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With the simply typed lambda-calculus and System F we have seen two ways in which
abstraction can be introduced in the lambda-calculus:

• terms abstracted on terms (λx : T.M), or proposition logic

• terms abstracted on types (ΛX.M), or second-order logic

Just considering terms and types, one can think of two more forms of abstraction

• types abstracted on terms (λx : T.T ), or predicate logic

• types abstracted on types (ΛX.T ), or higher-order types

Combinations of those can be formalized as the 8 corners of a cube, the lambda-cube.
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1 First-order logic and dependent types (λP )

The propositions of first-order logic are similar to polymorphic types.

t ::= x | a | f(t, . . .) term
A ::= ⊥ | A → A | A ∧ A | A ∨ A

| p(t, . . .) predicate
| ∀x.A universal quantification
| ∃x.A existential quantification

However, here t and x are terms, not types. This means that terms appear in types,
rather than types in terms.

T ::= b | ⊥ | pT M | Πx:T.T | Σx:T.T type
M ::= x | cT | λx:T.M | (MM) | (M,M : Σx.T ) term

If x does not appear in T2, then Πx:T1.T2 (dependent function type) can be written
T1 → T2. Similarly, (M1,M2 : Σx.T2) (dependent pair) and Σx:T1.T2 (dependent pair
type) can be written respectively (M1,M2) and T1 × T2.

We add extra rules, which also check the well-formedness of types.
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Type
Γ ⊢ M : T

Γ ⊢ pT M ok

Γ, x : T ⊢ T ′ ok

Γ ⊢ Πx:T.T ′ ok

Γ, x : T ⊢ T ′ ok

Γ ⊢ Σx:T.T ′ ok

Abs
Γ, x : T ⊢ M : T ′

Γ ⊢ λx:T.M : Πx:T.T ′
Γ ⊢ M1 : T Γ, x : T1 ⊢ M2 : T2

Γ ⊢ (M1,M2 : Σx.T2) : Σx:T1.T2

App
Γ ⊢ M : Πx:T.T ′ Γ ⊢ N : T

Γ ⊢ (M N) : [N/x]T ′
Γ ⊢ M : Σx:T1.T2

Γ ⊢ fst M : T1

Neg
Γ ⊢ M : ⊥ Γ ⊢ T ok

Γ ⊢ M : T

Γ ⊢ M : Σx:T1.T2

Γ ⊢ snd M : [fst M/x]T2

Conv
Γ ⊢ M : [N/x]T Γ ⊢ N ′ : T ′ N =βδ N

′

Γ ⊢ M : [N ′/x]T

We can encode first-order logic in this calculus, but since we do not distinguish between
terms of the logic and proofs, this is just a morphism, not an isomorphism.

As an example, here is the encoding of “Humans are mortal, Socrates is a human, so
Socrates is mortal”.

(Πx :Name.Human x → Mortal x ) → Human Socrates → Mortal Socrates

And here is the proof.

λmortal :(Πx :Name.Human x → Mortal x ).
λhuman:(Human Socrates).mortal Socrates human

We can also write mathematical formulas such as ∀x.x+ x = 2× x.

Πx:Nat.eqnat(add x x ,mult 2 x ),

and compute with δ-rules

add 0 n → n
add (sm) n → s (add m n)
mult 0 n → 0
mult (sm) n → add n (mult m n)

Then one can prove properties using the following constants (axioms).

add sym : Πm:Nat.Πn:Nat.eqnat(add m n, add n m)
eq sub : Πf :(Nat → Nat).Πm:Nat.Πn:Nat.eqnat(m,n) → eqnat(f m, f n)

Here is a proof of the above formula.

λx:Nat.eq sub (add x) x (add x 0) (add sym 0 x)

2 Generalized Type Systems

A nice way to define the systems of the lambda-cube in a common framework is to use
generalized type systems.

In generalized type systems (or GTS), we do not distinguish between terms and types.

T ::= x | c | T T | λx : T.T terms
| Πx : T.T product type
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Terms will be written T,A,B,C. A constant c belongs to the set C of constants. Again,
product types are a generalization of function types, and if x ̸∈ fv(T2), we write T1 → T2

for Πx : T1.T2.
A specific GTS is determined by a triple (S,A,R)

1. S ⊂ C is the set of sorts.

2. A is a set of axioms of the form c : s ∈ C× S.

3. R is a set of rules of the form (s1, s2, s3) ∈ S× S× S.

We use Γ ⊢ T : A : s as a shorthand for Γ ⊢ T : A and Γ ⊢ A : s. A =β B means that
there exists a C such that A

∗→ C and B
∗→ C.

Axiom ∅ ⊢ c : s (c : s ∈ A)

Start
Γ ⊢ A : s

Γ, x : A ⊢ x : A

Weaken
Γ ⊢ B : C Γ ⊢ A : s

Γ, x : A ⊢ B : C

Prod
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2

Γ ⊢ Πx:A.B : s3
(s1, s2, s3) ∈ R

Abs
Γ ⊢ A : s1 Γ, x : A ⊢ T : B : s2

Γ ⊢ (λx:A.T ) : (Πx:A.B)
(s1, s2, s3) ∈ R

App
Γ ⊢ F : (Πx:A.B) : s Γ ⊢ T : A

Γ ⊢ F T : [T/x]B

Conv
Γ ⊢ T : A Γ ⊢ B : s A =β B

Γ ⊢ T : B

The systems of the lambda-cube are a restricted form of GTS such that

1. S = {∗,2}, where ∗ is the sort of terms and 2 the sort of types,

2. A = {∗ : 2}, meaning that ∗ has type 2,

3. all rules in R are of the form (s1, s2, s2) (so the we abbreviate them in (s1, s2).

λ→ (∗, ∗)
λ2 (∗, ∗), (2, ∗)
λω (∗, ∗), (2,2)
λω (∗, ∗), (2, ∗), (2,2)
λP (∗, ∗), (∗,2)
λP2 (∗, ∗), (2, ∗), (∗,2)
λPω (∗, ∗), (2,2), (∗,2)
λPω (∗, ∗), (2, ∗), (2,2), (∗,2)
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System F (λ2) First note that since there is no rule (∗,2), there is no way a term (of
type A : ∗) could appear inside a type (of type ∗ : 2), so that if A : ∗ and B : ∗, then
Πx:A.B is just A → B, as x cannot occur in B. Then Prod has the 2 instances:

Γ ⊢ A : ∗ Γ ⊢ B : ∗
Γ ⊢ A → B : ∗

Γ ⊢ ∗ : 2 Γ, A : ∗ ⊢ B : ∗
Γ ⊢ ΠA: ∗ .B : ∗

and Abs and App have the 4 instances of System F.

Dependent types (λP ) Since we have the rule (∗,2), terms can appear in types.

Γ ⊢ A : ∗ Γ, x : A ⊢ B : ∗
Γ ⊢ Πx:A.B : ∗

Γ ⊢ A : ∗ Γ, x : A ⊢ B : 2

Γ ⊢ Πx:A.B : 2

One can use this to encode predicate logic. ∀x ∈ T, P (x) ⊃ Q(x) can be derived in
the environment Γ = {T : ∗, P : T → ∗, Q : T → ∗}, as

∅ ⊢ ∗ : 2

Γ ⊢ T : ∗

Γ, x : T ⊢ T : ∗ Γ, x : T ⊢ ∗ : 2

Γ, x : T ⊢ T → ∗ : 2
Γ, x : T ⊢ P : T → ∗ : 2

∅ ⊢ ∗ : 2

Γ ⊢ T : ∗
Γ, x : T ⊢ x : T

Γ, x : T ⊢ P x : ∗
. . .

Γ, x : T ⊢ Q x : ∗
Γ, x : T ⊢ P x → Q x : ∗

Γ ⊢ (Πx:T.P x → Q x) : ∗

Predicate logic λPRED While λP is sufficient to encode predicate logic, it may be
confusing as it mixes terms of the logic (used as arguments to predicates) with proofs of
propositions. By using the full power of GTS, one can separate them, and create a system
isomorphic to multi-sorted first-order predicate logic.

S ∗s, ∗p, ∗f ,2s,2p

A ∗s : 2s, ∗p : 2p

R (∗p, ∗p), (∗s, ∗p), (∗s,2p), (∗s, ∗f ), (∗s, ∗s, ∗f )

Here ∗s is the sort of sets (the terms used by the logic), ∗p the sort of propositions, and
∗f the sort of first-order functions between sets of ∗s.

Inconsistence of λ∗ Out of the lambda-cube, one could define a system with a “type
of all types”, i.e. A = {∗ : ∗} and R = {(∗, ∗)}. However, Girard proved it to be
inconsistent. This was the starting point for System F.

Calculus of Constructions (λPω) The full system (allowing all 4 kinds of abstrac-
tions) is called Calculus of Constructions. It has no logical counterpart, but it can be seen
as a powerful logic by itself. Similarly to System F, it can encode various connectives of
logic without adding extra constants.

It is the basis of several proof assistants (computer systems that allow one to write
proofs and check them). In particular Coq has been used to prove important theorems
of mathematics, such as the 4-colour theorem or the Odd-order theorem. Note that Coq
actually uses a further extension of λPω, with a countable hierarchy of sorts above ∗ and
2, to get closer to λ∗ without introducing inconsistency, and allows to define inductive
types, to allow using induction without introducing new axioms.


