1次独立の最大個数

Jacques Garrigue, 2017年10月20日

1 次独立の最大個数 ベクトルの集合 X の中に r 個の 1 次独立なベクトルが存在し、r+1 個の 1 次独立なベクトルが存在しないとき、r を 1 次独立の最大個数という.

定理 4.3.1 $(\vec{v}_1,\ldots,\vec{v}_n)$ が $(\vec{u}_1,\ldots,\vec{u}_m)$ の 1次結合として書けるとき, $\{\vec{v}_1,\ldots,\vec{v}_n\}$ の 1次独立の最大個数が $\{\vec{u}_1,\ldots,\vec{u}_m\}$ の 1次独立の最大個数以下である.

定理 **4.3.2** 「 $\{\vec{u}_1,\ldots,\vec{u}_m\}$ の 1次独立な最大個数はr である」と,「 $\{\vec{u}_1,\ldots,\vec{u}_m\}$ の中にr 個の 1 次独立なベクトルがあり,残りのm-r のベクトルがこのr 個の 1 次結合として書ける」は同値である.

例題 次のベクトルの 1 次独立な最大個数とその具体なベクトルを与え、残りのベクトルをその 1 次結合として表現せよ.

$$\vec{a}_1 = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 0 \end{bmatrix} \qquad \vec{a}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} \qquad \vec{a}_3 = \begin{bmatrix} 1 \\ 3 \\ -3 \\ -2 \end{bmatrix} \qquad \vec{a}_4 = \begin{bmatrix} -2 \\ -4 \\ 1 \\ -1 \end{bmatrix} \qquad \vec{a}_5 = \begin{bmatrix} -1 \\ -4 \\ 7 \\ 0 \end{bmatrix}$$

ヒント: $A = [\vec{a}_1 \dots \vec{a}_5]$ を $B = [\vec{b}_1 \dots b_5]$ に簡約すすると, $A\vec{x} = \vec{o} \Leftrightarrow B\vec{x} = \vec{o}$ がなりたち, $\vec{a}_1, \dots, \vec{a}_n$ と $\vec{b}_1, \dots, \vec{b}_n$ が同じ 1 次関係を持つので,1 次関係を持たない最大個数を見付け,それを元に他のベクトルの 1 次結合を見付ければいい.

簡約された行列において、主要成分を含む列が 1 次関係を持たない。逆に、主要成分を含まない列は主要成分を含む列の 1 次結合として書ける。上の定理を使うと、1 次独立な最大個数は主要成分を含む列の数、すなわち $\mathrm{rank}(A)$ であることが分かる。

定理 4.3.3~A の列ベクトルの 1次独立な最大個数と A の行ベクトルの 1次独立な最大個数はともに ${\rm rank}(A)$ である.

定理 4.3.4 A を n 次正方行列とする. 以下の 3 つの条件が同値である.

- (1) A は正則行列
- (2) Aの列ベクトルが1次独立である
- (3) A の行ベクトルは 1 次独立である

定理 4.3.5 行列の簡約化は唯一通り決まる.

証明 $B \in A$ の簡約化とする. 簡約化手続の性質として, $A\vec{x} = \vec{o} \Leftrightarrow B\vec{x} = \vec{o}$ かつ B は簡約である. B の最初の k 列が一意に決まることを k に関する帰納法で証明する.

- k = 1 の場合. $\vec{a}_1 = \vec{o}$ のとき, $\vec{a}_1 = 0\vec{a}_2 + \ldots + 0\vec{a}_3$ から $\vec{b}_1 = \vec{o}$. そうでないとき, 簡約の 定義より $\vec{b}_1 = \vec{e}_1$ (最初の成分だけが 1).
- k+1 の場合. B の最初の k 列が一意に決まると仮定する. $I \subset \{1,\ldots,k\}$ が列 k までの主成分を含む列の位置を指す. #(I) は I の元の数を表す.

 \vec{a}_{k+1} が $\{\vec{a}_i \mid i \in I\}$ の 1 次結合 $\sum_{i \in I} c_i \vec{a}_i$ として書けるとき,定理 4.2.5 より,その 1 次結合の係数は唯一である.そのとき $\vec{b}_k = \sum_{i \in I} c_i \vec{b}_i$ はその係数のベクトルである $(\{\vec{b}_i \mid i \in I\}$ は \vec{e}_1 から $\vec{e}_{\#(I)}$ までの基本ベクトルなので, $i \in I$ の小さい順に c_i を並べ,残りを 0 で埋める).

1次結合として書けないとき, $\vec{b}_k = \vec{e}_{\#(I)+1}$,すなわちまだ主成分を含まない最初の行のみが1でなければならない.

k=n のとき、定理が得られる.

定理 **4.3.6** $\vec{u}_1, \ldots, \vec{u}_m$ が 1 次独立で,

$$(\vec{v}_1, \dots, \vec{v}_n) = (\vec{u}_1, \dots, \vec{u}_m)A$$

とする.

- (1) $\vec{v}_1, \ldots, \vec{v}_n$ は A の列ベクトル $\vec{a}_1, \ldots, \vec{a}_n$ と同じ 1 次関係をもつ.
- (2) m=n のとき、「 $\vec{v}_1,\ldots,\vec{v}_n$ が 1 次独立」と「A が正則行列」は同値である.

例題 次の $\mathbf{R}[x]_3$ のベクトルの 1 次独立な最大個数とその具体なベクトルを与え、残りのベクトルをその 1 次結合として表現せよ.

$$f_1(x) = 1 + x + 3x^2$$
 $f_2(x) = 1 + 2x - x^3$
 $f_3(x) = 1 + 3x - 3x^2 - 2x^3$ $f_4(x) = -2 - 4x + x^2 - x^3$
 $f_5(x) = -1 - 4x + 7x^2$

問題の回答

4.2.6
$$C=\left[egin{array}{c} c_1 \\ \vdots \\ c_m \end{array}\right]$$
 とおくと,1 次結合は $ec{v}=(ec{u}_1,\ldots,ec{u}_m)C$ と書ける.

もしもD についても $\vec{v}=(\vec{u}_1,\ldots,\vec{u}_m)D$ ならば、定理4.2.5 よりC=D となり、係数は唯一通りしかない。