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0.      Introduction



Our interest here

Construct a unified way to describe the 2D integrable models

In the study of integrable systems, integrable models are discovered suddenly 
and when a certain amount of them have been obtained, beautiful universal 
structures behind them are extracted such as Yang-Baxter equation. 

Why is this issue so important?        (My personal point of view)
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If this is compared to the study of elementary particle physics, the discovery of 
an integrable model corresponds to that of a new particle, and its unified theory 
corresponds to finding a unified model of elementary particles
(though this theory would be replaced by a larger new theory, subsequently,,,).

Even now, new integrable models are being discovered one after another. 
But we did not know a method to describe everything from the traditional 
integrable models to the latest new types of models in a unified manner. 



The candidate of the unified theory

[Costello-Yamazaki, 1908.02289]

: a 2D surface with the coordinates               .

: a meromorphic 1-form

is a coordinate of            .  
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This 1-form is closely related to the integrable structure of 
2D integrable sigma model (ISM) to be derived.

4D Chern-Simons (CS) theory 

: Chern-Simons 3-form

c.f. Costello-Yamazaki-Witten, 
1709.09993, 1802.01579

takes a value in Lie algebra         of a semi-simple Lie group 
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The recipe to derive 2D ISMs from 4D CS 

1.    Prepare a meromorphic 1-form. 

The structure of poles and zeros determines the resulting 2D ISM.

2.    Take a boundary condition for the gauge field       .

Possible boundary conditions are governed by the equation of motion.

3.    Reduce 4D CS to a 2D system by following a procedure. 

There are some reduction methods. Take one of them as you like. 

As a result, we see that the resulting 2D system is classically integrable 
because the associated Lax pair can be constructed along this way. 
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The content of my talk 

Explain how to derive 2D ISMs from 4D CS by taking a reduction method 
developed by Delduc-Lacroix-Magro-Vicedo (DLMV)     

1.     A reduction method by DLMV 

2.     Concrete examples:    2D principal chiral model 

3.     Summary and discussion

A brief summary of my related works
[Fukushima-Sakamoto-KY]

[Delduc-Lacroix-Magro-Vicedo, 1909.13824]

Yang-Baxter sigma models
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1.      A reduction method by DLMV
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A reduction method by DLMV 

Our starting point:

This action has an extra gauge symmetry: 

: a meromorphic 1-form

,

[Delduc-Lacroix-Magro-Vicedo, 1909.13824]

Hence the     -component can always be gauged away:



9

(bulk eom)

(boundary eom)

Species of 2D ISM

Integrable twists

Let us introduce the following notation:

: set of poles of : set of zeros of 

Equations of motion: 

NOTE 2 : From the bulk eom, the zeros of       are also important 
because a derivative of A may be a distribution,  i.e.,                        .  

NOTE 1 : If         is smooth, the boundary eom is trivially satisfied. 

But now 

and hence a delta function may appear if       has a pole.

i.e., 



10

NOTE3: The boundary eom has the support only on                                             . 

Indeed, it can be rewritten as 

Here the local holomorphic coordinates        are defined as 

Lax form

Let us perform a formal gauge transformation:

Then the    -component of       can be removed as                     (e.g., temporal gauge) 
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Then the Lax  form is given by

Flatness condition

NOTE: the set of zeros of        is that of poles of     

(to be identified with Lax of 2D ISM)

The bulk eom leads to 

For simplicity, we assume below that        has 

at most first-order zero &    at most double poles 
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Here                                                                                 are smooth functions.

These functions are unknown functions at this moment and to be determined
from a boundary condition for the gauge field.

Later, we will see how to do it for 2D principal chiral model concretely. 

The ansatz for Lax form
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The original 4D CS can be rewritten as 

To reduce this 4D action to a 2D theory, let us suppose  

the archipelago conditions: 

There exist open disks                 for each             such that                                  and

i)                                If               for all   

ii)                    outside    

iii) depends only on             and the radial coordinate          

iv)                       depends only on             , that is,          
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:pole :island

= Sea

depends only on              on the islands

Otherwise,                 (i.e., on the sea).
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Refined recipe to derive 2D ISM

1.  Specify the form of ω

2.  Take a boundary condition of A at the poles of ω

3.  Fix the form of Lax form        with the above information.

4.  Finally, evaluate the above master formula.

2D ISM

Master formula
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2.          Concrete Examples
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1.  Principal chiral model with Wess-Zumino (WZ) term

A meromorphic 1-form  

are double poles

are zeros

INPUT

The boundary condition of A at the poles of ω is 

Boundary condition
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By using the Archipelago condition, the group element      is restricted as   

due to the gauge symmetry

Then the boundary condition can be rewritten as 

Due to the second condition,                     in the Lax form should be zero. 

Thus the Lax form is 
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Then, by substituting the Lax form into the first boundary condition, we obtain 

Thus, the Lax form has been determined as 

Finally, by putting this Lax form into the master formula, 2D action is given by 

This is nothing but 2D principal chiral model with the WZ term.
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2.  Homogeneous Yang-Baxter sigma model  

The 1-form is the same as the previous      (but k=0 for simplicity) 

But the boundary condition of A at the poles of ω is replaced by

Here R is a linear operator from                  satisfying 

the homogeneous Yang-Baxter equation

It is useful to introduce the notation: 
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Lax form:

2D action:

Homogeneous Yang-Baxter sigma model

[Klimcik, hep-th/0210095, 0802.3518] [Delduc-Magro-Vicedo, 1308.3581] [Matsumoto-KY, 1501.03665]

[Kawaguchi-Matsumoto-KY, 1401.4855]

My related works:

• Generalization of the DLMV method to symmetric coset case
[Fukushima-Sakamoto-KY, 2005.04950]

Introduction of the grading automorphism

In particular, we have derived homogeneous YB deformed AdS5xS5 superstring from 4D CS 

c.f. λ-deformation of AdS5xS5 superstring from 4D CS [Tian-He-Chen, 2007.00422]
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[Fukushima-Sakamoto-KY, 2012.07370]
• Generalization to include order defects [Fukushima-Sakamoto-KY, 2112.11276]

We have derived the Faddeev-Reshetikhin model  and non-abelian Toda field theories 
including (complex) sine-Gordon model and Liouville theory. 

[Arutyunov-Bassi-Lacroix, 2010.05573]

[Fukushima-Sakamoto-KY, 2105.14920]

• Derivation of Integrable T1,1 sigma model from 4D CS

It is well known that the usual T1,1 sigma model is non-integrable. 

But recently, a modified T1,1 has been shown to be integrable.

We have studied classical chaos apart from integrable points.
[Ishii-Kushiro-KY, 2103.12416]

[Basu-Pando Zayas, 1103.4107]

My other works

The derivation of sine-Gordon model was a long-standing problem from the original CY paper (2019). 
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3.         Summary and Discussion
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3)     Summary and Discussion

We have discussed how to derive 2D ISMs from 4D CS. 

In particular, superstring on AdS5xS5 is also included.

The origin of kappa-symmetry?

Kappa symmetry:   A fermionic gauge symmetry in the Green-Schwarz formulation 
of superstring theory which is based on space-time fermions. 
It is necessary to remove the redundant space-time fermions. 
But it was introduced in a heuristic way and its origin is unclear. 

The unified theory of 2D ISMs may reveal 
the fundamental symmetry of String Theory.

Take-home message
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But 4D CS scenario might be a tip of the iceberg!
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Current understanding:

2D ISM 

Costello-Yamazaki

Delduc-Laxroix-Magro-Vicedo

4D CS 

6D holomorphic Chern-Simons theory 
Costello [talk at Strings 2020], Bittleston-Skinner [2011.04638]

Dihedral affine 
Gaudin model 

Vicedo

Laxroix-Vicedo

? ? ?

4D IM 

e.g.  4D WZW model
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Question: Are these three ways equivalent?

No?

According to a paper [2105.06826] by Bin Chen, Yi-jun He and Jia Tian,  

Homogeneous YB sigma models, λ-models, generalized λ-models 
CANNOT be obtained from 4D IM, though these are derived from 4D CS.

These models may be counter-examples for the equivalence. 



Thank you for your attention!
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延長戦
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Non-Abelian Toda Field Theory (NATFT)

Decomposition of Lie algebra
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EOM

Zero curvature condition and Lax pair

where w is a spectral parameter
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Example 1:   sine-Gordon model   (a symmetric space case)

Classical action and Lax pair
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Example 2:   Liouville theory (a symmetric space case)

Classical action and Lax pair
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Example 3:   complex sine-Gordon model (a homogeneous case)

Classical action and Lax pair

Take the gauge 
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4D Chern-Simons theory with order defects
(In the previous talk, we have considered the 4D CS theory with disorder defect.)

Covariant derivative: A meromorphic 1-form:

: group-valued smooth functions
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The bulk eom

The boundary eom

Boundary condition  (from the boundary eom)

Furthermore, we suppose that
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Regularization:

On the left-hand side of the bulk eom, there are delta functions.
Hence, the gauge field should behave around the location of the defects:

For later convenience, we will take the following regularization:

b.c. condition is satisfied.

The we can write them as follows: 
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Lax Form

Then the Lax form

satisfies the bulk eom:
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The ansatz for the Lax form:

From the grading constraint, it can be rewritten as 

For the Lax pole, we will take the regularization:

Note: the poles of the Lax form are the poles of a meromorphic function.
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Then the boundary eom is rewritten as 

where the variation of the gauge field is expressed as 

The following formula is also useful:
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Finally, the bulk eom is rewritten as 

Solution
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Then the eom with respect the defects is written as 

The resulting Lax pair is 

By identifying the parameter as 

the Lax pair of the NATFT is reproduced.
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The resulting 2D action:

By identifying the parameter as follows:

the NATFT action can be reproduced.
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Back Up
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Gauge transformation:

From the reality condition, u at the defect is parametrized as 

From the b.c., 
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