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0.

Introduction




Our interest here

Construct a unified way to describe the 2D integrable models

Why is this issue so important? (My personal point of view)

In the study of integrable systems, integrable models are discovered suddenly
and when a certain amount of them have been obtained, beautiful universal
structures behind them are extracted such as Yang-Baxter equation.

Even now, new integrable models are being discovered one after another.
But we did not know a method to describe everything from the traditional
integrable models to the latest new types of models in a unified manner.

If this is compared to the study of elementary particle physics, the discovery of
an integrable model corresponds to that of a new particle, and its unified theory
corresponds to finding a unified model of elementary particles
(though this theory would be replaced by a larger new theory, subsequently,,,).



The candidate of the unified theory

— 4D Chern-Simons (CS) theory

[Costello-Yamazaki, 1908.02289]

S[A] ’ / w N CS(A) c.f. Costello-Yamazaki-Witten,
M

A7 «CPL 1709.09993, 1802.01579

A takes a value in Lie algebra gC of a semi-simple Lie group GC

M :a 2D surface with the coordinates (7, ) . 2 is a coordinate of CP" .

2
CS(A) = <A, dA + §A A A> : Chern-Simons 3-form
w = p(z)dz : @ meromorphic 1-form

This 1-form is closely related to the integrable structure of
2D integrable sigma model (ISM) to be derived.



The recipe to derive 2D ISMs from 4D CS

1. Prepare a meromorphic 1-form.

The structure of poles and zeros determines the resulting 2D ISM.

2. Take a boundary condition for the gauge field A .

Possible boundary conditions are governed by the equation of motion.

3. Reduce 4D CS to a 2D system by following a procedure.

There are some reduction methods. Take one of them as you like.

As a result, we see that the resulting 2D system is classically integrable

because the associated Lax pair can be constructed along this way.



The content of my talk

Explain how to derive 2D ISMs from 4D CS by taking a reduction method

developed by Delduc-Lacroix-Magro-Vicedo (DLMV)
[Delduc-Lacroix-Magro-Vicedo, 1909.13824]

1. A reduction method by DLMV

2. Concrete examples: 2D principal chiral model
Yang-Baxter sigma models

A brief summary of my related works
[Fukushima-Sakamoto-KY]

y

3. Summary and discussion




1.

A reduction method by DLMV




A FEdUCtion methOd by DLMV [Delduc-Lacroix-Magro-Vicedo, 1909.13824]

QOur starting point:

SA] = - /M WACS(A), CS(A) = <A, dA + %A A A>

47'(' xCP1

w = @(z)dz  :ameromorphic 1-form

This action has an extra gauge symmetry:
A— A+ dz

Hence the z-component can always be gauged away:

A=A,do+ A, dr+ A:dz



Equations of motion:
2 I

wAF(A)=0 (bulk eom) m—) Species of 2D ISM

dw N {A,6A) =0 (boundary eom) —> Integrable twists
o %

NOTE 1: If ¢ issmooth, the boundary eom is trivially satisfied.
But now dw = 05p(2)dzZ N\ dz i.e., (951 = 2m6(z, 2)
yA

and hence a delta function may appear if ¢ has a pole.

NOTE 2 : From the bulk eom, the zeros of ¢ are also important

because a derivative of A may be a distribution, i.e., xd(z) =0 .

Let us introduce the following notation:

P :setofpolesof @ 3 :setofzerosof ¢




NOTE3: The boundary eom has the support onlyon M x p C M x CP! .

Indeed, it can be rewritten as

ZZ res;EP w) O¢ (Ai, 04; Natxizy =0

zep p=>0

Here the local holomorphic coordinates &, are defined as

&e=2—1 (zep\loo}), Eo=1/2

Lax form

Let us perform a formal gauge transformation:

A=—djgg ' +¢L£§'  asmooth function § : M x CPt — G°

Then the Z-component of £ can beremovedas L. = ( (e.g., temporal gauge)



Then the Lax form is given by
L=L,do+ L. dr (to be identified with Lax of 2D ISM)

The bulk eom leads to

0Ly —O0,Lr + [L7yL;] =0 mmm)  Flatness condition
r wAOzL =0

NOTE: the set of zeros of ¢ is that of poles of [

For simplicity, we assume below that ¢ has

at most first-order zero & at most double poles
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— The ansatz for Lax form

L= Z Vi(r, a)fi_ldai + Us(7,0)do + Ur(1,0)dr
1€3

Here V(r,0) (i=+,—), U.(7,0), U,(T,0) are smooth functions.

1
oF = 5(7‘:&0)

These functions are unknown functions at this moment and to be determined

from a boundary condition for the gauge field.

Later, we will see how to do it for 2D principal chiral model concretely.
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The original 4D CS can be rewritten as

( 1
S|A wAd{GgTldg, L ——/ w A Iwz|g
A= A MxCP1 < > 4 J pmxcpr wald
1
Iwz[u] = §<u_1du, utdu A u du)

To reduce this 4D action to a 2D theory, let us suppose

— the archipelago conditions:

There exist open disks V,, U, foreach z € p suchthat {z} C V, C U, and
i) U, NU,=¢ If x#£yforall T, yEP
i) g=1 outside M X Uz, U,

iii) §|Mwa depends only on 7, 0 and the radial coordinate |€x|

iv) §|Mwi dependsonlyon 7, 0 ,thatis, g = g'Mme = §|M><{3:}

13



:pole

g depends onlyon 7, o on theislands

Otherwise, § = 1 (i.e., on the sea).

-island



/— Master formula ™~
S {9z }oep] = Z / (reso(p L), g5 dga)

a:Ep

- 5 Z(resww) /M Iwz [gw]

X [0,Rz]

N - /

Refined recipe to derive 2D ISM

1. Specify the form of w
2. Take a boundary condition of A at the poles of w

3. Fix the form of Lax form £ with the above information.

4. Finally, evaluate the above master formula.

mmm) 2D ISM
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2.

Concrete Examples
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1. Principal chiral model with Wess-Zumino (WZ) term

INPUT

A meromorphic 1-form

1 — 22

(2 — k)

w=p(z)dz=K dz K, k : real constants

z=k, oo aredouble poles mmm) p={k oo}

z ==Xl arezeros ) ;= {+1,-1}
Boundary condition
a8 )
The boundary condition of A at the poles of w is
Al,=0, Al =0 (=7, o)
N\ J
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By using the Archipelago condition, the group element g is restricted as

gk:g(770)7 goo:]-

due to the gauge symmetry

Then the boundary condition can be rewritten as

Al, = —dg- gt+gLg =0
Al =L|_ =0

oo

Due to the second condition, U,, U, inthe Lax form should be zero

Thus the Lax form is

+1
EZV

—1
dot + 4

-
-1 2+1°°



Then, by substituting the Lax form into the first boundary condition, we obtain

VE = (kF1)js, jr =g "0ig

Thus, the Lax form has been determined as

k—1 k+1
.d_|_ ._d_
J+ao _I_—z—l—lj o

L =

z—1

Finally, by putting this Lax form into the master formula, 2D action is given by

a4 )

K L
Slg] = 5 /Mda ANdr (jy,7-) + Kk Iwz[g]
\_ ,

This is nothing but 2D principal chiral model with the WZ term.

19



2. Homogeneous Yang-Baxter sigma model

The 1-form is the same as the previous  (but k=0 for simplicity)

1 — 22

w=p(z)dz=K o

dz K : a real constant

But the boundary condition of A at the poles of w is replaced by

Az|0:—R82AZ|O , A’L|oo:0 (’I::T, O')

Here R is a linear operator from g — g satisfying

the homogeneous Yang-Baxter equation
[R(z), R(y)] — R(|R(z),y] + [z, R(y)]) = 0

It is useful to introduce the notation: R, = Ad,-1 0 Ro Ad,

20



1 -1 11
. d+ ._d_
11+ R, T iR

Lax form: L =

: K 1
2D action: Slg] = ?/ do A dt <j+, R j_>
M —

Homogeneous Yang-Baxter sigma model

[Klimcik, hep-th/0210095, 0802.3518] [Delduc-Magro-Vicedo, 1308.3581] [Matsumoto-KY, 1501.03665]

My related works:

* Generalization of the DLMV method to symmetric coset case
[Fukushima-Sakamoto-KY, 2005.04950]
Introduction of the grading automorphism

In particular, we have derived homogeneous YB deformed AdS.xS> superstring from 4D CS
[Kawaguchi-Matsumoto-KY, 1401.4855]

c.f. A-deformation of AdS.xS> superstring from 4D CS [Tian-He-Chen, 2007.00422]
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My other works

[Fukushima-Sakamoto-KY, 2012.07370]

* Generalization to include order defects (Fukushima-Sakamoto-KY, 2112.11276]

We have derived the Faddeev-Reshetikhin model and non-abelian Toda field theories

including (complex) sine-Gordon model and Liouville theory.

The derivation of sine-Gordon model was a long-standing problem from the original CY paper (2019).

» Derivation of Integrable T'! sigma model from 4D CS
[Fukushima-Sakamoto-KY, 2105.14920]

It is well known that the usual T*! sigma model is non-integrable.

[Basu-Pando Zayas, 1103.4107]

But recently, a modified T! has been shown to be integrable.
[Arutyunov-Bassi-Lacroix, 2010.05573]

We have studied classical chaos apart from integrable points.
[Ishii-Kushiro-KY, 2103.12416]
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3.

Summary and Discussion
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3) Summary and Discussion

We have discussed how to derive 2D ISMs from 4D CS.

In particular, superstring on AdS xS* is also included.

‘ [ The origin of kappa-symmetry? ]

Kappa symmetry: A fermionic gauge symmetry in the Green-Schwarz formulation
of superstring theory which is based on space-time fermions.
It is necessary to remove the redundant space-time fermions.

But it was introduced in a heuristic way and its origin is unclear.

Take-home message

\
The unified theory of 2D ISMs may reveal

the fundamental symmetry of String Theory.
\_

J
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But 4D CS scenario might be a tip of the iceberg!
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Current understanding:

4 )
6D holomorphic Chern-Simons theory
Costello [talk at Strings 2020], Bittleston-Skinner [2011.04638]
g y,
1 l 27?7 \
4 ) 4 )
4D CS Dihedral affine 4D IM

Costello-Yamazaki

Delduc-Laxroix-Magro-Vicedo

N\ /

Gaudin model

Vicedo

Laxroix-Vicedo

\_

e.g. 4D WZW model

J
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Question: Are these three ways equivalent?

No?

According to a paper [2105.06826] by Bin Chen, Yi-jun He and Jia Tian,

Homogeneous YB sigma models, A-models, generalized A-models
CANNOT be obtained from 4D IM, though these are derived from 4D CS.

These models may be counter-examples for the equivalence.

28



Thank you for your attention!
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Non-Abelian Toda Field Theory (NATFT)

1
SNATFT[h] = 5 32 (Swzw[h] — / dQU V(h)) , V(h) = —TT12<A+, h-_lﬁ_h},
T JM
Swzw[h] = — %[ o (h_16+h . h_la_h) — / Iwz[h] ,
M Mx[0,Rz]
1, _ _ _ i
Iz lh] == (h tdh, h~dh A h™1dR) 0Ny = 0.

h is a smooth function M — G, and AL are generators of g.
Decomposition of Lie algebra
g=9g0D g, o(x) = (—1)"x, XeEg,, p=0,1.
The Lie group Gy is a subgroup of G associated with gy .

{ heGy, ALec€go : ahomogeneous sine-Gordon model

heGy, ALe€g; : asymmetric space sine-Gordon model
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EOM

0 =0y (h™'O_h) +m?*hAL h™"  A_].
Zero curvature condition and Lax pair

[] — [C_)_|_ —|—,C+._(3_ + ,C_] )

L. =h"t0.h+ imwA, . L =—}
w

where w is a spectral parameter

AL,

32



Example 1: sine-Gordon model (a symmetric space case)

Let us take the generators of su(2) 7% (a = 1,2, 3) as

[Ta: Tb} _ E&'bc-]“cT <-Ta, T Tb) _ _%6&5
g =su(2) and go = u(1).

h = exp(BeT?) . A =A_=T" o eR

Classical action and Lax pair

1 1. 2
Ssald] :—I’T/ 20 (2 bdd_ Q—Z—ZCUH(?Q)) :

L. =imwT! + O, ¢T3,

L = i (COH( ?(J)T — H]ll(j(,))TQ)

w
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Example 2: Liouville theory (a symmetric space case)

g=sl2.R)and go =R

[Tlf TQ] _ -T3 ‘ [TO, Tl] _ _-T2 ? [TO, T?] — Tl ?
<TD,TO> _ _% : <T1? T1> _

| —

(TQ* T2> — otherwise = 0 .

o] —
2

h=exp(286TY), AL =T+T°, A_=T"-T".

Classical action and Lax pair

) . 1 1. . m?
SLiouville?] = — o | —=0,00_¢ + Te%’@" :
T M 2 23"__}

L. =imwT® + 280,6T" + imwT? .

£ — — U 2seqo | M apea
w 1w
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Example 3: complex sine-Gordon model (a homogeneous case)

Tgo = su(2) AL=T* A_=-T%

+ 6 | v —
h = exp(x ;" TS) exp(((j) — )Tl) -;\p( 5 T ) (0, x.0€R).

— —

Take the gauge @ = () .

Classical action and Lax pair

y 1 o (O 0O )+ O_2pd A o1
SoselV] = 3o /d U( -pp (5= 1)

! 1. tan2(¢ /2 )
T /dgg (38+¢")€)_¢5 — m®cos ¢ + —-(7()/ )8+XO'—X) ,

o |

0= [5’+ +h'O h 4 imwAy +hT AR O+ ﬂh_l Ah+ A }

w

dy X 3 O_x o0 5
Ay = 5 tan? (2) T, A_=-— 5 tan 5 T
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4D Chern-Simons theory with order defects

(In the previous talk, we have considered the 4D CS theory with disorder defect.)

S|Gy. Al = Ssacs|A] + Sdetect |G(1), A] .

_ i >
Syacs|A] = ﬁ /M WA <_4q A+ AN A> ._
| x .

SutealGe A= Cly [ do N0 (G015, GoHD-Ge)

+ Cy / dot Ndo~ <g(—_1)D+g(_) , g(—_ljD_g(_)> ;
J\/[X{—Z]_}

4d manifold M x C M is 2d Minkowski spacetime and C' := C* = C\{0}
The two defects are located at z = 4+2z; on C'. 71 € Rand Cyy € R.

Gy M xC — G . :group-valued smooth functions

Covariant derivative: A meromorphic 1-form:

Dy =08y + A, . w=p(z)dz := T dz

{
|
<
'_I.
—
¢
+
¢
[
e
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The bulk eom

F—l—— — 0:'
N s L E3E Y ¥ s - —1
0A_ - p(2)Fey = +2mi6A_ - Y Ciyd(z — 2)DiGiay - Gy
r==2z
N ) - o ‘ - S —1
AL p(2)Fee = —2midAy - Y Ciayd(z —2)D_Gay - Gy -
r==+z1

The boundary eom

0 = (Res.—tz w)e™ (Aaliz, 0Ag|4+21) + (Resa——z) w)e™ (Ag| 2, 0Ag|-2)
— Eaﬁ( <Acu|+z1 v5-459|+»a'1> - <Aoc|—Z1 » (5-4{3|—21> ) :

Boundary condition (from the boundary eom)
Ay oy = 02 — 21), Al 2 =00+ 21).

Furthermore, we suppose that

(0+G+)]. 4., = OC

[t
|
{
=i
o —
—_—
Q
I
A
L
S—
]
1
N
[
|
S
I
_I_
o}
[
S
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The we can write them as follows:

144_ — (: — :1)&&2_ ] 14_ — (: + :1)54%_ .

Gy =(—2)gw(@,07)+guwloT),

G =+ 2)g(0T07)+gela™),

where @7, , g (1) and g(+) are smooth functions with &7, : M x C' — g€ and Qs g
M — G©, respectively.

Regularization:

On the left-hand side of the bulk eom, there are delta functions.
Hence, the gauge field should behave around the location of the defects:

1

i~ 11
e el

AL~ (r = *£21).

For later convenience, we will take the following regularization:

1
Al ~ —— (1 — t‘:_|z_x|sz‘f) . mmm) b.c. condition is satisfied.

g I‘
ot el
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Lax Form

, Aal | oapa] A
A=—dgg— + gLy . ) = 99(=) -
Here we take a gauge £; = 0 by taking the following gauge field configuration
Az — _(E)ZQ) E}_l :

Then the Lax form

L=L.dr+ Lydo =L, drt + L_do™ .

satisfies the bulk eom:

0=0.L_ — 0 Lo +[Lo. L],

1. i, i .
———0A_0:Ly = +2mi6A- Y Cwyd(z — 2) (04 + L) 9w - 94 -
~ ~1 r==+2z
——0AL 0L = —2mi6AL Y Cyd(z — 2)(0- + L)g@) - 950
~ T~ r==4+2
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The ansatz for the Lax form:

Ul,—i—:: -+ [,-"TO:_F 1 ﬁ o [”:1?—: + [’;‘O?—zl
£+ — ; - - . ’
zZ+ 2 Z—2

Note: the poles of the Lax form are the poles of a meromorphic function.

From the grading constraint, it can be rewritten as

Up+z+0(Up+)z1 2z2—215 .
+ zZ+ 21 Z+ 2 " i
Uy _z+o(Uy_)z 2421~ ,
[.:_ — 0, ( 0, ) L f— ! 1_ + 1_ .
VA A AA
L Ueatoos) o Uos—ollos)

For the Lax pole, we will take the regularization:

z—z?/ o)) .

~ (1 —exp(—

-~ I‘ -~ I\
e el o e
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Utilizing the gauge transformations, one of natural parametrizations is given by

-
ot

—zZ1 — 1: g(+)|21 — h‘_l ? g(—)|—z1 — 1

where the variation of the gauge field is expressed as
0AL =(z—2z)er, O0A_ = (24 2)e_, €xlrts, = O(1),

The following formula is also useful:

- le—al?fas je-lalfan  { je-l—al/laz/D)
e e e -
' (1 o E—|z—3:|2fa:r) — - — ~ —O(S;’ — QIT) .

2T, 2 2m(ag/2) 2

2T,
41



Finally, the bulk eom is rewritten as

02+ 2)Ve =+ 20Cpd(z = 21) (= h7104h + Vi) = 21Cd(z + 2) Vs

— —

0(z —2)Vo = — 21C1)0(2 — 2)V_ +221C 0 (2 + 21) V.
Solution
]- I —1 I
C(“‘) = C(_) = ;;’_1 . If'_|_ = h O]_,_h.-, Vo=0.

Let us consider a variation 0G(+)y = G(u)€) . such that dyey) |1, = O(2F 21) .

() = (F2)Ewm (0, 07) tem(oT),  Elnrs =0(1).
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Then the eom with respect the defects is written as

N _ . 1z 21 =~
0=(2—21)e)0y (h(c’) - 53 e 1’)hl>
Z— 21

z—r+2z1

+e0_ (h(c')+ +hT o h - — 2 f;)fﬂ)

z ~1 z—+z1
) Z2+21= I - lz—21=
0= E(_)C)+ ( o Ml 1_> + (fj + 31)3(_)(')_ (h 1(')_,_h. + 5 Y 1 Ml 1_,_)
- ~1 z——z ~ ~1 2 —2q
V_ =imh'A_h., V. =imA, .

Oy (hf’_h—l) —0, oV.,=0 = W

The resulting Lax pair is
VARV

1~ | :
L. =h"t0 h+im Ay, L_ =im——
2+ 21 Z— 21

By identifying the parameter as w=(z—2)/(z2+ 1)

the Lax pair of the NATFT is reproduced.
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The resulting 2D action:

Saalh; Ax] = L / dot Ndo~ tr(h™ o hh™ro_h) — —
M 221 J Mx[0,Rx]

m 2

2:1 M

By identifying the parameter as follows:

1 1

QT{H?}Z 431

the NATFT action can be reproduced.

dot Ndo~ Tl‘(;"\Jrh.-_lj\_h.) :

1

Iwz|h]

44



Back Up



Gauge transformation:

A AY = vAut — duu™?, Gx) = Gy = uG)

From the b.c.,

Dytt|y,, =0, d_u|_,, =0.

From the reality condition, u at the defect is parametrized as

Uy, : M — Gy, |4, = exp(a,1?) (0 M —=>R).
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