
Simply-Typed Lambda-Calculus
Jacques Garrigue, 2018/05/29

In the original λ-calculus, functions have no explicit domain and range, contrary to
mathematics. For instance, applying c+ to something that is not a Church numeral is
meaningless, but there is no way to detect it. In typed lambda-calculi, the domain and
range of functions are expressed by types. In simple versions, any value belongs only to a
single type.

1 Types and terms

There are two kinds of types: basic types and function or structure types.

b ::= int | bool | . . .
t ::= b | t→ t | t× t

We also need to add type information and typed constants to the syntax of terms.

M ::= x | ct | (λx:t.M) | (M M) | (M,M)

In combination with the introduction of constants, we add δ-rules to reduce them.

(λx:τ.M) N → [N/x]M
fstτ×θ→τ (M,N) → M
sndτ×θ→θ (M,N) → N
addnat→nat→nat 0nat N → N
addnat→nat→nat (snat→nat M) N → snat→nat (addnat→nat→nat M N)
if0nat→τ→τ→τ 0nat M N → M
if0nat→τ→τ→τ (snat→nat P) M N → N
. . .

In the above δ-rules, add and s have a fixed type, but fst, snd and if0 have type schemes,
which represent types sharing the structure. Here τ and θ may be replaced by any type.

2 Type derivation

The well-formedness of a term is expressed by the following typing judgment.

Γ `M : τ

M is a term τ is a type. The typing context Γ is a sequence of variables associated to
their types (x1 : τ1, . . . , xn : τn).

A typing judgment is provable if it can be derived using the type inference rules in
figure 1.

Simply-typed lambda-calculus 2

Variable Γ ` x : τ (x : τ ∈ Γ)

Constant Γ ` cτ : τ

Abstraction
Γ, x : θ `M : τ

Γ ` λx:θ.M : θ → τ

Application
Γ `M : θ → τ Γ ` N : θ

Γ ` (M N) : τ

Product
Γ `M : τ Γ ` N : θ

Γ ` (M,N) : τ × θ

Figure 1: Type inference rules

Example of type derivation

x : nat ` snat→nat : nat→ nat x : nat ` x : nat

x : nat ` (snat→nat x) : nat

` λx:nat.(snat→nat x) : nat→ nat ` 0nat : nat

` ((λx:nat.(snat→nat x)) 0nat) : nat

Exercise 1 Write the type derivation for

λf : nat→ nat.λx : nat.f (f x)

3 Properties

The following theorems are essential properties of typed lambda-calculus.

Theorem 1 (Subject reduction) If Γ ` M : τ can be derived and M → N , then
Γ ` N : τ is derivable.

Theorem 2 (Termination) If Γ ` M : τ is derivable for some Γ and τ , then there is
no infinite reduction starting from M .

Termination suggests that not all programs can be written in the simply-typed lambda-
calculus. For instance, the non-terminating term (λx.x x)(λx.x x) cannot be given a type.

To see this, let’s try to build a derivation of λx : τ.x x.

x : τ ` x : τ → θ x : τ ` x : τ
x : τ ` x x : θ

` λx : τ.x x : τ → θ

By analysis of the rules, this is the only possible derivation for λx : τ.x x. However the
Variable rule at the top-left requires τ = (τ → θ), which no τ of finite size can satisfy
(τ and τ → θ have different sizes).

Similarly, being able to define Y would imply non-termination, so Y cannot be defined.

Simply-typed lambda-calculus 3

4 Curry-Howard correspondance

If in each type inference rule we remove the term part, keeping only the context and type
parts, we obtain inference rules for the (explicit) natural deduction version of intuitionistic
propositional logic. Constants become axioms.

Ax
A ∈ ∆

∆ ` A
⊃ I

∆, A ` B
∆ ` A ⊃ B

⊃ E
∆ ` A ⊃ B ∆ ` A

∆ ` B

∧I ∆ ` A ∆ ` B
∆ ` A ∧∆ ` B

∧ E1 ∆ ` A ∧B ⊃ A ∧ E2 ∆ ` A ∧B ⊃ B

Here ∆ is a sequence of propositions, I stands for introduction and E for elimination.
The following rules describe an equivalent implicit version of natural deduction, which

omits Ax and ∆, subsumed by ⊃I .

⊃ I

[A](n)
...
B

A ⊃ B
(n) ⊃ E

A ⊃ B A

B

∧I A B

A ∧B
∧ E1 A ∧B ⊃ A ∧ E2 A ∧B ⊃ B

For instance, the derivation of λx : τ × θ.(snd x, fst x)

Γ ` snd : τ × θ → θ Γ ` x : τ × θ
Γ ` (snd x) : θ

` fst : τ × θ → τ Γ ` x : τ × θ
Γ ` (fst x) : τ

Γ = x : τ × θ ` (snd x, fst x) : θ × τ
` λx : τ × θ.(snd x, fst x) : τ × θ → θ × τ

becomes the (implicit) logical proof tree

A ∧B ⊃ B A ∧B(1)

B

A ∧B ⊃ A A ∧B(1)

A
B ∧ A

A ∧B ⊃ B ∧ A
(1)

Moreover, this proof can be rebuilt from the term part alone, so that one can say that
a term is a proof of its type.

λ-calculus logic
Type Proposition
Type derivation Proof
Term Proof
→ ⊃
× ∧

Exercise 2 Write a type derivation for λx : A.λy : B.x, and the corresponding logical
proof tree (explicit or implicit).

