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Why do we need them in QFT?
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in field theories (review )

2. QFT calculations via
BV Lagrangian's Homotopy algebra
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My recent & on-going works

— Today’s goal

0. Motivation

1. BV formalism and homotopy algebras
in field theories (revie

2. QFT calculations via
BV Lagrangian's Homotopy algebra



Why homotopy alg. ?

Roughly speaking..

. Each quantum field theory that has the path-integral description
has own “homotopy algebraic structure u .

— Your can quickly find a cyclic A~ (and L) algebra in your e.o.m. and Lagrangian and

quantum Aw/L. algebra in correlation fnc. (...) = Jy¢(...) where v, = 2¢ e’/ Z |

. Path-integral P gives a morphism of this algebra.

Ppu = /4/ P ( P : homotopy alg. of the original QFT— homotopy alg. of its effective QFT)



Why homotopy alg. ?

A useful tool for QF T computations.

. All guantities written by the path-integral, as well as Lagrangians,
may be written in terms of this algebra.

. We can apply this technique to obtain
effective theories, S-matrix, current recursion relations, ...
or to study
realization of symmetry, anomalies, flow of ERQG... .

. Some Instanton effects can be derived by using this package.



Why BV ?

A useful tool in field theories.

. The BV tformalism is equivalent to this homotopy algebra.

dual

BV master eq. «— quantum homotopy alg.

ike ... Component: o, F* = u,j* &% Form: dxF=xJ.

. BV tells us how to find homotopy algebras.

. We can always apply the BV formalism to given Lagrangians :

BV tformalism 1s a generating thc. of Noether id./Schwinger-Dyson ea.



Today, | will explain

‘ See also Supplement 1 & 2§

1. Why every path-integrable QFT have a homotopy algebra

2. Why the path-integral preserves such a homotopy algebra

(In particular, one can obtain Wick’s theorem in QFT exactly by using this method.)

with the help of the BV formalism.
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0. What is homotopy algebra 7
1. BV formalism

2. BV Lagrangian’s homotopy algebra



0. What is homotopy algebra ?

Definition :

. We consider a vector space H and multilinear maps u, : H®" — H .

. Homotopy algebra (H,u) is a set of multilinear maps u = {u,}<, with

py - iy (@) =0

Hy - 1o Dys o) + (i (91)s @2) + 1Py, py(@y)) = 0
: where ¢ € H .

k
Z Zﬂk+1("'9¢m ’ﬂl(¢m+1"'-a¢m+l) ,...,gbn):()

k+I1=n m=0 —
m k—m

Put it more simply . . .



0. What is homotopy algebra ?

Equivalent definition :

. We can consider Its
and

. Homotopy algebra (H,u) is a set of linear maps

D M1 H =0 —— Blackboard



0. What is homotopy algebra ?

Simplest definition :

. We can consider its tensor algebra TH) =COHP H®* @ --- P H®" @ ---
and linear maps u, : T(H) — T(H) .

. Homotopy algebra (H,u) Is a nilpotent linear map on T(H)

B P =0
pop iy op =0 1 Homotopy algebraic relation
R . p-p=20
Z Frv1 " = 0 ~ where =+ Uy + .



0. What is homotopy algebra ?

Homotopy Algebras in QFT :

. We consider the state space H, so T(H) is the Fock space.

. In most cases, linear maps u. : H®* - H are proportional to vertices.
PS u, Prop

so that u=pu, +u,+ - can give, for example, the BRST operator,

symmetry generators, S-matrix, effective Lagrangians, elc.




0. What is homotopy algebra ?

Homotopy Algebras in QFT :

. We consider the state space H, so T(H) is the Fock space.

. In most cases, linear maps u, : H®" — H are proportional to vertices,

so that u=pu, +u,+ - can give, for example, the BRST operator,

symmetry generators, S-matrix, effective Lagrangians, elc.

. Then, the relation u-u =0 tells us physics described by this u :

E.g. Decoupling of gauge & unphysical degrees, realization of nonlinear
symmetry, unitarity, relations between currents, flow of ERG, elc.



0. What is homotopy algebra ?

Why is the homotopy algebra usable in QFT ?

. We can always extract such g = p, + p, + --- from a given QFT.
— Your Lagrangian has its Hs(p] -

— Symmetry of your QFT has U, -

Blackboard



0. What is homotopy algebra ?

Why is the homotopy algebra usable in QFT ?

. We can always extract such g = p, + p, + --- from a given QFT.
— Your Lagrangian has its Hsip - Its “effective” theory also has .

— Symmetry of your QFT has p,,,, ; “effective” one exists .

\; For general splitting ¢ = ¢’ + ¢” , we call A[¢'] = an@gb”eS[(ﬁ’W”] effective theory. \

This 1s a slight abuse of terminology :
We are not integrating out "high energy modes"” in a conventional sense.



0. What is homotopy algebra ?

This u = u, + u, + -+ Is useful because the path-integral preserves it.

Once you find Soriginal[qﬂ] - Z

n

1 n
n+ 1

‘effective” theories take 5,,[¢]= )

n

1 -
—— (¢ (@' 9)) With (u)° = 0.

. The Feynman graph expansion preserves (u)” =0 .

. S0, we can apply the same method to the S-matrix, Wilsonian, gauge-
fixed QFT, etc.



0. What is homotopy algebra ?

This u = u, + u, + -+ Is useful because the path-integral preserves it.

. We presented Lagrangian’s homotopy algebra only.

. For a given homotopy algebraic structure y = p, +p, + --- In QFT,

there Is a systematic way to give effective one u' = pu; +pu; + --- .
— Homological perturbation to homotopy algebraic structure

. The path-integral also preserves it.



0. What is homotopy algebra ?

Why is the homotopy algebra usable in QFT ?

. We can always extract such g = p, + p, + --- from a given QFT.
— We found Lagrangian’s Hsip) which is transferred to “effective” QFT.

— Symmetry in QFT has p,,,, , which is transferred to “effective” one.

... how to extract such p = pu, +p, + --- from a given QFT 7?



0. What is homotopy algebra ?

How to extract homotopy algebras from QFT ?

. We can always extract such g = p, + p, + --- from a given QFT.
— Your Lagrangian has its Hsip) 5 Its “effective” theory also does.

— Symmetry of your QFT has Poym 5 “effective” one also does.

. Extracting p=p, +p, + --- from a Lagrangian is equivalent to solving

the master equation in the Batalin-Vilkovisky (BV) formalism.

— Homotopy algebraic technique is widely usable
as mach as the BV formalism !!



Outline

0. What is homotopy algebra 7
1. BV formalism

2. BV Lagrangian's homotopy algebra



WhatisBV...?

. BV Is one method to get the path-integral quantization.

Taming gauge redundancy :

By hand c Fadeev-Popov ¢ BRST c BV

. BRST method 1s a "gauge fixed version” of BV .

— Very similar to the standard canonical formalism.
— A canonical transformation performs a gauge-fixing.

L = I@[% @*) 8(p* — Flo]) 177"



WhatisBV...?

. BV Is one method to get the path-integral quantization.

Taming gauge redundancy :

By hand c Fadeev-Popov ¢ BRST c BV

. BRST method 1s a "gauge fixed version” of BV .

— Very similar to the standard canonical formalism.
— A canonical transformation performs a gauge-fixing.

. BV can be applied to field theories without gauge degree
and tells us how to extract Lagrangian’'s homotopy algebra y,,, .



WhatisBV...?

. A more classical (or modern) view of the BV formalism:

BV package assigns "a Homology algebra” to "a given space of fields”.

s

=== - S ~ == - = < —- S - ~ == - — N
— — N _ - — ~ < — . 5 — — L~ = = =~

’ 7’

BV formalism : Lagrangian field theory — Derived Geometry
( classical & guantum )

Ll
i

. LI T, HRZEDAZ1 K + iIREDHERE T BV %= review UZX 9,

Il



Batalin-Vilkovisky's antifield formalism

HHANZICH T HEAAERYIEE. EJIfFATVWEIN?
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mil

Physical states «— E#HARER

S[p]l € C®(M,R) ZIEU s, VIE=E M

EE f]_-*m_t%/l'

Y3

E

=0

dD “ERHIPIEEE (observables)” (&.

F lss=0

={M|,_, LOBEEDE

KIS NZEE - HOEAL HDVRK D,

oS ¢]

=0 DFEZTS5ZAD k)

EIZ LT 5 “SIk{E" M %, configuration space &AL,

FDORE &85,

i/c9 M DafnZERE (isolated points) Z= M|, £&<o

M|, DE &35,

&1} (L singular %22



Batalin-Vilkovisky's antifield formalism

COBEXIE. BRZRT —YEHEE

. EBIERDR 65[¢] =

T—YVHEHHEE < 8S¢)=

N
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Batalin-Vilkovisky's antifield formalism

5 DEENT S — Derived Geometry

. DKW RZR D ICIFE. Fy Z2BTEEEZD resolution ZZ& Z i KL\,

The vector space ,=Sym{ ¢ } Is embedded into a sequence of vector spaces

S|, . s|_, S|,
S F =S F—50

and then & = %,/Sym{é¢} is realized as a conomology.

[s5=0

ZIRIEM ODER px) eM DEADIC, BERERICKDD 'DGADS F1 HfT5 !

\\\

. FC T REDOEHR;

TR F_, & WD s O ERLEEIEEK W,



Batalin-Vilkovisky's antifield formalism

5 DEENT S — Derived Geometry

. FDEHDAED 1 Dlc. Koszul-Tate resolution EMEIEN S HEDSH B,

F_,=Sym{¢*} DIEDTT ( Antifields D& )
¢ ERUEET. RED -1 TN ¢ 2B AT B,

4 s DIEDF (BRST-BV HET )
03
S5¢he

ELAIRREEE DRI, Im[s]={sd*}={6p) HELV Ker[s]={p} £D.

s|_ 1)~ , S|y @t 0 K> TR TE B,

Cohom[s]=Ker[s]/Im[s]=F|,._,



Batalin-Vilkovisky's antifield formalism

BRST-BV 23\ : ZDEENT7IF — Derived Geometry

. BRST-BV FER [&. 2D &K 5% resolution Z systematic ICE X547,

BEIERRE ¢¢ M — R I U, antifield ¢* e T*[-11M % assign 9 %,

( Antifield ¢* (£. c-momentum z ¥ source j & RTK. RIRWLYIEEICIFIRNAZLY)

Antibracket EEEN 5. X#E 1 @ Poisson il ZXE 8 B,

— = — =

5 6 5 5],
0Pt odg  opg 09

(A,B) = A

W s=( ,S) D, REDER S[¢] hS5EFX D, (BRST-BVEETF)



Batalin-Vilkovisky's antifield formalism

BRST-BV 23\ : ZDEENT7IF — Derived Geometry

. ZD

=\

. (3FE

the BV-BRST differential 5| ,=0 , s =-— 91
5br o0
L ~ M Ker[S‘O:
BRST-BV A/MEAY— 7|, = _
y Im[s]_,

~ N H

Z BRST-BV;

23 TRIICIE master eq. (S[¢p],S[¢])=0 ZEEFIE KL

BA7R) 7 — Y BHEDOGRVWVERIIXT UTIE. 2RO classical BVEER Z1F5

A sequence of graded vector spaces

.

s|_,

—1

NDEFEIE T the fields ¢ solving

‘6S:O

oS ¢]

a
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0 —F_ | — F7—0

sl,=0.

a
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Batalin-Vilkovisky's antifield formalism

F & (HDHHER )

. BRST-BV £z @ 5D
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> Derived Geometry
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Batalin-Vilkovisky's antifield formalism

F & (HDEHHEm

)

. BRST-BV ;

Z 1o

~ ~ HITT
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Batalin-Vilkovisky's antifield formalism

Quantum BV 123 . D=+ — Derived Geometry

. EOEFRICEWVWT, SEISNSYEE 0, = 0,[¢] DE A (&,

= i 7
A=<OA>=J@[¢]BS[¢] 0, = J9[¢]esfree[¢] eSint[(lﬂgA
CDEZETHEZoNERDN MUz EET Eh) ZRODDIE. Schwinger-Dyson eq.
J9[¢]i( )=0 = integrand modulo i( )
5ol )= g 5ol
. InEHRERETBHDH. (quantum) BRST-BV .

Quantum BV master equation: A (¢’?10,) =0



Batalin-Vilkovisky's antifield formalism

Quantum BV 23\ : D= — Derived Geometry

. BRST-BV 2T\ Tl&

: 0 :
integrand modulo %() < integrand modulo A-exacts

. =80 BRST-exacts (CI1ZA. RZX 1 @ Laplacian A H&5&73%

— =

BV Laplacian A =(-)?

. 1EF Slg] & Y3BE 0, = 04[¢] IEDWT A (0, ) =0 ZEFEETTI L ...

1
hAS+5(S,S)=O . hAO,+(0,,5)=0



Batalin-Vilkovisky's antifield formalism

Quantum BV 2=, . D =Fim — Derived Geometry

&R BRST op. s=(,S) & BV Laplacian A ®f1 s+ AA 1 DM ERD
(s+hA) =0 ( BRST-BV operator )

IZDHEHEFFETIE. Config. sp. M D& =IC. classical BV O&&E M5 nic

\)

HEMR (F,5) - ---—>9/7_1—S>9/70—S>O

IBDEFE ClE. Config. sp. M DEHIC. BV B hMfdE5EI 3

EER (F,5+hA) LS E S F S0

P

) RERED = ZDHEAD BRST-BV cohomology NDHF F > Fp,,
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i
\
/
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TTHk
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Batalin-Vilkovisky's antifield formalism

Quantum BV 23\ : D= — Derived Geometry

. CDEKODBER (WD 0 & FHNAENRT NLZEEDOH F) . EXON
BRST-BV J/REAY— F .. NDOHE p ICDWTDBHRZXEH T, RDLSICE

phys

he(F,0) = (F phys » Qphys ) ( strong deformation retract )

i [EBAK injection. 7 (37 —2EIEL (s D) ITHIHT Do

. Oy & BRST-BV O/ REAY— F | ETOHIT,
( €.0.Mm. 7@:’@4:\.:\72_ / %th%ﬁ \Lch_i"w_(;c_jb\T Qphys — () , %@ﬁﬂ@i%T‘(lji Qphys ;é 0 )

— BT —YICE. BLZE. ROXWILH BB

l
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Batalin-Vilkovisky's antifield formalism

£ &6 : Homology BY73ECik

hey(F,0) é (F hys » Qphys ) ( strong deformation retract )

BN F D5Z7T < EDLSRF (NFER) 2ZZATVSHDH

WD 0 D5ERXAF < EDXS74 Lagrangian ((REDIER) =5 2 f=h

e p DEZA < EDFZIKDOWVWT Te.omZziE< / BEEBES 9 %) H

WEE W D5ZXF < EDEBRFEDTTELDON

BV SE (F 0.0, < B5N3 TEMEOER (RERHME) | OBR



Batalin-Vilkovisky's antifield formalism

Homology BIECiR DfERHBI (Hodge 73 FEH #E )

free, classical free, quantum
+hA .

P
hO(‘o/T’Sfree) = ( phys90) é H,O(‘o}’sfree_l_hA) = (‘o}phywo)

l T

T Sint REOY —iBEhEE T Sing
Interacting, classical Interacting, quantum
+hA

/ p/
h O ( F ’ Sfree+Sint) <_—,) ( LOIphys » Stree ) 9 H O ( Sfree_l_slnt_l_hA ) ( phys » Seff T hAeff)
I

DB p,i.h EBH s, +hA DS, BRUWIBE P,1,H H' systematic ICEN S |




Batalin-Vilkovisky's antifield formalism

Projection P = the perturbative path-integral

0 0

P | A[¢] — o Utrec 5539 eSint[¢]A[¢]

- STEOBIR L. BFITEHA
2. QF T calculations via BV Lagrangian’s homotopy algebra

. FZUWVWBVTOEE

PTEP 2022 113 BO4

& KU homotopyfSE TD

p=0 = [@[Cb]esw’]

Algl

ETEIE. RD

=AN
A

i
(arXiv 2003.05021 hep-th )
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Outline

HBWCESHZAIEE

0. What is homotopy algebra ?

BV#:ZU & RE M E—RE OFME

1. BV formalism

2. BV Lagrangian’s homotopy algebra



Homology/HomotopyA&UcT &K S L 57

BRST-BV 2=, & Homotopy X ODEZ X

- ZERUERIE THioRmT) & THaExr, © BB N TS
B Z (...
Maxwell 2= 0, F" =J" = dx b =]
HhLY MR 0, j" =0 = dj~ 0
NT NLigig E DR tr F, F* = trFAF

. E[& "BRST-BV ;
BV A\

ZIC K BDicih; & "THomotopyfR#EIT K Hacah; HEERDBEE R -

Ae®=0 << quantum A_/L_ BARX (AA+u)>=0




. Example: Classical Scalar field (free theory)

. 1
the BV master action : S[¢] = >0 (0 — m?) @

Since S[¢] has no ¢* dependence, Q acts only non-trivially on ¢* as follows:

Qp=0, Q¢*=(S,p*)=("-mp,

which acts on the components: 0 e H, E o, L oo

—— §0 ——
N—_—— —

ghost ghost*

field antifield

— We assign the basis {e,e.} and use a “super-field” ¢ = pe + ¢p*e. .



. Example: Classical Scalar field (free theory)

. 1
the BV master action : S[¢] = >0 (0 — m?) @

Since S[¢] has no ¢* dependence, Q acts only non-trivially on ¢* as follows:

Qp=0, Qo*=(S,p*)=("-m)p,

which acts on the components: 0 e H, E o, L oo

—— CD ——
N—_—— —

ghost ghost*

field antifield

— We assign the basis {e,e.} and use a “super-field” ¢ = pe + ¢p*e. .

Then, we find A_ str u,(¢) = (0* —m*) pe.

which acts on the basis: 0 — H % H -5 0

N—\— N—\—

ghost field antifield ghost*



. Example: Classical Scalar field (interacting theory)
K , A

: 4
YRS

@

the BV master action : S[¢] = %qﬁ (0> — m?) @ -

Since S[¢] has no ¢* dependence, Q acts only non-trivially on ¢* as follows:

% sk 2 2 K 2 % 3

Qp=0, Q¢*=(S5,9p*)=(0 —m>¢+5<ﬂ BT

which acts on the components : 0 £ H, £ H,. & 0
ghost field antifield ghost™

— We assign the basis {e,e.} and use a "super-field” ¢ = pe + p*e. .
Then, we find A, str u (@) = (" —m*) ges, (). )) =k e, .. d) =1 e,

which acts on the basis: 0 — H — H — 0



. Example: classical Yang-Mills field

. . | .
the classical action S [A] = — ZdeFﬂyFﬂ” can be rewritten as the form of

1 ~ 1 ~ 1 ~
S, [A] = 5<A,//t1A> + §<A,ﬂ2(A,A)> + Z(A,//t3(A,A,A)> where A__ products are

Ir(A,A) =d X (AfANA,) — (XdA) ANA, + A A (KdA,)
Pr(A, Ay, Ay) =A A (K (A ANAY)) — (X (A ANAY)) AA,

. This A_ is incomplete and a part of the full A_ of the Yang-Mills theory.

0 — H — H — 0 IS hot exact |

——

ghost field antifield ghost™



. Example: classical Yang-Mills field

. . 1 . .
~ The Yang-Mills field action S [A] = — ZJdXFwFW IS Invariant under

the gauge transf. 6A,=D,A=09,A+[A,,1].

. We thus need the ghost contribution (A%¥)-D,c and must solve (S,S) =0

. . . 1
The master action is given by S=S_,[A] + (AF) - Dﬂc+56* [c,c],

which enables us to perform the path-integral.

. The BRST transt. ¢ = (¢,S) = u (@) + u (¢, @) + --- tells us the full A_ structure.



Example: classical Yang-Mills field

We can find the full A_ structure, which is given by

C 0
A . =d =d*d =d
c* d*x A higher ghost field antifield ghost* higher*
C1Cy 0 ¢
ClA2 + AICZ O i .
Ho ( ¢1’¢2> = (A, A) — c,AF + A¥c, M3 (451» b, 453) = 0 , ;= A (i=1~3).
cicF —cl¥cy — % (A A (XAY)) + % (Af A xA,) fis(A, Ay, Az) ciF

As is known, the Berends-Giele current recursion relations can be quickly
derived from this A_ structure of the Yang-Mills theory.



Homology/HomotopyA&UcT &K S L 57
BRST-BV 2=, & Homotopy X ODEZ X
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Homology/HomotopyA&UcT &K S L 57

BRST-BV 2=, & Homotopy X ODEZ X

. EAADMEIT BY AR A =0%, CORDRIRTEEZTI :

—

2.

S, 1

h

( Antibracket [C

. BRST-BVEZ(T

SRR K

himll

. %

K9 B v’

n—1 _

v aza aed o
5(_) Q) res Mal ool ool oAy _I_ Mal ceoly Uy, Q) ST //Lam_|_1 ooy cody, — O

m=0 =

bl TRELT @ sympletcic FTERDIEXERZ, DT )

Rl HEZD, 1EA S D “FDRE {1y 0.0 Snen DIZT BRI

—

Dy, . & TSEEEHRORS) CA—ETES

N-IZ p, : V' > VDR (V: H5FEEZER )




Homology/HomotopyA&UcT &K S L 57
BRST-BV 2=, & Homotopy X ODEZ X

DN T OEFED ICTBDBE, TUYVILRE T(V) EORREIERELRS

H=ppt iyt eyt = p IV) = 1(V)

L RRBTECE. T {py0 0 Joen OBT Ae’ =0 BRI #H £ LTE

quantum A_/L_ BRI (hA+u)* =0

. FFIC, 5,9 =0 ZmicI HEERAN. EFHELGUTAS =0 Zmicd &=,

lm

A /L BRI 4>=0 & Apu+puA=0




Homology/HomotopyA&UcT &K S L 57

=X DHIZ T, Homology fEHV 7RG R | 1

AR A+ =0&D, V) DEBAXELED WD EUT A+ Z(EZAD

Hy(F,s+hA) - (F ohys o Seip + HA ) = hey (T(V), u+ hA) o (T(Vonys) » Hegr + 1A )
] I

LT

. BRST-BV =X TDFTE (. Homotopy FREIC KDt ic EEFMZ AgE, EHAD,
( CDRRIC THEBEEERAANEDL S, CEIGER)

_ 1
Homoto T K BARBBED DN : P —
py XX = IIE D Cal p1—(,u+hA)h

;)&Eb
I ] P | 1 I ]
P A[p] | = er=riar | eSuldTA[p]| ) = —[@[qb]es[ﬁb] Alg]

/



BV 2=, - homotopy (REUCH TS, A - EEBD ANIEZ

Hy(F,s+hA) - (Fohyss Seit + HA) = hey (T(V), u+hA) o (T(Vipys) s Hegp + PA)
I/ I

REEED 1 iP(¢p")=iP(¢") where P=po.) (Ah) and P=po ) (hA)
k k

(ZE)RTZER s, ..., s, DEIE. 53|ZERUVDERBREDKDIC, - E18D :

| ] @ \ transpose %
pyph () = _ﬂ1“‘/4n(e e*)_ ((p*) P (e e*) [Sn"'51 ((p*)] =5 -5, (¢h) .

_ B . . (1 {0 . P\ ) 2 B Q
The super-form ¢ = gpe + ¢p*e. W|the_<0> ,e*—<1> switches s <¢*)_<(62—m2)¢) to u(¢) = (0 m)(pe*—(e e*)s<¢* .



Homology/Homotopy{SEUC K B ek /305

CDXDIFREMRDF =

. DySOﬂ 75$§ﬁ : G(p) — Gfree(p) T Gfree(p) Z(p) G(p)

. 2D IE. Homology / HomotopyR&EIC KBS, BARITHKED

h = hpee 0 (f + AA ) R (/REAY—EBEITHESNS h)

. Homotopy R#EIC K Bk TlE. fBDIEH Dyson AIET or ZDIE#E

1

'fﬁ”i(/i\ . lueff — lutree I_th




CNETICEMT LI &

. (DEDTEWT T AD) 5DIE

sk, Homology NI ICECIN TE 5,
FlZ L. (BEN) fRBEESIE JRTEO0Y—0D0Hz & UTElT 5,

ali]l

e.g. Dyson A G(p) = G;..(p) + Gy (p) Z(p) G(p) &, homology R TEKL &
“REOY—E\BEE S DEARRIBEE UTEBETE %,

xlc. MEERHZE2UmE TH> CHAMDODATERE S,

RICKEINT B &

. BOEFHDWNSEWBGIREHN. R-

[ 11

O —RBHBT—FZ2WUDZETEITZE D,

. BEINLRIGOEFwFICDOWT., HIH3EEDEENE SN,
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2. QFT calculations via
BV Lagrangian's Homotopy algebra
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[ U sIc

EDKDHREZIRDS DH

1:IIIII

. 35D T B
HE%  Siecld] = ¢ ua,¢® @ Hessian A non-degenerate [c &N T,

Slop] = : ¢ i, p? + interactions EWSTEDERAZRFORE .

. D EFiE -

HEI% D Gaussian integral KL = 2EE j@[¢]e%¢“ﬂab¢b=1 .

E.g. ordinary Lagrangians : ¢* scalar, Yang-Mills, lattice, strings and so on.



A% £ 6 © Homology MY IR
DR

- R ZEZDS (= EBZD< %)
FRDIEERZHRT EF AR T #< fZ (Physical State) & & %

5S[p] = ? o LU o ¢ st g =0

O O

. RBUTEARYI MNILZERE EMS (chain complex ) 25X %
resolution Z#%d BRST-BV cohomology NOHEZ{ED HExMT



%3 & © Homology MY/ ik
7 D EF i

- RBEZEZS (= NEREABZEHTERY)
SDeqg =52% BENICiERD IS  EME (Physical states) 550

5(; ( 1ntegrand) =0 - JQZW] (integrand) — A = J@[qb] eS[¢](0A)

. REUFTEXRY MIVERE EMGT ( chain complex ) 252X %
resolution Z#%#9 BRST-BV cohomology NOHEZES Gzl d



BV Lagrangian = Homotopy algebra = Homological data

he(F,0) % (F phys » Qphys ) ( strong deformation retract )

B F DEZF = EDLS5EE (ARZEH) #EZZTWVNLOM

WD 0 D5EZH < EDKS7%K Lagrangian (EEIDER) =5 2 f=H

e p DEZA < EDFZIKDOWVWT Te.omz2iE< / BEEBS9 %, H

WEE W DEZXT < EORBFREDTTHEE, greenB#EZz"_leh

BV S (F,,..0,,) < 8513 TEHEOER (RERHME) | OBR

— 1R EEAE (HHEDD SHE, ETRISELH)



How to calculate the following diagram

Homological approach to QFT calculations (Key : Hodge-dec. )

free, classical free, quantum
+hA .

P
hb(gﬂgfree) = ( phys90) é H,O(‘o}’sfree_l_hA) = (‘o}phywo)

l T

T Sint Homological Perturbation T Sint

Interacting, classical Interacting, quantum
+hA

/ p/
h O ( F ’ Sfree+Sint) <_—,) ( LOIphys » Stree ) 9 H O ( Sfree_l_slnt_l_hA ) ( phys » Seff T hAeff)
I

systematic

+ hA

Initial data p,i,h & perturbation s. > the wanted data P,I,H

1nt



Plan

() Path integral as a homological perturbation

() Some examples in QFT calculations

(i-a) Applications to “perturbative QFT”

| If time permits

(1-b) Applications to “realization of symmetry”

(n-c) Application to "non-perturbative effects”



Path integral as a homological perturbation

Projection P = the perturbative path-integral

~ We consider free field theories S;..[¢] = %gb“,uab ¢’

0O 0

. - _ | o
which satisfies AS;..[¢]=0 with a=(-) o

s|_, S|,

( The classical BV-BRST cohomology is empty except for ... — |, — 0.)

. It solves not only the classical master equation (5,5 ) = 0 but also

1
the quantum master equation h A(e”'?) = |AAS+ 5( S.S)| e =0.

The (quantum) BV-BRST operator s+ h A is the differential : (s+hA)>=0.



Path integral as a homological perturbation

Projection P = the perturbative path-integral

. o) . .
~We get a perturbation : s = y,,¢" — s+ nA of differentials .

2

C(uhH® of h=(uH)®¢} IS the Feynman propagator. We have p=0 and i=1d:

P

Now, the fields ¢ = ¢, ot + Dorrene @re fluctuation around “0” and p(¢) = @, el -

~

=~

. From the original (classical) data 7., (Z,s) é (F 0) + the perturbation 72 A of differentials,

l

phys >

P
we can construct a new (quantum) data H ,,(#,s+7A) 2 (F
I/

ohys » 1) DY solving

the recursionrelations: P=p + P(hA)h and I=i+ h(hA)I .



Path integral as a homological perturbation

Projection P = the perturbative path-integral

~The solutionsare P=p ) [(rhA)R]" and I= ) [h(hA)]" .

n

We can check that /P = ip Z [(h A) h]” gives the path-integral.

We noticethat p,i,A,h acton a¢"e F =Sym(F*) (a € R) asfollows:

plag”) =ap(9”)=a(pp)”, i(a@®)=ai(9”)=alig)"

n

a O 0
ACagh =a(—)"" (¢, h(ag) =ah(¢p") =a) ¢ (he)(ipp)™.
S Sepit ~




Path integral as a homological perturbation

Projection P = the perturbative path-integral

. Notethat p(a¢p”) =a(pgp)" means p(@dp")=(p¢p)" and p(a)=a fora € R and
that ip(¢) =0 vyields h(ad™) =ah(¢") = a(hp)p™* " .

. We find

%) %)
pl(AA)YR|™P*™) =p |[(AA)YR|"'(2n - 1)[((/4_1)61[9%55)( 5

O
=p [(ha) R0 = DEn =3[ ()5 5)

¢>]¢2(n—1)

%)
P

¢)] 242n=2)

0

O
=p [(hA)h]m_n(Zn - ! [((ﬂ_l)ab_¢>( Sch?

o

0"

* It implies that m=n.



Path integral as a homological perturbation

Projection P = the perturbative path-integral

. We can further rewrite it as follows:

5 ., 0
p[(AAYR]™@™ = p[(RA)YR]""(2n - 1)!![((ﬂ—1)abw¢)( 5¢a¢>]"
m—n(zn_l)” —1\g 0 ) - g O O
=pl(hAYh] 2 [((” ) bﬁw(&bag/’)] 1[«” l)b(sqbb 5¢a]¢2
. B T
=p[(hA)h] (2n)!![((” R 5¢a] ¢’

. As a result, we obtaln

1 %)
P(¢2n) — ~ [2 5¢b (//t—l)ab 5¢a]n¢2n and P(¢2n+1) -0 .



Path integral as a homological perturbation

Projection P = the perturbative path-integral

. Projection P=p + P(aA)h reproduces Wick’s theorem !!

- With IP =iP, we get the desired result

1 o —l)ab

(. )= ()] = J9[¢]65free[¢] (Suld) )
$=0

- Hence, the projection onto the (quantum) BV-BRST cohomology,

14 79 P
P of H ,,(F,s+hA) 2 (F
1

hs-0) . Indeed reproduces the path-integral.



Plan

() Path integral as a homological perturbation

() Some examples in QFT calculations

(i-a) Applications to “perturbative QFT”

| If time permits

(1-b) Applications to “realization of symmetry”

(n-c) Application to "non-perturbative effects”



3. Application to perturbative QFT

App.1) Typical Examples of ¢ = ¢’ + ¢”

* Your effective theory A[¢'] has A./L- corresponding to the splitting ¢ = ¢’ + ¢"
because it changes the propagators (1))~ given by u, = u| + u/,

aem ] 1 1
A[¢’] — IHJ@¢/,€S[¢+¢ | — 5<¢/,Iui¢/> 4 §<¢/,Iué(¢/,¢/)> + Z<¢’IM3(¢/,¢/,¢/)> 4 ...
* [ypical examples :
(1) As usual, ¢ = @i + ¢}y gives Wilsonian with Ae/Le .
2) @ =@ qen T Plirnen 9IVES the S-matrix A[¢'] as a minimal model of Aw/Le.

(2)
(B) @ =, . iess T Drrccive FIVES Ac/L effective QFT A[¢'] ( finite a’ for strings ) .
(4)

4) & = G nys T Poaugerunphys 91VES “gauge-removed” QFT with Ae/Le.



3. Application to perturbative SFT

Straightforward example: String Field Theory

 As is known, SFT is a consistent UV finite QFT, which satisfies A edl?l = () .

. . 1 | |
For a given master action SIg] = =(b.ud) += (¢, D) + (s b $)) + .

we can consider ¢ = ¢’ + ¢” and the path-integral of ¢” as follows
P: Sl +¢"] — Alg]= m[ D" S+

* Then, thanks to BV, the quantum A«/L of your effective action is automatic

1 1 1
Al == @) + (D 1D 9)) + (D i5(P D', 9))



3. Application to perturbative SFT

App.2) Light-cone reduction : a special choice of ¢ = ¢/, . + Blcerunphys

* For a given covariant SFT, there exists the corresponding light-cone SFT.

 The BRST operator of (super) strings has the similarity transformation, for example,
M al

O=c¢R( Ly —pt Y c .a )eR (open strings) .
0*0 c“n
n+0

It induces @ ovariant = Plightcone + Paz. », . @Nd the Ae/L light-cone SFT

-~

same form as the covariant SFT effective vertices

“When effective vertices vanish and it reduces to Kaku-Kikkawa’s theory” will be reported by



3. Application to EFT
App.3) Realization of symmetry as Ac/L

» Recall that composite operators of symmetry 6,4 = O,,,[¢] survive along ERG flows

[0 0,mi1e71 = | 90041919

and there is no loss of symmetry, although their forms drastically change along flows.

5sym¢ — @sym[¢] = ésymgb/ — @éym[¢/]

» This is also true for our case. The relation between 6, [¢] and 0;,,.[#'] is explicit. It is given

by a morphism of A/l :
@gym[¢,] — P ( @sym[¢] )

So, symmetry of the original QF T also exists in your effective QFT in terms of Aco/Leo
though it may take some highly-nonlinear form. (e.g. Lorentz generators in light-cone SFT. )



DB . <D ZH
HEHFE “< D ZH” DEE

Free, classical Bare
p P
hb(‘o}“gfree) <_—> (‘O}phywo) EE— hO(‘o}9Sfree+Sint+hA) <_I_> (‘O}phywseff_l_hAeff)
l
Renormalized
Pr
hR O ( F » Stree T Sint T hA—I_Sc.t. ) (I__) ( *ojzphys » Seff, R T hAeff,R)
R

. FHABEER p.i,h + BE s, +nA = Bare action [C &% Feynman RER P

CHDTEL s, ICEBDREAY—EBEZET — <DAFENhf Feynman RER Py




IDABI - HEEEE DD
5@’3’4’:@ @ibb : O+¢old:a+§bnew

Free, classical

IENEHZEFX D

p
h O (‘o/T ’ Sfree) = ( phys » O) —» h O ( Sfree_l_slnt T hA) ( phys » Seff T hAeff)

Wi
,||]1]+

HEEF D

ha O (‘/f Stree T Sint T hA-I_S ) ( phys * Seff, a T hAeff,a)

. HABH p,ih + BB s, +nA = EBEFIEZ 0 EAD D Feynman KER P

. BICHEOD T EL. s L:J:%)/_I_\:E]:“_;C;\Ew%ﬁ/? — ﬁﬁF a &DD Feynman X Pa




ISR - B D Z HEE (in progress ) PRI
Homology KNEI 5T —5 ORI & 755

0N O6¢(—p)og(p)

 RORABFHOTEADER & 4=, k=K@ , P = J@[qb’] St
A
> (£ d o (s (4] /(o= Steeld]
FZIE . .. Ad—AP (e™5ml?l) = A (9, \K) h P’ (e Smecl?])
k exp S;t[gb] A o A-exact J
. 1 - 2 T
— Aismt[qs]A:l dpAa'Ml ) [ _95ndfly | Ol Pla Ol Pl ( Polchinski eq. )
dA 2. ON | o¢(—=p)og(p)  o¢(p) o@P(—p)

. INiE T REESD < BRST-BVY J/REAOY—DHE P 1 EEEH

<OHZHEEE "TBY AN/ REMNE—RE Z/EIUDD 1 TiNd

= E SR

Jlinl

— K.Costello, Igarashi-Iltoh-Sonoda, Morris 5 Dt
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We learned that ...

Lagrangian's homotopy algebraic structure : u,,

. For a given Lagrangian, we can solve the BV master equation Ae°»¢! =0 ,

which tells us Lagrangian's homotopy algebra p,, = u; + p, + -

1 1
Sy L] = Ew( @, 1 (@) )+ ;w( @, 1o, ) ) + -

- Homological perturbation lemma describes the Feynman graph expansion.

Hence, the path-integral P preserves the nilpotent property P u,, = poscrive P -

P . homotopy alg. of the original QFT — (loop) homotopy alg. of its effective QFT



Reminder: how to get u,,

Quick review & notation in this talk

. Consider a master action S, [¢] =S.[¢]+ -, which solves AeSl¢1=0 .

. Write ¢ for all of fields and antifields collectively.

e.g. For QED, ¢*=A,,c,y,yw (if any, antighosts & auxiliary fields ) and their antifields.

. Rewrlte our action into the contracted form :

Splol = Y ——— [ dx iy a0 0% %
bv - (I/l+1)' apay...a,

: | 1 " a b a a
BV symplectic form: w,, = Z nt 1) dx ¢“ w, (,u a.a P @ 1) .
4 n tY



Reminder: how to get u,,

How to get Lagrangians L

. We can always start with the contracted form of the BV action :

1
Splel = D, n+ 1) J dx 9wy, (W4, 9" 0")

. We assume that y,, , is graded symmetric »_,, =(-)"u_,,. .

which ensures the “cyclic property” = (= )dolart+a,)

/’taO a...a, /’tal...an ap, °

. Then, the condition aes=0 glves the (quantum) Lo relatlons

o™ u —Z oo wo MY, =0 - underllne denotes the rlght sum | '
my(n m)! ne e Oyl

m...al




Reminder: how to get u,,

You can weaken L. ’s assumption :

. We can always start with the contracted form of the BV action :

1
Splepl = 2 (n 1)' de 0% @y (Hoyq) 90"

. We assume that Hayar.c s graded symmetrlc Hab. —(—)“bu ba..

T :( )ao(a1+ +a)
O 1... n

which ensures the CyCIIC property

//tal a,day
. Then, the condition aeS»=0 gives the (quantum) L. relations.

— When we relax this assumption, we get (Qquantum) Aeo .



Reminder: how to get u,,

How to get Lagrangians A

. We can start with the contracted form of the BV action :

1
Sbv[(p] — Z n+ 1 de (pao a)aob (/’tbal...an ¢an "ot ¢a1)

n

. We just assume the “cyclic property”

_ ( - )ao(a1+...+an) /’tal. Only_

//tao dl...an ..an ao

. Then, the condition Ae’» =0 gives the (quantum) A« relations.



Reminder: how to get u,,

How to get Lagrangians A

. We can start with the contracted form of the BV action :

1
Sbv[(p] — Z n+ 1 de (pao a)aob (/’tbal...an (pan "ot ¢a1)

n

. We just assume the “cyclic property”

_ ( - )ao(a1+...+an) /’tal. iny_

//tClO Cll...an ..Cln ao

. Then, the condition Ae’» =0 gives the (quantum) A« relations.

— Lagrangian’s (Qquantum) A algebra does not need an additional
“matrix-like structure” or “space-time non-commutativity”.

But, when n , =(-)"*u ,, ~comes from physics, A. may be physically redundant.



Notation

The relation between u°, , and u,, =pu +p,+ -

We can get the L« relation 2 T : Y we, . ,ub . =0 from (5,,S,)=0,
’ m!(n —m)! net: tml m

These give a “component” expression.

. As we can switch from 9, j*~ 0 to di’P1~0 (jP'=j* xdx*: (D-1)-form),

we can switch from x°, . to u,: H®" - H (coder u,:T(H)— T(H)) .

( Now, Instead of dx* , we need to consider dgp“ as bases of H. )

. Then, we can obtain Lagrangian’s homotopy algebra (u,, )2 =0

where u, = pu; + p, + p3 + --- Is a coderivation acting on T(H) or S(H) .



These are Lagrangian's homotopy algebras.

What | would like to tell you is as follows . ..



Today, | would like to tell you ...

Symmetry’s homotopy algebraic structure : pu,,,

1. Homotopy algebras Hoym also appear in realization of given symmetries.

2. We can incorporate symmetry's g, Into Lagrangian's u,, and get

( Hoym + Hpy -+ )7 =10

—

= Hiotal

3. The Feynman graph expansion P = J@[¢]esfree[¢]/z preserves this

ootal = Hgym + Hpy + -+ in the sense that Py, = p,,., P with (., > =0.



Today, | would like to tell you ...

What we can read from ug,,

4. Homotopy algebraic structure pu,,, O (i) = gy + pp, + +)> =0

- tells us how to realize symmetries in every “effective” theory.

- haturally includes 1-form symmetries, etc.

- may explain why symmetry or anomaly remains under the path-integral,
even If it may break the manifest invariance.



Homotopy alg. In symmetry

We ConS|der a Lagranglan S[¢] w1thout/W|th gauge degrees ,
and suppose that S[gb] IS Invariant under 5¢ = ¢“ 5 gb ( ¢ constants ) .

. We will explain

() Homotopy algebra g, appears in the realization of symmetry,

which can be Incorporated into homological data.

() Behavior of u,,. = pm + my, + -+~ UNder the path-integral



1. Homotopy algebra u,... in the realization of symmetries

We consider. . .

. First, we explain p,, intuitively within the canonical formalism.

— —

. O O O O
momentum z & the Poisson bracket {A,B} = A B

oYt o, Om, O

— we see a homotopy algebra in QFTs :

what i1s 1t / why or how It appears

. Next, we give a rigorous explanation by using the antifield formalism.



1. Homotopy algebra u,... in the realization of symmetries

In the canonical formalism, we find ...

—

We consider a Lagrangian S[¢] without gauge degree:

the canonical form S[¢] — S[¢, ] = de (n ¢ —H) .

| Suppose that S[¢] is invariant under ¢ =e€“-5, (€“: constants) . :

. These global symmetries may or may not be linearly realized :
The Poisson bracket gives €% 5, = €“{ S [¢p,n]. ¢ } .

~This S, [¢, x] ~ J'dxn- 0.+ --- 1s a realization of symmetry generator.



1. Homotopy algebra u,... in the realization of symmetries

Global symmetiys Lie a/gebra In the canonical formalism

— e T = g s > — P - . L = o= _
7Y VD # S > 7 o7 = FLp—r sl S e 4o

Suppose that a Lle algebra [ Tb] _fabCT IS reallzed on- shell

C

{S [qb 71'] Sb[gb 7z] } fab [¢ 7r] ( equality up to e.o.m.) ;

op

. Notice that the action § = S[¢, #] generates trivial transtformations

do 5H> 5F+<d7r 5H) 5F

(s.71g.71}= (=50 ) 5o+ (Gt 5 ) 59

. By using functionals S _,[¢, 7] , we can get the off-shell equality :

{ S, 7], Splp, ) }=Ffp Sp, 7l + { S . Spplh, 7] }



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. Take {S., }of {S,.S}=rfuS.+{S.S,,} and consider the cyclic sum :
{Sc : { S, }} + (cyclic) = { S 288, + {S ,Sab} } + (cyclic)

- After some calculations, we get

Sk[¢’ ]z'] ]Clgkf@l — { S , f@kSkg[QU] — {Sg[¢9 71'] ’ S@[¢9 ﬂ] }}

JacoZi id.

. Both sides of this equality vanish separately.

. Notice that the r.h.s. takes the { S, }-exact form.



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. By using new functionals S, [¢, 7| , this (r.h.s.)=0 Implies

1 1
{ Sg[¢9 ﬂ] ) S@[¢9 7[] } :f@k Sk_c[¢9 7[] T gfa_bck Sk[¢9 7[] + 3{ \) ) Sa_bc[¢’ 7[] }

. We get higher structure constants £, ¢ .

a’*~ab

We can repeat the same calculations by introducing a set of {S5.5,.5,,.5,.....} :

{S@[gb,ﬂ],{Salm[qb,ﬂ],Smak[gb,ﬂ] }} = {5, ... )

> 4

order k Jacal;i id. off—shell ~ ()
Again, (l.h.s.) and (r.h.s.) vanish separately.



1. Homotopy algebra u,... in the realization of symmetries

Intuitive explanation : the canonical formalism

. We will get a set of structure constants {fab",f;bcd, bed } , a set of

generators {S,S,.5,,.Sue.---| »and a set of algebraic relations :

A

(rhs) D {S. uo.7.5, o711 }=D fi ol Spa, ol
[

k

(Lh.s.) Y P =0 - Lerelations

. When there is no higher conservation low d,;* ~ 0, higher f,,.4, ... cannot occur.



The same goes for the BV formalism.



1. Homotopy algebra u,... in the realization of symmetries

Symmetry in the BV formalism

. BV defines the odd Poisson bracket as follows.

— —

5 & A
0P o¢; Oy o9

the BV bracket : (A,B) EA[

~ Odd symmetry generators S,[¢] ~ degbjf 0, + -+ gIves ¢ = ( Sulol . ¢ ) -

These S,[¢] generate symmetries of the action: we have ( Silol ., S ) = 0 NOW.

~ The action is the trivial symmetry generator : (S,¢#) = il (S,¢%) =0

oP*°

— the action itselt generates every on-shell vanishing functions.




1. Homotopy algebra u,... in the realization of symmetries

Realization of symmetry

We ﬂrst COnSIder a Lagranglan S[¢] W|thout gauge degree S

Then, the BV master action is this S[¢] itself.

| Suppose that S[¢] is invariant under ¢ = e -5, (global sym) |

g amg - = ca e L o o g A amg- - ey - i _ o~ e i i Y a o e e . pAsama- PR xh kL — = AT . o P P . pada
4 2 Ay e » gy _ ae Q- - > o2 < g R, B> 24 e _ e _4 dah T S 2 > (% 12 TN\ _ e ¢ £
g e > _ 7= 2 > e st 7 _ L7220 424 il ' > 7 - L —

A

. For these constants ¢4, we introduce constant (or global) ghosts &4 .

Then, the action S[¢] is still invariant under ¢ = &% - 6,¢ .

. We write ¢ for all ¢, ¢* correctively.



1. Homotopy algebra u,... in the realization of symmetries

Realization of symmetry

. We can get generators S,[¢] = S,[¢, p*] satisfying

— —

5 & A
0P ogy o0y o9

O = ( Silel , ¢ ) with the BV bracket (A,B) EA[

. These S,[¢] generate symmetries of the action: we have ( Silol, S ) = 0 NOW.

~ We couple symmetry generators S,[¢] ~ de d* - 6,% + --- to global ghosts &4 ;

The linear combination S,[¢] &4 is of ghost number zero and

iIncludes all of symmetry generators { S, }, for a given Lie algebra.



1. Homotopy algebra u,... in the realization of symmetries

Realization of symmetry

. We can always find functionals $,zl¢] giving the off-shell equality :
(848".858%) + (S .S458°E") = fup" Sc ™.

- We can repeat the same calculations as before.
( Every step is precise in BV, which Is not intuitive one unlike before. )

We get 2 (SAI...AkaA"- e, SAHI...Aan"“ : --5A”) = ZfAl...A,BSBA,H...An‘fA”- e
k z

1

m!(n—m)!

and L relations 2

m

B A A
fAl...Am fBAmH...Aan no o E =0




1. Homotopy algebra u,... in the realization of symmetries

Realization of symmetry

1

m!(n—m)!

B A A
fAlAm fBAm_H...AnCén"'g 1—().

We can simplify the relation

. Let us consider the generating function of structure constants and the new bracket :

I 9 9 9 0
Sonlél = 2 gy & o, €Y g and (L

e = e e~ 9 06

. Then, we find that ( S,,[].S,,,[] ): = 0 is the same as the L« relations.

sym

- BV tellsus . ..
the nilpotency of given o, = ( S,,,[¢1. ). = homotopy algebras.



Comment :

A set of 2 D he .c=0 gIves a homotopy algebra.

m'(n m)'

This gives a kind of “component expression”.



Comment :

. We got the L«-relations u,,, & u,.,, . What are these inputs?

Q. What is the vector space H; on which pu,, acts?

A. The vector space of constants ghosts £ =¢&*-e, (e, are “bases”)

or its (symmetrized) tensor algebra S(H;) .

. The structure constants ¢, ,# are components of multilinear maps :

_ B
Heym(€a,s - -5 eAn) =fA1...An €B

. Then, the relations can be cast as (g, y> =0 , which acts on the Fock sp S(H,) .



Comment :

We got a homotopy algebra of given symmetries 2

m'(n m)!

— This is invariant under the path-integral.

T'his I1s another homotopy algebra that

IS preserved under the path-integral.

fal...am




1. Homotopy algebra u,... in the realization of symmetries

The BV master equation is now modified

- We also got Y (s, alel.Sa.  alel)=Y fu. aESpa.,. . .alel , WhICh provides
k [

the action S, [¢] and source terms S [p.&] = Z 54410 s M satisfy

1 1 a'S’SOZ/tY‘Ce[ ? ]
2 (5ol Souedl €1 Splo) 4 Sl €1) == 2 o =P a8

- Now, (S + -+, S+ --- ) = O Is obstructed by given global symmetries.



1. Homotopy algebra u,... in the realization of symmetries

We can resolve it and get (us,,, + py, + -+ )* =0

- We consider the sum

1 1
Sl €12 Splg) + D 73S0 alo) &b E84 Do G fy g SNt
k ' n

+ 1)!

Syonreel#:8] Soml€]

. We also consider the sum of the anti-brackets

P P R A2 O R A
s T Lopa oy opr opel| T oeh ogr gt ogh

. Then, we obtain ( S,,..[.&1, Spul®. €l ),: =0,

which gives a homotopy algebra (s, + , + ) =0.



Comment :

The relation to conservation lows

. We introduced constant ghosts &4 for ¢ =e”-6,¢ .
These &4 come from usual conservation lows 9, j4 = 0 .

In many cases, these & have ghost number “1”.

. If there exist higher conservation lows 9, j#1## ~ 0 ,

constant ghosts which have ghost number "n” may appear.

So, when QFT has a 1-form symmetry, constant ghosts & which have
ghost number “17 or "2" naturally appear in the above procedure.



Comment :

For QFT with gauge redundancy

. If your QFT has any gauge degree, first of all, you must solve
the BV master equation and get a solution S, [¢] = S[¢] + ¢p*o¢p + --- .

. You can apply the same calculations to S, [¢] , Instead of S[¢] .

Then, you can see symmetries of gauge invariant QFTs.

. If you want to consider symmetries of a gauge-fixed theory Sgpd¢]

it is the same as QFTs without gauge degrees.



Summary of the above result:

~We can consider (...) = J[@¢] (...) e |Z  with

1
Storall @51 = Sp L] + Z X Sa,..4l90] Eh. L EN Z i+ D) Ch fBA1 A, En L &N

Syonrcel 8] S, mlé]

StOtCll[(p’ 5] giveS Hiotal = Moy T Hsource T Hsym - where we have (/’ttotal)z =0 and (lubv)z — (lusym)2 =0

One can show that the path-integral P satisfies

P (//tbv T Hsource T /’tsym) — (/’tl;v T lusiource T iusym) P

and P Is given by a simple recursive relation in terms of these g4,

Il/tSOMI"C@’ :usym )



Example: one possible i, .. ; In the Maxwell theory

- _1 . -
. We consider the Maxwell theory : S, [¢] = de TFWFW +A #9,C| .

« Let us consider translations 6A, = ¢“0,A, and shifts 6A, = ¢, x" withe ,+¢,, =0.

( The commutator is the gauge transformatlon with e”e,, x* )

Usual currents

constant ghosts ¢,, £,, which have ghost # 1 appear.

e The Maxwell theory has higher order currents ¢ d, F** =~ 0, which gives constant shifts.
a constant ghost » WhICh has ghost # 2 appears.

S}’m[g] J [ *5#51/5//”/ ] and SSOLtrce[qo’ 5] — de [A >X<Iu(aI/A,M 51/ T xl/ ,MI/> T C* (aﬂcgﬂ T xﬂ é:,ul/éﬂ T 7]) ]
o CFa

( Likewise, 2-form abelian gauge theory deFWFM gives more interesting result. )



() Homotopy algebra u,, In the realization of symmetries

& How to incorporate u,,,, INtO (u,,, + y, + --)* =0

() Behavior of u,,.; = pem + my, + -+~ UNder the path-integral



Comments:

We learned that (S,,.S,,)=0 & (u,, )" =

. BV Lagrangian gives a homotopy algebra:

: 1 . : : 2
(SbV’SbV ) =0 1S Z m\(n — m)! Ha . . .a, b /’tbam...al =0, which Is (lubv) —
. Likewise,
(Ssym[cf] sym[g] )5 =0 IS Z fAl...AmB fBAmH...AnC:O I Wthh iS (/’tsym )2 — O "

m'(n—m)'

. Action + source + sym.-generator s, =S, + Syuce + Soym dOES

otal — source

: ) )
(Stotal ’ Stotal )(p,é =0 gIves (/’ttoml) — (//tbv T Hsource + lusym) =0.



2. Behavior of p .0 = Uy + g, + -

(u,..;)> =0 in “effective” theories

« Wefirst split §,,[¢] into the kinetic part S, .[¢] and interacting part S;,[¢] :

/“t};nt

Sp @] = Speol@] + S, l@] , which provides p,, = pu; +u, + ... .
* We split fields ¢ = ¢’ + ¢” and define a generic “effective” action by integrating out ¢”,
PiSI + ) — Alp) = In| DI

* Homological perturbation lemma guarantees that
an effective one nA’+(A[¢], ) is nilpotent, which gives (u, i)’ =0 .

We can obtain (py,,)*=0 and (g,,,)" =0 recursively, as(u;, )" =0.



2. Behavior of p .0 = Uy + g, + -

(u,,..)* =0 is preserved under the path-integral

* We know
( Specl@l, ) isnilpotent, whichis (u;)*=0.

(Spolel, ) = (Specle]l + Siulel, ) Is nilpotent, whichis (uy + u;, > =0.
* Now, we got
(Storall @15 )pe = CSplels ) + CSgpureel@s €1+ Sgynlél, ), 1S Nilpotent,

which is (lutotal)2 = (//tsym T Hpy T o )2 =0.



2. Behavior of p .0 = Uy + g, + -

(u,,..)* =0 is preserved under the path-integral

* We also know
nA+( Spelel, ) isnilpotent, whichis (AA+p)*=0.
hA + ( Sylel, ) =hA+( Spelel + S,lel, ) isnilpotent, whichis (A +p,,)*=0.

« As long as symmetries 6¢ are not anomalous, [D[¢] SI9) — [D[¢+5¢] S+l we may get

AA + ( Spral®, €1, e =RA+ (Splel, ) + (Spureel®s &1+ Snl&l, ), 1S Nilpotent,

which is (AA + py0)° = (g + AA + piy, + - )> =0,

We consider the Homological Perturbation connecting these.



2. Behavior of p .0 = Uy + g, + -
Free theories give the Gaussians, which fixes the ambiquity

e Since we can solve free QFTs, we start from a deformation retract of free theories :

h" O (State Space, (Sfree’ ) ) (ﬂ_; ( on shell of ¢”’ (Afree’ ) )

pituy cohomology of /i} /;i

where a BV propagator h” gives a Hodge decomposition : u/h"+h"u/=1-1i"p".

 Even if the path-integral of ¢” breaks the manifest invariance,
we can read (non-linear) realization of symmetries in effective theories.

HPL tells us recursive relations



Iree part : realization of .., = pgy,, + My, + -+ in effective theories

h" O (state space, (Sgees ) )

TN cohomology of i i

i Ti =

( onshell of qb” (Afree, ) )

-~

' perturbation : (Siee, ) V> (Shyvs ) = (Spee» )+ (S5, ) gives the tree graph expansion

})ree
h,,, O (state space, (Sy,, ) ) 2 ( on shell of @”, (Al@], ) )
~ ~ itree ~ ~~ - ~- —
pituy cohomology of /i] Uy,

perturbation @ (S, ) V= (S )pe = Spvs )+ Syource T Ssyms e

5 Prree
Nyee O (state space, (Srs g ) = ( onshell of ¢" (Ammz[Cb 51, )¢§ )

~
.

ltree

—~ v

cohomology of ji{

Hiotal P Iutotal

As the BG-current relation in a generic QFT,
we can get u;.., = Uy, + My, + o+ from recursive relations.



Iree + loop : realization of w,,..; = pyy,, + Wy, + +++ in effective theories

h" O (state space, (Sgees ) )

T cohomology of ji{ i

i Tl« =

( f)n shell of gb”J, (Afees ) )

-~

perturbation : (S, ) V> AA+ (Sq., ) gives the Wick theorem

PWick
hyioe O (state space, NA + (Sfees ) ) 2 ( onshell of ¢”, hA'+ (A[¢'], ) )
- ~ IWick ~- - ~- -
AN+ +h A +uy cohomology of /i hA+py

perturbation to obtain AA + (S5 ).

~ | PWick
hywior O (state space, A+ (S, ). ) 2 ( onshell of ¢”, hA'+ (A, [¢', &, ). )
- _ 5 YWick ~ - g _
AA+u, , cohomology of /i AN+,

We can get ,uc’]_mml = ,us’ym + p;,, + -+, which includes 71, from recursive relations. |



Example: Lorentz sym of light-cone SFT

1 |
. We consider Witten’s open SFT: S, [¢] = Ea)((p, Oprsr®) + ga)((p,//tz((p, ) .

. This is manifestly Lorentz covariant : ¢ =¢,, | do X*(o) 5)(6( 0 which gives S, [, £] .
d “(o

A oM
BRST operator has a similarity transformation Qzpe; = ¢ < co L)8" " — p* Z c_.af ) e” .
n+0

* This gives Kato-Ogawa’s no-ghost theorem:

jlong ® (covariant states, QBRST )

lon
p 8

2 ( lightcone states, ¢, Léightc‘me )
il

ong

-~

cohomology of /i ul

py+py



Example: Lorentz sym of light-cone SFT

* As a result of the perturbation,

~Jong

> : P : -
o8 O ( covariant states, Qgger + Ho + Hspurce +Sym) 2 ( lightcone states, ¢ L(l)’ghtw”e + U

~ [ long ~
Uy, cohomology of /i

lightcone lightcone )
int TH source+sym /)’

-~

H lightcone

we obtain a Witten-type light-cone SFT with nonlinear Lorentz invariance.

» (Classical light-cone action :

1 . © |
lioh lioh
Slightcone [¢phys] = Ea)<¢phys’ €0 LOlg tconeqpph)’S) T Z n+1 a)(gaphysa :unlg tcone(qﬂphysa O ¢phys) )
n=2
e Nonlinear Lorentz transformation :
1

long CcoV

0 Pohys = ﬂLorentz[(pphys’ 5] =P ilong 5¢

1 — (/’ttoml o COL(Z)C ) hlons

» Lorentz symmetry tollows from [ .. i1 ren; ] =0 @nd cyclic property of ;. -



Summary

Symmetry’s homotopy algebraic structure : pu,,,

1. Homotopy algebras Heym also appear in realization of given symmetries.

2. The Feynman graph expansion P = J@[¢]esfree[¢]/z preserves this

— - / . / 2
Hiotal = Mgy + Hpy, + -+ In the sense that Py, = 1, P with (u;)" =0

3. We can incorporate symmetry's g, into Lagrangian's u,, and get

(Mt b+ )7 =0

~

= Hiotal



Summary

What we can read from ug,,

4. Homotopy algebraic structure pu,,, O (i) = gy + pp, + +)> =0

- tells us how to realize symmetries in every “effective” theory.

- haturally includes 1-form symmetries, etc.

- may explain why symmetry or anomaly remains under the path-integral,
even If it may break the manifest invariance.



Plan

() Path integral as a homological perturbation

() Some examples in QFT calculations

(i-a) Applications to “perturbative QFT”

(1-b) Applications to “realization of symmetry”

(n-c) Application to "non-perturbative effects”

Blackboard (if time permits)
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Supplement 1§

BV & A, in QFT




BVandA__ in QFT
Set up

.- Let us consider a quantum field theory without gauge degree:

1 1
S[¢] — 5<¢9 ﬂ1¢> 3 <¢v ﬂ2(¢9 ¢)> T

- As usual, the path-integral of free QFT can be performed as the Gaussian

J@qﬁ ez () = (const.)\/y_zdet M 2

. For that, your QFT must has a regular Hessian

0°S[¢]
a¢ aa¢b

detp, # 0 where (), =



BVandA__ in QFT
Review of BV & A_,

. The path-integral condensates “your field configurations”™ onto “your on-shell”.

. Classically, the on-shell is given by solving your e.o.m. , which is in the kernel of

the operator alld = u(P) + u(p, )+ --- =0

o

. Any function F, _ [¢] proportional to the e.o.m. vanish on shell.

Hence, the field transformation é¢ = F. . [¢] gives (trivial) gauge degrees,

which must be removed In the path-integral.

. Such gauge degrees can be killed by adding extra fields — Koszul-Tate.



BVandA__ in QFT
Review of BV & A_,

. Let us add extra fields ¢* and consider the operator Q defined by S :

_ (S )_(),,S 0 0S8 0 ‘= ( )
O=(S, )= YR YEREVEEY Q¢*=(e.0o.m.

. Thanks to extra fields, any F, . [¢] becomes Q-exacts.

. As a result, by extending your field configuration to { ¢, ¢*},
the on-shell is given by the Q-cohomology.

. We can remove trivial gauge degrees by setting ¢* = 0 In the path-integral

7 — [@¢ eolP] — J@M’ d*] 5(p*) A



BVandA__ in QFT
Review of BV & A
. The consistency condition O S[¢] = 0 I1s called the classical master equation :

¢_ 0S50S 9508 _
0P 0 Op* o

(5,5)=0

. The solution of (§,5) =0 is call the master action — Recall that it has A__ !!

. If your QFT has no gauge degree, this S is the same as a given classical action.

. As is known, scalar, Dirac, Maxwell or Yang-Mills QFT can be described by BV.
So, ordinary QFT has A — In particular, we can switch from A to L.



. Example: Classical Scalar field

. 1 A
the BV master action : S[¢] = 59 (0 —m?) ¢ - 3K'§03 | 4'§04

Since S[¢] has no ¢* dependence, Q acts only non-trivially on ¢* as follows:

% sk 2 2 K 2 % 3

Qp=0, Q¢*=(S5,9p*)=(0 —m)¢+5<0 BT

which acts on the components : 0 £ H, £ H,. & 0
ghost field antifield ghost™

— We assign the basis {e,e.} and use a "super-field” ¢ = pe + p*e. .
Then, we find A_ str u,(¢p) = (0> —m*) pe., (). ) =xp e, u(p.d.¢)=lp e,

which acts on the basis: 0 — H — H — 0



BVandA__ in QFT
Review of BV & the path-integral

. The bare action for scalar fields might be too trivial to see it.
But, anyway, such ordinary theories indeed have A__ structure.

S0, you can apply all technique that we see later to such QFTs.

. As we see later, A_ or L becomes slightly non-trivial and will be helpful

when we consider effective field theory or RG flows.

. The bare action for gauge theory will give a good example.



BVandA__ in QFT
Review of BV & the path-integral

. What will happen if your quantum field theory has gauge degrees?

Your Lagrangian S.[¢] = %(qb,ﬂlqb) ;<gb,ﬂ2(¢, $)) + --- IS Invariant under

the gauge transformation ¢ (x) = de R (¢;x,y) ¢, ()

.- This implies that your e.o.m. and thus Hesslian are degenerate

05119 5 — [aScl[¢] t025c1[¢] ~
a¢a ’ a¢a a¢aa¢b B

N N

58, = -Rab] $,=0 — de 0

e.0.m. =0

. |t is algebraically problematic, even for the Gaussian.



BVandA__ in QFT
Review of BV & the path-integral

. To remedy this kind of degeneracy, you need ghosts

05,91 5 — [aScl[¢]

op, | o,

7
_— _—

03¢ = | Rab] $,=0 —  S=S4lpl+ @R/ ¢,

e.0.m. =0

. If your gauge symmetry is NOT redundant, the Hessian can be regular
INn your extended field contents ¢ = { ¢, ¢} — as Lagrange multipliers.

. I your gauge symmetry is redundant, you need “"ghosts for ghosts”
Rab 5¢b — Rab ' Tbc ¢c =0 — Scl[¢] + (¢>}<)Cl Rab Cp + (C*)a Tab Hp

—

=0



BVandA__ in QFT
Review of BV & the path-integral

. The filelds ¢ = {¢,c,...} are determined by studying the gauge algebra.
. The antifields ¢* = {¢*, c*,...} must be added to kill each trivial gauge degree.

. The extended action S[¢, ¢*] is given by solving the consistency equation

0,A 0B 0A OB

(S,S)=0 where (A,B)= . e
dp Jdp*  Jdp* O

. Then, you can define the path-integral by fixing gauge degrees ¢* = F[¢]

7 = J@[qﬂ, @*] 8(p* — Flgp]) e>1#-"]



BVandA__ in QFT
Review of BV & the path-integral

. Example: Yang-Mills field

. . | .
the classical action S [A] = — ZdeFMUF”” can be rewritten as the form of

| ~ 1 ~ 1 ~
S, [A] = 5<A,//t1A> + §<A,ﬂ2(A,A)> + Z(A,//t3(A,A,A)> where A__ products are

(A, A) =d X (A ANA,) — (XkdA) AA, + A A (KdA,)
Pa(A1, Ay, Ay) =A A (K (A ANAY)) — (X (A ANAY)) AA,

. This A_ is iIncomplete and a part of the full A_ of the Yang-Mills theory.



BVandA__ in QFT
Review of BV & the path-integral

. . 1 . .
~ The Yang-Mills field action S [A] = - ZJdXFﬂVFﬂU IS Invariant under

the gauge transf. 6A,=D,A=09,1+[A,,1].

. We thus need the ghost contribution (A¥)-D,c and must solve (S,S5) =0

. . . 1
The master action is given by S§S=S_,[A] + (AF) - Dﬂc+56* [c,c],

which enables us to perform the path-integral.

. The BRST transt. 6¢p = (¢,S) = u (@) + u,(p, ¢) + --- tells us the full A_ structure.



BVandA__ in QFT
Review of BV & the path-integral

. We can find the full A_ structure, which is given by

C 0
. =d =d*d =d
c* dx A ghost field antifield ghost*
C1Cy 0 Ci
ciA, +Ac 0 A; .
H ( ¢1a ¢2 ) — ﬂz(AlaAz) _ ClAik + AikCZ s M3 ( ¢19 ¢29 ¢3 ) — 0 ’ ¢i — Ai* (IZ] ~3)
cicF —cl¥cy — * (A A (KAT)) + % (Af A XA,) fiz(Aq, Ay, As) c¥

. As is known, the Berends-Giele current recursion relations can be quickly
derived from this A_ structure of the Yang-Mills theory.



BVandA__ in QFT

Comments on quantum BV

. We reviewed around the consistency equation, which is nothing but A__,

0A OB 0.A OB
Jdp Jp*™  OJdp* O

(S5,5)=0 where (A,B)=

. It Is the classical part of the guantum consistency equation

o 1 1 J. 0
Ae’ = AS+5(S,S) e> =0 where A=

s IS the odd Laplacian.
Y 0@

. Unless your symmetry is anomalous, A S =0 holds and (§5,5) =0 Is enough.

. The quantum consistency equation Ae° =0 is nothing but the quantum A_



Lagrangian's L_, algebra



BV and L __ in QFT

Our Lagrangian’s homotopy algebra

~ We consider a QFT without gauge degree: sig1= )

n

(n +

D!,

dx (goa a)ab) Ha, al...anb qoan s

( Or assume that we could perform the Legendre transformation / gauge-fixing

and could obtain 1Pl action / path-integrable gauge-fixed action : S,,;/Sgxs -

. In this case, we can find (s,,,S,,)=0 (and AS,, = 0 with a=(-)#"

. The classical BV master equation (s,,,S,,)=0 glves

. . I
the (cyclic) L« relations » oo iab Ha

'(n — !
~ m!(n—m)!

hen, vertices of S,,,/Szre May or may not have explicit 2 dependence. )

O O )
Spa opx "

=0 .

ap

Q@

dy



BV and L __ in QFT

The relation between u°, . and pu,, = u, + u, +

C b . " (11 7 =
~ The relation 2 m'(n_m)' W a b M o =0 IS @ “component” expression.

U -D—1 .,
. As 0,j'~0 and dj"~ =0,

we can switch from x°, . to pu,: H®" - H (coder u,:T(H) - T(H) )

( Now, Instead of dx* , we need to consider dyp* as bases of H. )

. So,we canget (u,,)* = (pu;+p,+++)> =0 from (S,,,S,,)=0

1

~ Then, your action takes S[g] = la)((p,//tl(gﬂ)) >

2

0)( P, ﬂZ((pa QD) )



BV and L __ in QFT

Lagrangian's homotopy algebraic structure : u,,

. . . 1
~ For a given Lagrangian, we can solve the BV master equation AS+5(S, $)=0,

which tells us Lagrangian’s homotopy algebra u,,, = u; + py + -

1 1
Sy L] = Ew( @, 1 (@) )+ ;w( @, 1o, ) ) + -

- Homological perturbation lemma describes the Feynman graph expansion.

Hence, the path-integral P preserves the nilpotent property P uy,, = pysocrive P -

P . homotopy alg. of the original QFT — (loop) homotopy alg. of its effective QFT



Examples:
Lagrangian’s homotopy algebras



BV and L __ in QFT

The BV master equation tells us the following 3 steps :

. ldentify H and a complete set of fields ¢ = {¢% c’,...;d*, c*, ...} € H

»rac vy
. ldentify its graded symplectic form (¢?, ") = > and the kinetic operator u,

. 1
— Your free action takes the form of S, _.[¢] = 5 (@, pu; @)
. ldentify the multilinear maps {u,}>, from interacting terms.

— Your vertices are given by S. (@] = Z

n

n+1<%ﬂﬂ%~w¢ﬂ



Example 1A. Chern-Simons-type QFTs

3d Chern-Simons theory

=d ——d =d
The state space takes H. “—> H, '*— H,. -— ¢* andthus H=H & H, ® H,. ® H..

N——
—— —

shost field antifield ghost™ 1 0 ~1 )

. Fleld variable Is ¢ = {A,c;A*,c*} € H and the symplectic form is (¢, p,) = (Ay, AF) = (cy, )

. The kinetic operator and multilinear maps can be read as follows :

. 0 c; G —C1 A G
A B dC Al Az B Cl/\A2+A1/\C2 _O
P AT | —aal| @ 72 |AFL AR T —A, A A, — c,AF + A¥c, ' Hnz3 =T
c* dA* ci cF ANAF —AFANA —c AcF+cl* A

| 1 1
— We find Sy ] =5(q0, ﬂ1§0>+§<€0, p, (@, ) )



Example 1B. Chern-Simons-type QFTs

Open string field theory

=0 =0 =0 H1= ﬂ1=Q

The state space . -+ — H(,;l — H¢ - qu* o H¢1 7

ghost field antifield ghost*

-and H=P H, & Hy @ Hy,

geN

g 0 —g

The field ¢ = {¢,¢\....;¢*.¢7F,...} € H and the symplectic form (¢, p,) = 2 (= )%, D)

) ()
h | |04
The homotopy algebraic structure : f* _ QQf; "
oF Q ¢*
"dots) \ :

1 1

1
P

of
of

2
¢,

, p*

PF

L)

(

\

8

P * P,
Py * D
Po1 * P_,
Pon > P_g

’ /’tn23 — -




Example 2. scalar fields S[¢] = %gb (0 — m?) ¢ + %gb“
This QFT has no gauge degree

| =0 p=0—m’ =0
The state space: 0 — H, — Hy — 0 and H=H, ® Hy.

—— ——
N—

ghost ghost*

field antifield 0 —1

. Fleld 1s ¢ = {¢; ¢*} and the symplectic form Is (@, ¢) = (¢, p*)

. Homotopy algebraic structure :

()= (@) - 2=0 o (G G ) = ) - 1=t
\gr) TN@-mip) 2T B \gr g5 05) T \Abidags) 1 P

. Szle] has no ¢* dependence, which is nothing but the classical action.

1

n -+

. |
— We find SBV[(p] :5<(ﬂ, /’tl(p> | 1 <(,0, //tn((ﬂ,,(ﬂ)> :S[¢]



Example 3. YangMills-type QFTs

: 1 | 1
We also find sl =5<¢, M1(p>+§<<ﬂ, ﬂn(cﬂ,(p)>+z<¢, 1, (0, 0, @) )

Field is ¢ = {A*,c; A%, c*} & Homotopy algebraic structure 1S

C 0
12} ;‘4* = dffZA with {JE @ﬂ”ﬂd% ”l_chgci
c* d* A ghost field antifield ghost*
C;  C ¢, c, Cp C3 0
A A ciA, + A ¢ A A, Aj 0
ol Ax, Ax |~ (A}, Ay) — ¢ A% + A¥c, ’ M3 lAx, Ay, A |~ 0
i Cf cicF —cl¥cy — % (A A (XAY)) + % (Af A xA,) i o cf fi3(Ay, Ay, As)

. As is known, the Berends-Giele current recursion relations can be quickly
derived from this A_ structure of the Yang-Mills theory.



Supplement 2

1. Why every path-integrable QFT

have a homotopy algebra

2. Why the path-integral preserves

such a homotopy algebra

In particular, one can obtain Wick’s theorem in QF T exactly by using this method.



1. Why every path-integrable QFT have A« / L

[ told you that..

. Each quantum field theory that has the path-integral description
correlation fnc. (...) = [U(ﬁ(...) e.8. Uy= D 19!

always has own (quantum) A« structure v.

. Let us explain the meanings of “consistent QFT, path-integrable QFT,
or QFT that has the path-integral description” In this talk.

That i1s “QFT solving the Batalin-Vilkovisky master equation”.



1. Why every path-integrable QFT have A« / L

What was BV ?

. BV 1s a powerful and general formalism that enables us to perform the path-integral,
even for gauge theory. It is the geometry of the BV odd Laplacian A with (A)2=0 .

To define J@qﬁ(...) , A-exacts vanishj@gb (A exact) = 0 and the integrand must be

A-closed : A (integrand ) = 0 .

. Then, for each QFT, this consistency condition gives “the BV master equation”.

1
Aedl?l = () = hAS+5(S,S):O

( The BV bracket is defined by (- )*A4,B) = A(AB) — (AA)B — (- )*A(AB) ).



1. Why every path-integrable QFT have A« / L

So, we consider QFT solving BV eq.

. Ihe solution S[¢] of the BV master equation has the following form:
Slpl = Sylpgl + ¢*(Slpl,c) + c* (Slg], ghosts for ghosts) + ---

~

classical action for gauge degrees for redundancy of gauge degrees

. This BV action S[¢] gives a set of "vertices” u = {u,} ., as follows

1 1 1
S[¢] — 5<¢9 /’tl¢> T §<¢? ﬂ2(¢9 ¢)> T Z<¢9 ﬂ3(¢9 ¢)> + .-

For a given QFT, this BV master action S[¢@] is unique in some sense.
Actually, these multi-linear maps {41, i,,} .1 satisfy the (quantum) A./L. relations.



1. Why every path-integrable QFT have A« / L
Equivalent rep. of solving BV eq.

2

~ We consider the operator aAg=hA+ (S, )with A = (- )? a;a(p*, which gives
N

nAg ¢ = o0 = P + (P, @) + 15, p, P) + -

. Note that “solving BV eq.” equals to “requiring (71 A ) = 0” because of

(hAg)* = (S,hAS+%(S,S)) .

. Actually, as we see, (i Ag)* =0 is nothing but the quantum Ae/L. .



1. Why every path-integrable QFT have A« / L

Solving BV eq. = requiring quantum Ac/L

. We can expand (hAg)? =0 actingon ¢ = Y ¢, + Y ¢ as follows

(nAs)2p=hAg | i+ (b §) + (o o )+ -

2

=3 [n B (s + (I (b)) |
, o g Vg

[+k=n

. These are nothing but the A«/L« relations, which may become more explicit it we use

o o

the symbols mimicking "complete basis of the inner product”, e_, = . e, = el
g

and expand each y, with respect to #, such as p, = u, o+ 7t 1) + B> o) + 1y 3+ -+



1. Why every path-integrable QFT have A« / L

In summary..

. To have the path-integral, QF T must solve the BV master equation.

. “Solving BV eqg. Ae’”! =07 is the same as imposing the quantum A
on vertices u = {u,,n,},., of your BV master action,

1 1 1
S[¢] — 5<¢9 /’tl¢> T §<¢’ ﬂ2(¢9 ¢)> T Z<¢9 ﬂ3(¢9 ¢)> + .-

» So, each QFT has own intrinsic quantum A./L. arising from BV eq. .

. This A=/l structure is unique, as is the proper BV action.



2. Why the path-integral preserves Aw / Lo

Next topic..

. We have noticed that every QFT have quantum A / L.

. But, why does the path-integral preserve it 7?7

— That Is also because of BV.

. It might be trivial, as longasyoucansplit¢p = @'+ ¢p"and A = A"+ A”.



2. Why the path-integral preserves Aw / Lo

AS IS well known..

. Any effective action A[¢’] for “a given QFT S[¢’'+ ¢”] solving BV eq.”

P: S[¢'+¢"l — Alg] san@¢”eS[¢’+¢”]
also solves the BV master equation : you quickly find[@WA”(...) =0 and

A AP = J@¢”(A’ + A")e Pt =0

. Hence, your BV effective QFT also has own (quantum) Ae/Le , 4’ = {u’},.

The path-integral P preserves it in thissense: Pu=u'P .



2. Why the path-integral preserves Aw / Lo

Actually, these properties have been well used by experts.

* Flows of exact renormalization group with BV.
* Realization of symmetry in ERG with BV.
« Combing BV and ERG.

— And there are other many earlier works..

Also, there are some works based on the A./L- side of BV

* BG recursion relations of gluon, scattering amplitudes by using Aw/L.

Last year, the speaker studied the classical (tree graphs) part of the above result. He proposed how to
reduce a given “covariant SFT” to corresponding “light-cone SFT”.



2. Why the path-integral preserves Aw / Lo

Now, you may notice that effective quantum A_/L_ Is trivial.

» We have learned that the path-integral preserves BV, and thus A__/L_, .

e So, as long as your original QFT is path-integrable,
quantum A__ /L _, structure of your effective QFT is automatic.

 But, is there any “explicit” construction of such a morphism ?

— We have It.



2. Why the path-integral preserves Aw / Lo

“Explicit” construction of such P

. The perturbative path-integral gives such a morphism very explicitly.

In other words, the Feynman graph expansion preserves quantum Ae/Le !

. We noticed that the (non-perturbative) path-integral gives a morphism of BV,
P - S[¢/+¢N] N A[¢/] — an9¢//eS[¢’+¢,’] ,

which Is often called a ERG transformation, and thus A«/L« Is automatic.

The Feynman graph expansion of this P also gives a morphism.



2. Why the path-integral preserves Aw / Lo

Comments :

. We showed that the Feynman graph expansion preserves quantum A_/L_ .

. Recall that the "non-perturbative” path-integral preserves quantum A_/L_ ,
P - S[¢/+¢//] N A[¢,] — an@¢//eS[¢’+¢/I] ,

which is often called a ERG transformation.

. SO does "non-perturbative path-integral” - "perturbative path-integral™ !!



2. Why the path-integral preserves Aw / Lo

Can we obtain P directly in terms of A_,/L_?

 We obtained some results in terms of the BV master action $[¢]| = S¢...l0] + S;[P] .

We can also obtain corresponding results in terms of A./L. more directly.

e It is given by “the homological perturbation p; = p; + p.. + 7 A”. By using coalgebra
description, we get the effective quantum A./L. and morphism P u = u’ P directly.

1
1+ ﬂfl(ﬂint +nA)

effective Aw/Lec p'=pu;+ P i & morphism P =p

It is the same as the Feynman graph expansion, or applying Wick’s theorem, for
the ERG transformation P: S[¢'+ ¢"] — AlP'] = lnjgng”eSW'W”].

( We skip “what the homological perturbation was” now, which is in appendix. )



2. Why the path-integral preserves Aw / Lo

Comments on path-integral by homological perturbation

* The perturbative path-integral, or the Feynman graph expansion, can be obtained as a
result of the homological perturbation of 7 A , and thus it preserves BV eq. and A./L- .

Int

Following perturbations give the Wick’s theorem and the perturbative path-integral :

perturbation full perturbation

(Sfree ’ ) = nA +\ (Sfree’ ) — 7 AS = h A+ (Sint’ 5+ (Sfree’ )

\ - -4
—~ i~

Wick’s theorem Perturbative path integral

* |t is the same as the Feynman graph but can give explicit constructions of some quantities.
( We may give a brief review of these facts later, if you want to know. )



2. Why the path-integral preserves Aw / Lo

Some remarks

* We considered algebraic aspects only, but now it will be trivial to you.
Please note that all physically important informations are in your concrete construction of

“regu/ar i propagators. (You might learn it from D-instanton. )

* |In general, it may be a challenging problem to solve the BV master equation for
QFT with finite cut-off, if QFT is not UV finite.

Solving BV for QFT without cut-off is not difficult, but “regular propagators” will require cut-off dependence.
As | know, even for Yang-Mills, we know a 1-loop level BV master action only.

* |In general, your BV Laplacian may have cut-off dependence and then ERG flows are given

by BV canonical transformations, or morphisms of quantum A__ /L ..
ERG flows shift the cut-off dependence of your BV Laplacian.

* Application to SFT is easier than other UV divergent QFTs and it is exact.



