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6 Recursive functions

Recursive functions, discovered by Kleene, provide a 3rd definition of computability, after Turing
machines and lambda-calculus. Their main advantage is their more mathematical flavour.

6.1 Primitive recursive function

When defining what is computable, we want to start from the most primitive forms. Primitive recursive
functions are not sufficient to define all computable functions, but they have an interesting property:
they are always guaranteed to terminate.

Definition 1 The following 5 rules define all primitive recursive functions on natural numbers.

1. The null function: 0() = 0.

2. The successor function: S(x) = x + 1.

3. Projection functions: πn
i (x1, . . . , xn) = xi.

4. For any primitive recursive functions f : Nn → N and gi : Nm → N (1 ≤ i ≤ n), their
composition f〈g1, . . . , gn〉(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm)) is also primitive
recursive.

5. For any primitive recursive functions g : Nn → N and h : Nn+2 → N , primitive recursion allow
to define {

f(x1, . . . , xn, 0) = g(x1, . . . , xn)
f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y))

of type f : Nn+1 → N .

For instance, addition can be defined as follows:
+(x, 0) = π1

1(x)
+(x, y + 1) = h(x, y, +(x, y))

h(x, y, z) = S(π3
3(x, y, z))

The predecessor function is also easily defined:
P (0) = 0()

P (y + 1) = h(y, f(y))
h(y, z) = π2

1(y, z)

Substraction can be defined using also composition:
−(x, 0) = π1

1(x)
−(x, y + 1) = h(x, y,−(x, y))

h(x, y, z) = P (π3
3(x, y, z))

Exercise 1 Define ×(x, y), exp(x, y) = xy, fact(x) = x!, max(x, y) through primitive recursion.
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Theorem 1 All primitive recursive functions can be computed in finite time.

Lemma 1 If g, h : N → N are primitive recursive, then the function f : N2 → N defined as{
f(x, 0) = g(x)

f(x, y + 1) = f(h(x), y)

is primitive recursive too.

Lemma 2 If f : Nn+1 → N is primitive recursive then the bounded fixpoint operator µ<f : Nn+1 → N
is primitive recursive too.

µ<f(x1, . . . , xn, z) =

{
y the smallest y < z such that f(x1, . . . , xn, y) = 0
z if there is no y < z such that f(x1, . . . , xn, y) = 0

Exercise 2 Prove that the bounded fixpoint operator is primitive recursive.

6.2 Recursive functions

Based on the example of Turing machines, the simple fact they always terminate disqualify primitive
recursive functions as a model of computability. However, full expressive power can be recovered by
the addition of a single construction.

Definition 2 Functions defined in the following ways are recursive.

1. All primitive recursive functions.

2. The composition of recursive functions.

3. Primitive recursion of recursive functions.

4. If f : Nn+1 → N is recursive, then its minimum fixpoint µf : Nn → N

µf(x1, . . . , xn) =

{
y the smallest y < z such that f(x1, . . . , xn, y) = 0
undefined if there is no y such that f(x1, . . . , xn, y) = 0

As can be seen in the definition, a recursive function can be undefined for some input n. In this
case we say that it is a partial recursive function.

Theorem 2 (Kleene normal form) All recursive functions can be defined by composing a primitive
recursive function with the minimum fixpoint of a primitive recursive function.

Proof. For any recursive function f : Nn → N , we prove by induction on the definition of f
the existence of primitive recursive functions g, h : Nn+1 → n such that h(x1, . . . , xn, y) = 0 ⇒
h(x1, . . . , xn, y+1) = 0 and (∀y) h(x1, . . . , xn, y) = 0⇒ f(x1, . . . , xn) = g(x1, . . . , xn, y), and whenever
f(x1, . . . , xn) is defined,µh(x1, . . . , xn) is defined too.

For primitive recursive functions, just choose g(x1, . . . , xn, y) = f(x1, . . . , xn).
For the composition of f : Nm → N and the fi : Nn → N , we build f ′ = f〈f1, . . . , fm〉.

h′(x1, . . . , xn, y) = h(f1(x1, . . . , xn), . . . , fm(. . .), y) + h1(x1, . . . , xn, y) + . . . + hm(x1, . . . , xn, y) and
g′(x1, . . . , xn, y) = g(g1(x1, . . . , xn, y), . . . , gm(x1, . . . , xn, y), y) suffice.

For the minimum ficpoint of f : Nn+1 → N , we build f ′ = µf .
h′(x1, . . . , xn, y) =

∑y−1
i=0 h(x1, . . . , xn, i, y) + Z(y − µz<yg(x1, . . . , xn, z, y)) and g′(x1, . . . , xn, y) =

µz<yg(x1, . . . , xn, z, y) suffice. Here we use Z(0) = 1, Z(y + 1) = 0.
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Other cases are easy. 2

Since recursive functions are defined in a structural way, we can build the list of all recursive
functions. We call fn the nth 1-parameter recursive function. Similarly, we call pn then nth primitive
recursive function. fn(x) and pn(x) can be defined as 2-parameter recursive functions of input (n, x).

Theorem 3 There exists a total recursive function that is not primitive recursive.

Proof. F (x) = px(x) + 1 is total, but it differs from all pn. 2

Theorem 4 There is a total recursive function that grows faster than any primitive recursive function.

Theorem 5 There is a partial recursive function that is not included in any total recursive function.
Moreover, when given a list of total recursive functions, one can create a total recursive function that
does not belong to this list.

Proof. We define F (x) = fx(x) + 1 whenever fx(x) is defined. Since this is a recursive function, it
is equal to some fn, however F (n) must be undefined.

If Tx is a list of total functions, the function F (x) = Tx(x) + 1 does not belong to this list. 2

6.3 Recursive functions and Turing machines

Theorem 6 The step function of a Turing machine is primitive recursive.

To prove this theorem we need to define the behavior of a Turing machine as a function on natural
numbers. For simplicity we assume that there are only two symbols including B. On the tape

. . . b2 b1 b0 s c0 c1 c2 . . .

the head in front of s, in state q, is represented by the following 4-uple

q, s, m =
∞∑
0

bi2i, n =
∞∑
0

ci2i

First, we define the step function as a function on 4-uples. For instance, let us consider a right
move. If δ(q, s) = (q′, s′,←), then the new 4-uple is as follows:

q′, P (n), s′ + 2m, H(n)

Here H(n) and P (n) are respectively the result and remainder of dividing n by 2. That is, P (n) ∈ {0, 1}
and P (n) + 2H(n) = n. They can be defined as follows.{

Z(0) = 1
Z(y + 1) = 0

{
P (0) = 0
P (y + 1) = Z(P (y))

{
H(0) = 0
H(y + 1) = H(y) + P (y)

We introduce the following 3 functions.

δ(q, s) = (q′, s′, d)⇔


Q(q, s) = q′ sttate
R(q, s) = s′ symbol
D(q, s) = d direction

For the direction, 0 is right and 1 is left.
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The step functions are as follows.

q∗ = Q(q, s)
s∗ = P (m)×D(q, s) + P (n)×D(q, s)

m∗ = (2×m + R(q, s))×D(q, s) + H(m)×D(q, s)
n∗ = (2× n + R(q, s))×D(q, s) + H(n)× (q, s)

D(q, s) = 1−D(q, s)

Theorem 7 Turing computable functions are recursive.

We just need to repeat the step function until we reach a halting state. However, we would end
up appling recursion to multiple arguments. We need to combine them in a single argument.

We define 3 functions Cons, Hd and T l such that Hd(Cons(x, y)) = x and T l(Cons(x, y)) = y.
A simple approach is to use Cons(x, y) = 2x(2y + 1).

Hd and T l are a bit involved. First we define division of even numbers: J(x) = H(x)× Z(P (x)).
Div(x, n) is 1 if x is a multiple of 2n, 0 otherwise: Div(x, 0) = Z(Z(x)), Div(x, n+1) = Div(J(x), n)
We count the number of times we can divide: Count(x, 0) = 0, Count(x, n + 1) = Div(x, n + 1) +

Count(x, n)
Finally, Hd(x) = Count(x, x) and T l(x) = HHd(x)+1(x). Here we use lemma 1 to define Div and

T l.
The step-function can now be defined as a 1-argument function:

Step(x ) = Cons(q∗(Hd(x ),Hd(Tl(x )),Hd(Tl(Tl(x ))),Tl(Tl(Tl(x ))),
Cons(s∗(Hd(x), . . .), Cons(m∗(Hd(x), . . .), n∗(Hd(x), . . .)))))

The primitive recursive function computing n steps is T0(x, n) = Stepn(x).
Finally, assuming that the final state is 0, T computes until the final state is reached:

T (x) = T0(x, µE(x))
E(x, n) = Hd(T0(x, n))

Theorem 8 Any recursive function can be computed by a Turing machine.

Proof. Any recursive function can be represented by a |lambda-term, and in turn this λ-term can
be normalized by a Turing machine. 2
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