Simpoulet: an attempt at proving environmental bisimulations in Coq

Jacques Garrigue (Nagoya University)
Pierre-Marie Pédrot (ENS Lyon)
Environmental Bisimulation (1)

- A technique for proving program equivalence.

- Particularly interesting as it allows proving equivalences with higher-order stateful programs, with type abstraction (e.g. ML programs with modules)

Eijiro Sumii: *A Complete Characterization of Observational Equivalence in Polymorphic Lambda Calculus with General References* [CSL 2009]
Environmental Bisimulation (2)

- Prove that two programs are equivalent by proving that they are bisimilar

- Use strong forms of bisimulations that take advantage of the fact programs are typed

- Allow considering programs modulo reduction/context/allocation, making proof easier
Definition

\(X \) is an environmental simulation if

1. For any \((\Delta, \mathcal{R}, s \triangleright M, s' \triangleright M', \tau) \in X\),

 - [Reduction] If \(s \triangleright M \rightarrow t \triangleright N \) then \(s' \triangleright M' \rightarrow^* t' \triangleright N' \) for some \(t' \) and \(N' \) with \((\Delta, \mathcal{R}, t \triangleright N, t' \triangleright N', \tau) \in X\)

 - [Evaluation] If \(M = V \) then \(s' \triangleright M' \rightarrow^* t' \triangleright V' \) for some \(t' \) and \(V' \) with \((\Delta, \mathcal{R} \cup \{(V, V', \tau)\}, s, t') \in X\)

2. For any \((\Delta, \mathcal{R}, s, s') \in X\),

 - [Application] If \((\lambda x: \Delta^1(\tau_1).M, \lambda x: \Delta^2(\tau_1).M', \tau_1 \rightarrow \tau_2) \in \mathcal{R}\), then \((\Delta, \mathcal{R}, s \triangleright [V/x]M, s' \triangleright [V'/x]M', \tau_2) \in X\) for any \((V, V', \tau_1) \in (\Delta, \mathcal{R})^*\)
(e) [Allocation]
\[(\Delta, \mathcal{R} \cup \{(l, l', \tau \text{ ref})\}, s \uplus \{l \mapsto V\}, s' \uplus \{l' \mapsto V'\}) \in X \] for any \(l \not\in \text{dom}(s) \), \(l' \not\in \text{dom}(s') \) and \((V, V', \tau) \in (\Delta, \mathcal{R})^*\)

(f) If \((l, l', \tau \text{ ref}) \in \mathcal{R}\) then
\[\begin{align*}
\text{[Dereference]} & \quad (\Delta, \mathcal{R} \cup (s(l), s'(l'), \tau)) \}, s, s') \in X \\
\text{[Update]} & \quad (\Delta, \mathcal{R}, s\{l \mapsto V\}, s'\{l' \mapsto V'\}) \in X \quad \text{for any} \\
& \quad (V, V', \tau) \in (\Delta, \mathcal{R})^*
\end{align*}\]

where \(X\) is typed, i.e. there exists \(\Sigma\) and \(\Sigma'\) such that
\[- \quad \Sigma \vdash M : \Delta^1(\tau) \quad \text{and} \quad \Sigma' \vdash M' : \Delta^2(\tau)\]
\[- \quad \Sigma \vdash s \quad \text{and} \quad \Sigma' \vdash s'\]
\[- \quad \Sigma \vdash V : \Delta^1(\tau) \quad \text{and} \quad \Sigma' \vdash V' : \Delta^2(\tau) \quad \text{for all} \quad (V, V', \tau) \in \mathcal{R}\]

and \((\Delta, \mathcal{R})^*\) is the context closure of \(\mathcal{R}\)
\[\{([\bar{V}/\bar{x}]\Delta^1(C), [\bar{V}'/\bar{x}]\Delta^2(C), \tau) \mid \text{dom}(\Delta), \bar{x} : \bar{r} \vdash C : \tau, (\bar{V}, \bar{V}', \bar{r}) \in \mathcal{R}\}\]
Up-to techniques

Proofs are made easier by allowing a larger relation on the right hand side.

- Up-to reduction: a configuration pair is in the extended relation if it reduces to a related pair.

- Up-to context: a configuration is in the extended relation if there is a context and a list of related pairs such that it can be obtained by substituting each side of the pairs in the context.

- Up-to allocation: allow some extra allocated reference cells, initialized with related values.
Characterization Theorem

Theorem 1 Environmental bisimilarity (the largest environmental bisimulation) equals observational equivalence.
Goals

– Prove the soundness and completeness of environmental bisimulation (including up-to techniques).

– Provide a toolkit to prove equivalences of programs.
Formalization

(Work by Pierre-Marie Pédrot)

First we need to define a typed language, with a small step semantics.

We used locally nameless co-finitely quantified syntax [Aydemir et al.].

- use De Bruijn indices for local variables
- use co-finite quantification for global variables

We also avoided putting types inside terms.
Jacques Garrigue & Pierre-Marie Pédrot

LNCFQ Syntax

Judgement: \(S, \Sigma, \Gamma \vdash M : \tau \) where

- \(S \) is a set of type variables: \(\text{Set}[\text{Var}] \)
- \(\Sigma \) is the store typing: \(\text{Map}[\text{Var},\text{Typ}] \)
- \(\Gamma \) is the typing environment: \(\text{Map}[\text{Var},\text{Typ}] \)

\[
(\forall x \not\in L) \quad S, \Sigma, \Gamma \cup \{x \mapsto \tau\} \vdash M^x : \tau' \\
\hline
S, \Sigma, \Gamma \vdash \lambda M : \tau \rightarrow \tau'
\]

\[
(\forall x \not\in L_1, \alpha \not\in L_2) \quad S \uplus \{\alpha\}, \Sigma, \Gamma \cup \{x \mapsto \tau^\alpha\} \vdash N^x : \tau' \\
\hline
S, \Sigma, \Gamma \vdash \text{open } M \text{ in } N : \tau'
\]
Advantages of LNCFQ Syntax

– Limiting indices to local variables avoids both substitution and shifting in many cases

– Making the choice of variables co-finite makes proofs of preservation easier: when weakening one just has to enlarge the avoidance set

– However one needs many commutation lemmas between De Bruijn instantiation and variable substitution
Type system proofs

Proved type soundness (preservation and progress) with respect to small-step reduction.

– Despite the large number of typing (16) and reduction rules (23), the proofs stay small.

– Heavy use of automation to share tactics between different cases.

– Used reflection for tactics about finite sets and maps.
Formalization of simulations

- Converted from set-theoretic to inductive definitions
- Needed to separate the term and store part of relations
- Also needed care to take the typing into account
- One slight simplification: since types do not appear inside terms, context closure \((\Delta, \mathcal{R})^*\) actually does not depend on \(\Delta\)
Typing of the value relation

Record typing_vrel $\Delta_1 \Delta_2 \Sigma_1 \Sigma_2$ (R : vrel) : Prop := {
 typing_vrel_closed_l : forall X, $\emptyset \vdash \Delta_1 X$;
 typing_vrel_closed_r : forall X, $\emptyset \vdash \Delta_2 X$;
 typing_vrel_wf_l : wf_env $\emptyset \Sigma_1 [\emptyset]$;
 typing_vrel_wf_r : wf_env $\emptyset \Sigma_2 [\emptyset]$;
 typing_vrel_value_l : forall V1 V2 τ, R V1 V2 τ -> value V1;
 typing_vrel_value_r : forall V1 V2 τ, R V1 V2 τ -> value V2;
 typing_vrel_l : forall V1 V2 τ,
 R V1 V2 τ -> typing $\emptyset \Sigma_1 [\emptyset]$ V1 ($\tau \leftarrow \Delta_1$);
 typing_vrel_r : forall V1 V2 τ,
 R V1 V2 τ -> typing $\emptyset \Sigma_2 [\emptyset]$ V2 ($\tau \leftarrow \Delta_2$)
}.

Record typing_prel $\Delta_1 \Delta_2 \Sigma_1 \Sigma_2$ R s1 s2 M1 M2 τ := ...
Record typing_srel $\Delta_1 \Delta_2 \Sigma_1 \Sigma_2$ R s1 s2 := ...
Up-to techniques

The definitions are actually quite complicated.

Here is the relation for up-to renaming and reduction.

\[
X \rightarrow = \{ (\Delta, R, s \triangleright M, s' \triangleright M', \tau) \mid (\Delta, R, t \triangleright N, t' \triangleright N', \tau) \in X^\pi, \\
s \triangleright M \overset{*}{\rightarrow} t \triangleright N, s' \triangleright M' \overset{*}{\rightarrow} t' \triangleright N' \} \\
\cup \{ (\Delta, R, s \triangleright M, s' \triangleright M', \tau) \mid s \triangleright m \text{ diverges} \} \\
\cup \{ (\Delta, R, s \triangleright M, s' \triangleright M', \tau) \mid (\Delta, R \cup \{(V, V', \tau)\}, t, t') \in X^\pi, \\
s \triangleright M \overset{*}{\rightarrow} t \triangleright V, s' \triangleright M' \overset{*}{\rightarrow} t' \triangleright V' \} \\
\cup \{ (\Delta, R, s, s') \mid (\Delta, R, s, s') \in X^\pi \}
\]

\[
X^\pi = \{ (\Delta, \pi(s) \triangleright \pi(M), s' \triangleright M', \tau) \mid (\Delta, R, s \triangleright M, s' \triangleright M', \tau) \in X \} \\
\cup \{ (\Delta, \pi(s), s') \mid (\Delta, R, s, s') \in X \}
\]

\[
R^\pi = \{ (\pi(V), V', \tau) \mid (V, V', \tau) \in R \}
\]
Up-to-reduction/renaming closure

Inductive prel_red_closure : prel :=
| prel_red_red : forall π R s1 s1’ s2 s2’ t1 t1’ t2 t2’ τ,
bijection π -> (prel_rename π Xp) R [s1’ · t1’] [s2’ · t2’] τ ->
#reduction [s1 · t1] [s1’ · t1’] ->
#reduction [s2 · t2] [s2’ · t2’] ->
typable_prel R s1 s2 t1 t2 τ ->
prel_red_closure R [s1 · t1] [s2 · t2] τ
| prel_red_div : forall (R : vrel) s1 s2 t1 t2 τ,
chain reduction [s1 · t1] -> typable_prel R s1 s2 t1 t2 τ ->
prel_red_closure R [s1 · t1] [s2 · t2] τ
| prel_red_eval : forall π (R : vrel) s1 s1’ s2 s2’ t1 t1’ t2 t2’ τ,
bijection π -> #reduction [s1 · t1] [s1’ · t1’] ->
#reduction [s2 · t2] [s2’ · t2’] -> value t1’ -> value t2’ ->
(srel_rename π Xs) (R ∪ [t1’ ~ t2’ | τ])%vrel s1’ s2’ ->
typable_prel R s1 s2 t1 t2 τ ->
prel_red_closure R [s1 · t1] [s2 · t2] τ.
Proof for up-to-reduction/renaming

– Soundness theorem is close to 200 lines
– Using many hand-crafted automation tactics
– Lots of lemmas for renaming
– For reduction, soundness of typing is enough
Up-to-context closure

Extends the relation to each pair of term in any evaluation context.

\[X^* = \{ (\Delta, \mathcal{R}, s \triangleright [\bar{V}/\bar{x}]E[M], s' \triangleright [\bar{V'}/\bar{x}]E[M'], \tau) \mid (\Delta_0, \mathcal{S}, s \triangleright M, s' \triangleright M', \tau_0) \in X, \Delta \subseteq \Delta_0, \mathcal{R} \subseteq \mathcal{S}^*, \text{FTV}(\mathcal{R}) \subseteq \text{dom}(\Delta), (\bar{V}, \bar{V'}, \bar{\tau}) \in \mathcal{S}, \text{dom}(\Delta_0), \bar{x}:\bar{\tau} \vdash E : \tau, \text{FTV}(\tau) \subseteq \text{dom}(\Delta) \} \]

\[\cup \ldots \]

This allows to prove easily many program equivalences.
Problem with up-to-context

Pierre-Marie could not prove it in Coq.
- Typing becomes very involved due to simultaneous substitution.
- Just proving soundness of up-to-context for the application case took 140 line, more of half of it for typing. (Not including infrastructure lemmata.)
- Similar for type application.
- Abandoned in the middle of the existential unpacking case.
A simple benchmark

– Since we couldn’t prove up-to-context, most examples stay hard to prove.

– To ensure the usability of the formalization, I proved that the identity relation is an environmental bisimulation, using up-to-reduction.
Identity environmental relation

Let \(\text{is_id} \) (R : trm -> trm -> typ -> Prop) :=
\[
\forall x y T, R x y T \rightarrow x = y \land \text{value_x}.
\]

Let \(\text{has_fv} \) (R : trm -> trm -> typ -> Prop) :=
\[
\exists L, \forall x y T, R x y T \rightarrow \text{typ_fv_T} \subseteq L.
\]

Inductive \(\text{myprel} \) : vrel -> program -> program -> typ -> Prop :=
\[
\text{myprel1} : \forall R \Delta \Sigma s M \tau, \text{is_id} R \rightarrow \text{has_fv} R \rightarrow
\]
\[
\text{store_typing} \emptyset \Sigma [\emptyset] s \rightarrow
\]
\[
\text{typing} \emptyset \Sigma [\emptyset] M (\tau \leftarrow \Delta) \rightarrow
\]
\[
\text{typing_vrel} \Delta \Delta \Sigma \Sigma R \rightarrow
\]
\[
\text{myprel} R [s \cdot M] [s \cdot M] \tau.
\]

Inductive \(\text{mysrel} \) : vrel -> store -> store -> Prop :=
\[
\text{mysrel1} : \forall R \Delta \Sigma s, \text{is_id} R \rightarrow \text{has_fv} R \rightarrow
\]
\[
\text{store_typing} \emptyset \Sigma [\emptyset] s \rightarrow
\]
\[
\text{typing_vrel} \Delta \Delta \Sigma \Sigma R \rightarrow
\]
\[
\text{mysrel} R s s.
Identity environmental relation

Let \(\text{is_id} \) (\(R : \text{trm} \to \text{trm} \to \text{typ} \to \text{Prop} \)) :=
\[
\forall x \ y \ T, R \ x \ y \ T \to x = y \land \text{value} \ x.
\]

Let \(\text{has_fv} \) (\(R : \text{trm} \to \text{trm} \to \text{typ} \to \text{Prop} \)) :=
\[
\exists L, \forall x \ y \ T, R \ x \ y \ T \to \text{typ_fv} \ T \subseteq L.
\]

- \(\text{is_id} \) ensures that \(R \) is a subrelation of the identity.
- \(\text{has_fv} \) ensures that we can find fresh type variables.
- Everything is well-typed.
Proof of reflexivity

Lemma up2red_sim_myrel : up2red_simulation myprel mysrel.

Corrolary env_sim_myrel :
 environmental_simulation (prel_red_closure myprel mysrel)
 (srel_red_closure mysrel).

- The proof took 600 lines (including extra infrastructure lemmata).
- The proof is mostly about typing and renaming.
- It may seem trivial, but hopefully we can generalize the techniques used to automatize typing and renaming in proofs.
Conclusion

– The original goal was 2-fold:
 ○ Proving the soundness and completeness of environmental bisimulation (including up-to techniques).
 ○ Providing a toolkit to prove equivalences of programs.

– Eventually, only half of the first part was done.
 ○ Typing and simultaneous substitution are tricky.
 ○ If we can overcome that, there is some hope.
For the curious

All the proofs are in a public repository:

http://sourceforge.net/projects/simpoulet/