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• Weakly modular graphs (Chepoi 89) 

• Connections to nonpositively curved spaces 

• Some results
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(TC) ∀ x,y,z : x~y, d(x,z) = d(y,z) 
    ⇒ ∃u: x ~ u ~ y, d(u,z) = d(x,z) - 1

(QC) ∀ x,y,w,z : x~w~y, d(w,z)-1= d(x,z) = d(y,z) 
     ⇒ ∃u: x ~ u ~ y, d(u,z) = d(x,z) - 1
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Classes of WM graph

median graph

distributive lattice

Boolean lattice = cube

tree

bridged graph

projective 
geometry

modular lattice

modular semilattice

dual polar space

median semilattice

orientable modular graph

modular graph = bipartite WM

weakly 
 bridged graph
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• Some classes of WM graphs are naturally 
associated with “metrized complex” of 
nonpositively-curvature-like property 

• median graph ~~ CAT(0) cube complex 

• bridged graph ~~ systolic complex 

• modular lattice ~~> orthoscheme complex  
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(Gromov 87)

(Haglund 03, Januszkiewicz-Swiantkowski 06)

(Brady-McCammond 10)



CAT(0) space
~ geodesic metric space such that 
   every geodesic triangle is “thin”

d(p(t),z) ≦‖p’(t) - z’‖
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Median graph
⇔ every triple of vertices admits a unique median 
⇔ bipartite WM without K2,3

Median graph is obtained by “gluing” cubes
7



Median complex
:= cube complex obtained by filling “cube” to  

each cube-subgraph of median graph
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Median complex
:= cube complex obtained by filling “cube” to  

each cube-subgraph of median graph
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～ [0,1]^3

～ [0,1]^2



Median complex

Thm (Chepoi, 2000) 
Median complex ≡ CAT(0) cube complex 

:= cube complex obtained by filling “cube” to  
each cube-subgraph of median graph

c.f. Gromov’s characterization of CAT(0) cube complex
8

～ [0,1]^3
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Folder complex
:= B2-complex obtained by filling “folder” to  

each K2,m subgraph 
of bipartite WM without K3,3 and K3,3^-
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Folder complex
:= B2-complex obtained by filling “folder” to  

each K2,m subgraph 
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Folder complex
:= B2-complex obtained by filling “folder” to  

each K2,m subgraph 
of bipartite WM without K3,3 and K3,3^-

Thm (Chepoi 2000) 
Folder complex ≡　CAT(0) B2-complex
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Orthoscheme complex (Brady-McCammond10)
P: graded poset
K(P): = complex obtained by filling

to each maximal chain x0 < x1 < ・・・< xk,  k=1,2,3.. 
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x0=(0,0,0) x1=(1,0,0)

x2=(1,1,0)

x3=(1,1,1)
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What are posets P for which K(P) is CAT(0) ?

P K(P) ~ folder

P K(P) ~ [0,1]^3000
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Conjecture (Brady-McCammond 10) 
K(P) is CAT(0) for modular lattice P.
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Conjecture (Brady-McCammond 10) 
K(P) is CAT(0) for modular lattice P.

Theorem (Haettel, Kielak, and Schwer 13)  
K(P) is CAT(0) for “complemented” modular lattice P.

~ lattice of subspaces of vector space
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Conjecture (Brady-McCammond 10) 
K(P) is CAT(0) for modular lattice P.

Theorem (Haettel, Kielak, and Schwer 13)  
K(P) is CAT(0) for “complemented” modular lattice P.

~ lattice of subspaces of vector space

Theorem (CCHO14) 
K(P) is CAT(0) for modular lattice P.
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Obs: If P is distributive, then K(P) = order polytope. 

Thm [Birkhoff-Dedekind] 
For two chains in modular lattice, 
there is a distributive sublattice containing them.

Idea for proof

plus standard proof technique of  
 “spherical building is CAT(1)”
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Conjecture [CCHO14] 
K(P) is CAT(0) for modular semilattice P.

Modular semilattice 
= semilattice whose covering graph is bipartite WM

14



Conjecture [CCHO14] 
K(P) is CAT(0) for modular semilattice P.

Modular semilattice 
= semilattice whose covering graph is bipartite WM

Median semilattice 
= semilattice whose covering graph is median graph
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Conjecture [CCHO14] 
K(P) is CAT(0) for modular semilattice P.

Modular semilattice 
= semilattice whose covering graph is bipartite WM

Median semilattice 
= semilattice whose covering graph is median graph

Theorem [CCHO14] 
K(P) is CAT(0) for median semilattice P.

← Gluing construction (Reshetnyak’s gluing theorem)
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We introduced a new class of WM graph, 
 SWM graph

15

:= WM without K4^- and isometric K3,3^-



We introduced a new class of WM graph, 
 SWM graph

median graph

distributive lattice

Boolean lattice = cube

tree

projective 
geometry

modular lattice

modular semilattice

dual polar space

median semilattice

orientable modular graph

affine building  
of type C

15

:= WM without K4^- and isometric K3,3^-
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 Metrized complex K(G) from SWM-graph G

B(G):= the set of all Boolean-gated sets of G

X: Boolean-gated ⇔  
  x,y ∈ X, x ~ u ~ y ⇒ u ∈ X, 
  x,y ∈ X: d(x,y) =2 ⇒ ∃ 4-cycle ∋ x,y   
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  x,y ∈ X, x ~ u ~ y ⇒ u ∈ X, 
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→ B(G): graded poset w.r.t. (reverse) inclusion
→ Boolean-gated set induces dual polar space
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 Metrized complex K(G) from SWM-graph G

B(G):= the set of all Boolean-gated sets of G

X: Boolean-gated ⇔  
  x,y ∈ X, x ~ u ~ y ⇒ u ∈ X, 
  x,y ∈ X: d(x,y) =2 ⇒ ∃ 4-cycle ∋ x,y   

K(G):= orthoscheme complex of B(G)

→ B(G): graded poset w.r.t. (reverse) inclusion
→ Boolean-gated set induces dual polar space
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G: median graph  →  B(G): set of cube-subgraphs
→  K(G) subdivides median complex
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G: median graph  →  B(G): set of cube-subgraphs
→  K(G) subdivides median complex

G: bipartite WM without K3,3 and K3,3^-

→ B(G): set of maximal K2,m subgraphs

→ K(G) subdivides folder complex
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G: median graph  →  B(G): set of cube-subgraphs
→  K(G) subdivides median complex

G: bipartite WM without K3,3 and K3,3^-

→ B(G): set of maximal K2,m subgraphs

→ K(G) subdivides folder complex

G: SWM from affine building Δ of type C

→  K(G) = the standard metrication of Δ 
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Conjecture (CCHO14) 
K(G) is CAT(0) for SWM-graph G.
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Some Topological Graph Theory result

Lemma (CCHO14) 
Triangle-Square complex of WM-graph is 
simply-connected 
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A Local-to-Grobal characterization of WM-graph 
(analogue of Cartan-Hadamard theorem ?)

Theorem (CCHO14) 
If G is locally-WM and TS-complex of G 
is simply-connected, then G is WM. 

Locally-WM:    (TC) & (QC) with d(x,z) = d(y,z)= 2
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A Local-to-Grobal characterization of WM-graph 
(analogue of Cartan-Hadamard theorem ?)

Theorem (CCHO14) 
If G is locally-WM and TS-complex of G 
is simply-connected, then G is WM. 

Locally-WM:    (TC) & (QC) with d(x,z) = d(y,z)= 2

Theorem (CCHO14) 
The 1-skeleton of the universal cover of TS-complex 
of locally-WM-graph is WM.
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Thank you for your attention !


