
Lambda calculus: Syntax
Jacques Garrigue, 2023/12/12

In 1920, Schönfinkel, a Russian logician, invented combinatory logic, which was to become
lambda-calculus through the works of Curry and Church. As its original name shows, the goal
was the formal manipulation of logical formulas. However, it became later connected to com-
puter science, and provides a theoretical basis for functional programming languages, starting
with Lisp in the 1950s. Despite its very simple definition it has a strong expressive power, and
is often used as model for the theoretical study of programming languages.

1 Term Rewriting

The simplest definition of λ-calculus is as a term rewriting system. In term rewriting, we seen
computation as the rewriting of part of terms through rewriting rules. For instance, here is a
formalization of simple arithmetic.

Terms

E ::= 0 zero
| S(E) successor, i.e. S(x) means x+ 1
| E + E addition
| E − E substraction

Rewriting rules When x and y are arbitrary terms, the following rules define addition and
substraction on natural numbers.

x+ 0 → x
x+ S(y) → S(x+ y)
0− x → 0
x− 0 → x
S(x)− S(y) → x− y

A term E is in normal form if no rule applies to it. The above rules are sometimes called
reduction rules.

Example 1 (rewriting)

(S(0) + S(0))− S(0) → S(S(0) + 0)− S(0) → S(S(0))− S(0) → S(0)− 0 → S(0)

2 Syntax of lambda-calculus

Definition 1 A λ-term M must be of the three following forms:

M ::= x variable
| (λx.M) abstraction
| (M M) application



Lambda-calculus: Syntax 2

The variable x intuitively represents a value that should be bound in the environment. We
will see how computation substitutes it with another λ-term.

(λx.M) binds the variable x if it appears in M . f = λx.M can be seen as a function, whose
definition is f(x) = M . However, the λ notation avoids the need to give a name to this function.
We will omit parentheses when λx.M is not part of an application.

(M1 M2) represents function application. This is similar to the usual notation M1(M2), but
M1 need not be a variable, it can be any λ-term. We omit parentheses when this application is
not the argument of another application, so that λx.M1 M2 means (λx.(M1 M2)) and M1 M2 M3

means ((M1 M2) M3), i.e. application associates to the left.
Mixing the above grammar with arithmetic,

f(2) when f(x) = x+ 1

can be written directly as
(λx.x+ 1) 2

Free variables and substitution In λx.M , all occurences of x in M are said to be bound.
If a variable x appears in a term M without being bound, it is sai to be free. The set of free
variables of M is defined inductively as follows.

FV (x) = {x}
FV (λx.M) = FV (M) \ {x}
FV (M N) = FV (M) ∪ FV (N)

Substitution replaces such free variables with other λ-terms. ([N/x]M) replaces all free
occurences of x in M with N .

([N/x]x) = N
([N/x]y) = y x ̸= y
([N/x]λx.M) = λx.M
([N/x]λy.M) = λy.([N/x]M) x ̸= y, y ̸∈ FV (N)
([N/x](M M ′)) = (([N/x]M) ([N/x]M ′))

In the 4th clause, y should not be a free variable of N This is possible through the use of
α-conversion. When z is not free in M ,

(α) λy.M = λz.([z/y]M)

In this lecture, we assume that the set of lambda-terms is the quotient set of equivalence classes
for (α), i.e., such renaming of bound variables is always allowed.

3 Reduction rules

Definition 2 λ-calculus is the term rewriting system based on λ-terms, with β-reduction as
reduction rules.

(β) ((λx.M) N) → ([N/x]M)

Example 2 (β-reduction)

(λf.λg.λx.f x (g x)) (λx.λy.x) (λx.λy.x)
→ λx.(λx.λy.x) x ((λx.λy.x) x)
→ λx.(λy.x) (λy.x)
→ λx.x

(λx.x x) (λx.x x)
→ (λx.x x) (λx.x x)
→ . . .



Lambda-calculus: Syntax 3

Theorem 1 (Church-Rosser) λ-calculus is confluent. I.e. When there are 2 reduction se-
quences M → . . . → N and M → . . . → P , then there exists a term T such that N → . . . → T
and P → . . . → T .

4 Lambda-calculus is universal

Any program can be written using λ-calculus.

Natural numbers They can be encoded using Church numerals

cn = λf.λx.(f . . . (f x) . . .) f applied n times
c+ = λm.λn.λf.λx.m f (n f x) addition
c× = λm.λn.λf.m (n f) multiplication

Exercise 1 1. Compute the normal form of c2 c2.

2. Find a λ-term cpow such that cpow cm cn reduces to cmn.

Boole algebra Booleans can be encoded as follows.

t = λx.λy.x f = λx.λy.y not = λb.λx.λy.b y x

Here is a function that receives a Church numeral as input and returns whether it is equal
to 0 or not.

if0 = λn.n (λx.f) t

Cartesian product The cartesion product of two sets can be expressed by encoding pairs,
using the following terms:

pair = λx.λy.λf.f x y fst = λp.p t snd = λp.p f

Here is how it works:
fst (pair a b) → pair a b t → (t a b) → a

Substraction While multiplication was easy, substraction of Church numerals is compara-
tively difficult. Here is a possible definition.

c− = λm.λn.n cp m
cs = λn.λf.λx.f (n f x)
s′ = λx.pair (snd x) (cs (snd x))
cp = λn.fst (n s′ (pair c0 c0))

cs computes the successor of a number, and cp its predecessor.
s′ (pair m n) returns the pair (cs n,m). By applying it k times we can obtain the k − 1th

successor of m.
This property is used by cp to return the predecessor of n.
Finally, c− computes the nth predecessor of m by repeatedly applying cp. If m ≥ n, then

c− cm cn
∗→ cm−n



Lambda-calculus: Syntax 4

Alternative encoding of natural numbers The complexity of the definition cp is not a
problem from a theoretical point of view (what matters here is that one can define it). From
that point of view, the ability to use cn as an iterator is more important.

However one can think of other definitions allowing to structurally extract the predecessor,
using the same approach as booleans or pairs. Here is one such example, which we call analytical:

a0 = λs.λz.z
as = λn.λs.λz.s n
ap = λn.n (λx.x) i0

Here the successor as gives direct access to its predecessor, which allows an easy definition of
ap. However, this definition alone is not sufficient to allow iteration. One could replace it with
the fix-point operator we define below, however we will see that this fix-point operator cannot
be defined in most typed versions of the lambda-calculus.

The solution is simple: use an hybrid version, allowing both extraction of the predecessor,
and of an iterator.

h0 = pair a0 c0
hs = λn.pair (as n) (cs (snd n))
hp = λn.n (λx.x) h0
h+ = λm.λn.snd m hs n
h− = λm.λn.snd n hp m
h× = λm.λn.snd m (h+ n) h0

Since snd hn = cn, it is easy to extract an iterator and use it to define arithmetic operations.

Fix-point operator While the iterator allows us to repeat a function a fixed number of times,
this number needs to be computed in advance, so that it cannot be used to compute arbitrary
recursive functions.

A general way to define recursive functions is to use the fix-point operator Y . Y is a fix-point
operator when (Y M) reduces to (M (Y M)), i.e. (Y M) is a fix-point of M .

Y = (λf.λx.x (f f x)) (λf.λx.x (f f x))

For instance, here is the recursive definition of factorial.

0! = 1
n! = n× (n− 1)! if n > 0

In the syntax of λ-calculus it becomes:

c! = λn.if0 n c1 (c× n (c! (p n)))

Such recursive definitions (c! appears in the right-hand side too) are not valid in the λ-calculus
itself, but they can be encoded with Y .

c! = Y (λf.λn.if0 n c1 (c× n (f (p n)))

Since YM → M(YM), the above equation is valid.

c! → (λf.λn.if0 n c1 (c× n (f (p n)))) c! → λn.if0 n c1 (c× n (c! (p n)))

Exercise 2 Define c! without using Y , i.e. use cn as iterator.


