain x0 < x1 < · · < xk

BM are interested with P such that K(P) is CAT(0)

Thm [Chalopin, Chepoi, H, Osajda 14; conjecture of BM10] P: modular lattice \rightarrow K(P) is CAT(0).

Om-graph G is a gluing of modular lattices. K(G) is a gluing of K(P) for modular lattices P. Conj [CCHO14] G: om-graph \rightarrow K(G) is CAT(0)

G: median graph \rightarrow K(G) subdivides CAT(0) cube complex

G: frame \rightarrow K(G) = folder complex

G: om-graph from Euclidean building Δ of type C \rightarrow K(G) = the standard metrization of Δ

Conj [CCHO14] G: om-graph \rightarrow K(G) is CAT(0)

G: median graph \rightarrow K(G) subdivides CAT(0) cube complex

G: frame \rightarrow K(G) = folder complex

G: om-graph from Euclidean building Δ of type C \rightarrow K(G) = the standard metrization of Δ

Concluding remarks

•Nonpositive curvature property ~~ tractability in combinatorial optimization

•Convex optimization over CAT(0) space:

- Phylogenetic distance in tree space [Owen, Bacak,…]
- •Dual of min-cost free multiflow problem
 - = convex optimization over product of stars

--> efficient combinatorial algorithm [H.14]

·Dual of max. node-cap. free multiflow problem

Maximum node-capacitated free multiflow problem

Maximum node-capacitated free multiflow problem

Maximum node-capacitated free multiflow problem

Max total flow value

over p ∈

g(p)

= Min

Max total flow value

g(p)

over p ∈ —> discrete convex optimization on Euclidean building

= Min

the first combinatorial strongly polynomial time algo. [H.15]

Thank you for your attention !

My papers are available at http://www.misojiro.t.u-tokyo.ac.jp/~hirai/