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- Some classes of WM graphs are naturally
assoclated with "metrized complex” of
nonpositively-curvature-like property

median graph ~~ CAT(0) cube complex
(Gromov 87)

bridged graph ~~ systolic complex
(Haglund 03, Januszkiewicz-Swiantkowski 00)

modular lattice ~~> orthoscheme complex
(Brady-McCammond 10)



CAT(0) space

~ geodesic metric space such that
every geodesic triangle is “thin”
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Median graph

& every triple of vertices admits a unigue median
& bipartite WM without K2,3

Median graph is obtained by “gluing” cubes

v



Median complex

= cube complex obtained by filling “cube” to
each cube-subgraph of median graph




Median complex

= cube complex obtained by filling “cube” to
each cube-subgraph of median graph
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Median complex

= cube complex obtained by filling “cube” to
each cube-subgraph of median graph

1
> ~ [0,11~2
/\MOJ ]/\3
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Thm (Chepol, 2000
Median complex = CAT(0) cube complex

c.f. Gromov’'s characterization of CAT(0) cube complex
8



Folder complex

B72-complex obtained by filling “folder™ to
each KZ2,m subgraph
of bipartite WM without K3,3 and K3,3%-
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Folder complex

B72-complex obtained by filling “folder™ to
each KZ2,m subgraph
of bipartite WM without K3,3 and K3,3%-

Thm (Chepoi 2000)
Folder complex = CAT(0) B2-complex
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Orthoscheme complex (Brady-McCammond10)

P: graded poset
K(P): = complex obtained by filling

x3=(1,1,1)

[ 7 x2=(1,1,0)

»
L

x0=(0.0.0) _ x1=(1.0.0)

to each maximal chain xO < x1 < - - - <xk, k=1,2,3..
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K(P) ~ folder

OT1

O10

V7 K(P) ~ 10,1173

What are posets P for which K(P) 1s CAT(O) ?

11



Conjecture (Brady-McCammond 10)
K(P) is CAT(0) for modular lattice P.

12
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Theorem (Haettel, Kielak, and Schwer 13)
K(P) i1s CAT(0) for “"complemented” modular lattice P.

~ lattice of subspaces of vector space
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K(P) is CAT(0) for modular lattice P.
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K(P) i1s CAT(0) for “"complemented” modular lattice P.

~ lattice of subspaces of vector space

Theorem (CCHO14)
K(P) 1s CAT(0O) for modular lattice P.
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|dea for prooft

Obs: If P is distributive, then K(P) = order polytope.

Thm [Birkhotft-Dedekind]
For two chains in modular lattice,
there Is a distributive sublattice containing them.

plus standard proof technigue of
“spherical building is CAT(1)”
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Conjecture [CCHO14]
K(P) 1s CAT(0) for modular semilattice P.

Modular semilattice
= semilattice whose covering graph is bipartite WM
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K(P) 1s CAT(0) for modular semilattice P.

Modular semilattice
= semilattice whose covering graph is bipartite WM

Median semilattice
= semilattice whose covering graph is median graph
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Conjecture [CCHO14]
K(P) 1s CAT(0) for modular semilattice P.

Modular semilattice
= semilattice whose covering graph is bipartite WM

Median semilattice
= semilattice whose covering graph is median graph

Theorem [CCHO14]
K(P) 1s CAT(0O) for median semilattice P.

< Gluing construction (Reshetnyak’s gluing theorem)
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We introduced a new class of WM graph,
SWM graph
= WM without K4*- and isometric K3,3”-

15



We introduced a new class of WM graph,
SWM graph
= WM without K4*- and isometric K3,3”-

affine buildlng
of type C
orlentable modular graph

dual polar space

modular semllattlce

/ v
modular lattice median graph
projective median semilattice
geometry /

\ distributive lattice tree

Boolean lattice = cube
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Metrized complex K(G) from SWM-graph G

B(G):= the set of all Boolean-gated sets of G

X. Boolean-gated <
X,yeE X, X~U~Y = UEX,

X,y € X: d(x,y) =2 = d 4-cycle s x,y
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B(G): graded poset w.r.t. (reverse) inclusion
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Metrized complex K(G) from SWM-graph G

X

B(G):= the set of all Boolean-gated sets of G

Boolean-gated <

X,yeE X, X~U~Y = UEX,

X,y € X: d(x,y) =2 = d 4-cycle s x,y

l

!

BSoolean-gated set iInduces dual polar space

B(G): graded poset w.r.t. (reverse) inclusion

K(G):= orthoscheme complex of B(G)
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G: median graph — B(G): set of cube-subgraphs

— K(G) subdivides median complex
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— K(G) subdivides median complex

G: bipartite WM without K3,3 and K3,3"-

— B(G): set of maximal K2,m subgraphs

— K(G) subdivides folder complex
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G: median graph — B(G): set of cube-subgraphs

— K(G) subdivides median complex

G: bipartite WM without K3,3 and K3,3"-

— B(G): set of maximal K2,m subgraphs

— K(G) subdivides folder complex

G: SWM from affine building A of type C

— K(G) = the standard metrication of A
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Conjecture (CCHOT14)
K(G) 1s CAT(0) for SWM-graph G.
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Some Topological Graph Theory result

Lemma (CCHO14)
Triangle-Square complex of WM-graph is

simply-connected
K+ 1

K K
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A Local-to-Grobal characterization of WM-graph
(analogue of Cartan-Hadamard theorem 7)

Theorem (CCHO14)
If G is locally-WM and TS-complex of G
IS simply-connected, then G is WM.

Locally-WM: (TC) & (QC) with d(x,z) = d(y,z)= 2
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A Local-to-Grobal characterization of WM-graph
(analogue of Cartan-Hadamard theorem 7)

Theorem (CCHO14)
If G is locally-WM and TS-complex of G
IS simply-connected, then G is WM.

Locally-WM: (TC) & (QC) with d(x,z) = d(y,z)= 2

Theorem (CCHO14)
The 1-skeleton of the universal cover of TS-complex
of locally-WM-graph is WM.
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Thank you for your attention |
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