Weakly modular graphs and nonpositive curvature

Hiroshi Hirai
The University of Tokyo

Joint work with J. Chalopin, V. Chepoi, and D. Osajda
TGT26, Yokohama, 2014, 11/8

Contents

- Weakly modular graphs (Chepoi 89)
- Connections to nonpositively curved spaces
- Some results
J. Chalopin, V. Chepoi, H. Hirai, D. Osajda

Weakly modular graphs and nonpositive curvature

$$
\text { arXiv:1409.3892, } 2014
$$

G is weakly modular $(\mathrm{WM}) \Leftrightarrow$

$$
\begin{aligned}
& \text { (TC) } \forall x, y, z: x \sim y, d(x, z)=d(y, z) \\
& \Rightarrow \exists u: x \sim u \sim y, d(u, z)=d(x, z)-1
\end{aligned}
$$

(QC) $\forall x, y, w, z: x \sim w \sim y, d(w, z)-l=d(x, z)=d(y, z)$
$\Rightarrow \exists u: x \sim u \sim y, d(u, z)=d(x, z)-1$

G is weakly modular (WM) \Leftrightarrow

(TC) $\forall x, y, z: x-y, d(x, z)=d(y, z)$
$\Rightarrow \exists u: x \sim u \sim y, d(u, z)=d(x, z)-1$
(QC) $\forall x, y, w, z: x \sim w \sim y, d(w, z)-l=d(x, z)=d(y, z)$
$\Rightarrow \exists u: x \sim u \sim y, d(u, z)=d(x, z)-1$

Classes of WM graph

modular graph = bipartite WM

orientable modular graph
dual polar space

- Some classes of WM graphs are naturally associated with "metrized complex" of nonpositively-curvature-like property
- median graph ~~ CAT(0) cube complex
(Gromov 87)
- bridged graph ~~ systolic complex
(Haglund 03, Januszkiewicz-Swiantkowski 06)
- modular lattice ~~> orthoscheme complex
(Brady-McCammond 10)

CAT(0) space

~ geodesic metric space such that every geodesic triangle is "thin"

$$
d(p(t), z) \leqq\left\|p^{\prime}(t)-z^{\prime}\right\|
$$

Median graph

\Leftrightarrow every triple of vertices admits a unique median \Leftrightarrow bipartite WM without K2,3

Median graph is obtained by "gluing" cubes

Median complex
:= cube complex obtained by filling "cube" to each cube-subgraph of median graph

Median complex
:= cube complex obtained by filling "cube" to each cube-subgraph of median graph

Median complex

:= cube complex obtained by filling "cube" to each cube-subgraph of median graph

Thm (Chepoi, 2000)
Median complex $\equiv \operatorname{CAT}(0)$ cube complex
c.f. Gromov's characterization of CAT(0) cube complex

Folder complex

:= B2-complex obtained by filling "folder" to each K2,m subgraph of bipartite WM without K3,3 and K3,3^-

Folder complex

:= B2-complex obtained by filling "folder" to each K2,m subgraph of bipartite WM without K3,3 and K3,3^-

Folder complex

:= B2-complex obtained by filling "folder" to each K2,m subgraph of bipartite WM without K3,3 and K3,3^-

Thm (Chepoi 2000)
Folder complex \equiv CAT(0) B2-complex

Orthoscheme complex (Brady-McCammond10)
P: graded poset
$\mathrm{K}(\mathrm{P})$: = complex obtained by filling

to each maximal chain $\mathrm{x0} 0 \mathrm{x} 1<\cdot \cdots \cdot \mathrm{xk}, \mathrm{k}=1,2,3 .$.

What are posets P for which $K(P)$ is CAT(0) ?

Conjecture (Brady-McCammond 10) $\mathrm{K}(\mathrm{P})$ is $\operatorname{CAT}(0)$ for modular lattice P .

Conjecture (Brady-McCammond 10)
$K(P)$ is CAT (0) for modular lattice P.

Theorem (Haettel, Kielak, and Schwer 13)
$\mathrm{K}(\mathrm{P})$ is CAT (0) for "complemented" modular lattice P .
~ lattice of subspaces of vector space

Conjecture (Brady-McCammond 10)
$K(P)$ is CAT (0) for modular lattice P.

Theorem (Haettel, Kielak, and Schwer 13)
$K(P)$ is CAT (0) for "complemented" modular lattice P.
~ lattice of subspaces of vector space

Theorem (CCHO14)
$K(P)$ is CAT (0) for modular lattice P.

Idea for proof

Obs: If P is distributive, then $K(P)=$ order polytope.

Thm [Birkhoff-Dedekind]
For two chains in modular lattice,
there is a distributive sublattice containing them.
plus standard proof technique of
"spherical building is CAT(1)"

Conjecture [CCHO14]
$K(P)$ is CAT (0) for modular semilattice P.

Modular semilattice
= semilattice whose covering graph is bipartite WM

Conjecture [CCHO14]

$K(P)$ is CAT(0) for modular semilattice P.
Modular semilattice
= semilattice whose covering graph is bipartite WM
Median semilattice
$=$ semilattice whose covering graph is median graph

Conjecture [CCHO14]

$\mathrm{K}(\mathrm{P})$ is CAT (0) for modular semilattice P .

Modular semilattice
= semilattice whose covering graph is bipartite WM
Median semilattice
= semilattice whose covering graph is median graph
Theorem [CCHO 14]
$K(P)$ is CAT (0) for median semilattice P.
\leftarrow Gluing construction (Reshetnyak's gluing theorem)

We introduced a new class of WM graph, SWM graph
:= WM without K4^- and isometric K3,3^-

We introduced a new class of WM graph, SWM graph
:= WM without K4^- and isometric K3,3^-

Metrized complex $K(G)$ from SWM-graph G
$B(G):=$ the set of all Boolean-gated sets of G
X : Boolean-gated \Leftrightarrow

$$
\begin{aligned}
& x, y \in X, x \sim u \sim y \Rightarrow u \in X, \\
& x, y \in X: d(x, y)=2 \Rightarrow \exists 4 \text {-cycle } \ni x, y
\end{aligned}
$$

Metrized complex K(G) from SWM-graph G
$B(G):=$ the set of all Boolean-gated sets of G
X : Boolean-gated \Leftrightarrow

$$
\begin{aligned}
& x, y \in X, x \sim u \sim y \Rightarrow u \in X, \\
& x, y \in X: d(x, y)=2 \Rightarrow \exists 4 \text {-cycle } \ni x, y
\end{aligned}
$$

\rightarrow Boolean-gated set induces dual polar space
$\rightarrow B(G)$: graded poset w.r.t. (reverse) inclusion

Metrized complex K(G) from SWM-graph G
$B(G):=$ the set of all Boolean-gated sets of G
X : Boolean-gated \Leftrightarrow

$$
\begin{aligned}
& x, y \in X, x \sim u \sim y \Rightarrow u \in X, \\
& x, y \in X: d(x, y)=2 \Rightarrow \exists 4 \text {-cycle } \ni x, y
\end{aligned}
$$

\rightarrow Boolean-gated set induces dual polar space
$\rightarrow B(G)$: graded poset w.r.t. (reverse) inclusion
$K(G):=$ orthoscheme complex of $B(G)$

G
$B(G)$

$B(G)$

$\{1,2,3\},\{3,4\},\{5,6\}, \cdots,\{8,9\} \quad$ cliques

generalized quadrangle

$B(G)$

$\{1,2,3\},\{3,4\},\{5,6\}, \cdots,\{8,9\}$

17

K(G)
cliques
generalized quadrangle

G: median graph $\rightarrow B(G)$: set of cube-subgraphs $\rightarrow \mathrm{K}(\mathrm{G})$ subdivides median complex

G: median graph $\rightarrow B(G)$: set of cube-subgraphs $\rightarrow K(G)$ subdivides median complex

G: bipartite WM without K3,3 and K3,3^-
$\rightarrow B(G)$: set of maximal K2,m subgraphs
$\rightarrow \mathrm{K}(\mathrm{G})$ subdivides folder complex

G: median graph $\rightarrow B(G)$: set of cube-subgraphs $\rightarrow K(G)$ subdivides median complex

G: bipartite WM without K3,3 and K3,3^-
$\rightarrow B(G)$: set of maximal K2,m subgraphs
$\rightarrow \mathrm{K}(\mathrm{G})$ subdivides folder complex

G: SWM from affine building Δ of type C
$\rightarrow \mathrm{K}(\mathrm{G})=$ the standard metrication of Δ

Conjecture (CCHOl4)
 $\mathrm{K}(\mathrm{G})$ is CAT(0) for SWM-graph G .

Some Topological Graph Theory result

Lemma (CCHO14)

Triangle-Square complex of WM-graph is simply-connected

Some Topological Graph Theory result

Lemma (CCHO14)

Triangle-Square complex of WM-graph is simply-connected

Some Topological Graph Theory result

Lemma (CCHO14)

Triangle-Square complex of WM-graph is simply-connected

Some Topological Graph Theory result

Lemma (CCHO14)

Triangle-Square complex of WM-graph is simply-connected

Some Topological Graph Theory result

Lemma (CCHO14)

Triangle-Square complex of WM-graph is simply-connected

A Local-to-Grobal characterization of WM-graph (analogue of Cartan-Hadamard theorem ?)

Theorem (CCHO 14)
If G is locally-WM and TS-complex of G is simply-connected, then G is WM.

Locally-WM: (TC) \& (QC) with $d(x, z)=d(y, z)=2$

A Local-to-Grobal characterization of WM-graph (analogue of Cartan-Hadamard theorem ?)

Theorem (CCHO14)
If G is locally-WM and TS-complex of G is simply-connected, then G is WM.

Locally-WM: $\quad(T C) \&(Q C)$ with $d(x, z)=d(y, z)=2$

Theorem (CCHO14)
The 1-skeleton of the universal cover of TS-complex of locally-WM-graph is WM.

Thank you for your attention!

