Computability and lambda calculus

Jacques Garrigue, 2013.11.12

In 1920, Schonfinkel, a German logician, invented combinatory logic, which was to become lambda-
calculus through the works of Curry and Church. As its original name shows, the goal was the
formal manipulation of logical formulas. However, it became later connected to computer science, and
provides a theoretical basis for functional programming languages, starting with Lisp in the 1950s.
Despite its very simple definition it has a strong expressive power, and is often used as model for the
theoretical study of programming languages.

4 Term Rewriting

The simplest definition of A-calculus is as a term rewriting system. In term rewriting, we seen compu-
tation as the rewriting of part of terms through rewriting rules. For instance, here is a formalization
of simple arithmetic.

Terms E:=R|(E+E)|(E-FE)|(ExE)|(E/E)

Rewriting rules When both z and y are numbers,

(x+y) — z+y
(z—y) — z—y
(rxy) — xXxy
(x/y) — z/y

Note: (z + y) is a formula, but + y is the number obtaining by adding x and y.
The above rules are sometimes called reduction rules.

Example 1 (rewriting)

(15 + (1/3)) x (5 — 2) — (15 + 0.3333) x (5 — 2) — (15.3333) x 3 — 46

5 Syntax of lambda-calculus
Definition 1 A A-term M must be of the three following forms:

M = =z variable
| Az.M abstraction
| (M M) application
The variable z intuitively represents a value that should be bound in the environment. We will
see how computation substitutes it for another lambda-term.
Az.M binds the variable x if it appears in M. f = Ax.M can be seen as a function, whose definition
is f(x) = M. However, the X\ notation avoids the need to give a name to this function.
(My Ms) represents function application. This is similar to the usual notation Mj(Ms), but M
need not be a variable, it can be any A-term.

Lambda-calculus: Syntax 2

Mixing the above grammar with arithmetic,
f(2) when f(z)=z+1
can be written directly as

(Azx+1) 2)

Free variables and substitution In Az.M, all occurences of x in M are said to be bound. If a
variable x appears in a term M without being bound, it is sai to be free. The set of free variables of
M is defined inductively as follows.

FV(x) = {z}
FV(Ax.M) = FV(M)\ {z}
FV(M N) = FV(M)UFV(N)

Substitution replaces such free variables with other A-terms. ([IN/x]M) replaces all free occurences
of x in M with N.

([N/z]z) = N

([N/z]y) =y T#y
([N/z]Az.M) = .M

([N/z]xy.M) = Xy.([N/z]M) x#y,y g FV(N)
(IN/z](M M") = (([N/z]M) ([N/z]M"))

In the 4th clause, y should not be a free variable of IV This is possible through the use of a-conversion.
When z is not free in M,
(@) Ay.M < Xz.([z/y| M)

Such renaming of bound variables is always allowed.

6 Reduction rules

Definition 2 A-calculus is the term rewriting system based on A-terms, with a-conversion and (3-

reduction as reduction rules.
(8) ((Az.M) N) — ([N/z]M)

Example 2 (S-reduction)
AfAg Az .f © (g z)) Az y.x) (Ax.Ay.x)

— Az.((AzAy.x) x (A\x.Ay.x) x))

—

Theorem 1 (Church-Rosser) \-calculus is confluent. l.e. When there are 2 reduction sequences
M — ... - Nand M — ... — P, then there exists are term T such that N — ... — T and
P—. .. =T

7 Lambda-calculus is universal

Any program can be written using A-calculus.

Lambda-calculus: Syntax 3

Natural numbers They can be encoded using Church numerals

ch=AfAx.(f ...(fx)...) f applied n times
cr = mAnAfAz.(m f (n fz)) addition
cx = dmAnAf.(m (n f)) multiplication

Exercise 1 Find the A-term corresponding to exponentiation.

Boole algebra They can be encoded as follows.
t= Az \y.x f=Az.\y.y not = \b.Az.\y.(b y x)

Here is a function that receives a Church numeral as input and returns whether it is equal to 0 or
not.

if0 = An.(n (A\z.f) t)

Cartesian product The cartesion product of two sets can be expressed by encoding pairs, using
the following terms:

pair = Az \y A f.(f = y) fst = Ap.(p t) snd = Ap.(p f)

Here is how it works:
fst (paira b) — pairabt— (tab) —a

Substraction While multiplication was easy, subtraction of Church numbers is comparatively dif-
ficult. Here is a possible definition.

c. = dmAn.(npm)

s = nAfAz.(f (n fx))

s' = Ax.(pair (snd z) (s (snd x)))
p = An.(fst (n s (pair cg cp)))

s computes the successor of a number, andp its predecessor.

s'(pair m n) returns the pair (sn,m). By applying it k£ times we can obtain the k
of m.

This property is used by p to return the predecessor of n.

Finally, c_ computes the n* predecessor of m by repeatedly applying p. If m > n, then

— 1% successor

*
C-Cn Cr = Cn-n

Fix-point operator In order to define recursive functions, we need the fix-point operator Y. Y is
a fix-point operator when (Y M) reduces to (M (Y M)).

V= \fAz(z (f f) MAz(z (f f)

Y is necessary when we don’t know hom many times we will need to iterate a function. For
instance, here is the recursive definition of factorial.

o =1
n!l = nx(n-1)! ifn>0

In the syntax of A-calculus it becomes:

a=M.if0nc (cx n(a (pn)))

Lambda-calculus: Syntax 4
Such recursive definitions (c¢; appears in the right-hand side too) are not valid in the A-calculus itself,
but they can be encoded with Y.

a=YAfAn.if0nc (cx n (f (pn)))
Since YM — M (Y M), the above equation is valid.

ca— (AfAnif0ncy (ex n (f (pn)))) a— An.if0 n ¢y (cx n (¢ (pn)))

8 Evaluation strategies

The lambda calculus by itself is not a computer. Evaluation order is not specified, and on some A-
terms evaluation may terminate or not depending on the choice of reductions. The concepts of normal
form and strategy let us define computations more precisely.

Normal form The most logical definition for normal form is to require that no redex (reducible
subterm) be left in a term. But if we want to get closer to the notion of computation, weak normal
form, where redexes under a A-abstraction need not be reduced, is more natural. Lazy languages, like
Haskell, do not reduce terms in argument position either, so they produce weak head normal form.

A-term nf wnf | whnf
z (\y,y), Az \y.x o o o
Az.(Ay.y)x X o o
z ((M\y.y) z) X X o

Leftmost strategy Reduce leftmost redex first. This amounts to call-by-name, i.e. functions are
called without evaluating their arguments.

(Az.z) (Ay-y) 2) = (Ay.y) 2)

If for some strategy M —* N (i.e. N has a normal form), the lefmost strategy reaches this normal
form.

Rightmost-innermost strategy Reduce the innermost among the rightmost redexes. This amounts
to call-by-value, i.e. function arguments are evaluated before being substitued in the function body.

(Az.z) (Ayy) 2) = ((Az.z) 2)

If for some strategy M —* ... (i.e. there is an infinite reduction starting for M), then the rightmost-
innermost strategy does not terminate.

Abstract machine By combining a definition of normal form with an appropriate strategy, one
defines an abstract machine evaluation A-terms deterministically.

9 Equivalence of Turing machine and Lambda calculus

9.1 Turing machine to lambda term

Tuple and list We have already seen how to build a pair. Using the same principle, one can build
n-tuples.

(at,...ap)A\f(f a1 ... an)

Lambda-calculus: Syntax 5

Variable length sequences, or lists, can be encoded using a combination of booleans and pairs. The
empty list [] is represented by f = Az.\y.y, and

la1,a2,...,a,] = Az y.(z (pair a1 [ag,...,a,]))

Infinite lists do not include the empty list, and can be represented by pairs and the fixpoint
operator. For instance the infinite repetition of the value a can be represented as

[a,a,...] =Y (Ax.(pair a x))

States and symbols We assume that M = (K, X, qo, H,9), | K| = k and |X| = [. The sets of states
and symbols can be enumerated, so that K = {qo,...,qx—1} and ¥ = {o9g = B,...,0;_1}. We can the
use the following translation:

G = Axg...Tp_1.2;

Ti = ALg...2T]—1.T;

Global state A global state (7', n,q) can be represented as the 4-uple

Here we use an infinite list, but it ends with an infinite repetition of B’s.

B,...]=Y(\w.(B,y)) =" (B,Y(\y.(B,y))) =" ...

Transition function The transition function between global states is represented by a k-uple of
[-uples of step-functions of the following form:

A = Mt.t((0(qo,00),(q0,01), - -, 6(q0, 01-1))s - - -, (6(qe_1, 00), - - .))

Aty Mt f(q fst ty,snd £, (0/,t,)) when 6(q,0) = (o, +,q)
6(q,0) =< Myt f(d,fst t., (0,t;),snd t.) when d(q,0) = (¢/,—,¢)
My (G, T, t,) when ¢ € H

If we replace here f by the identity function Az.x, we can see A as a function from global to global
state:
A (KX, X% list, X list) — (K, X2, % list, X list)

Execution A only runs the Turing machine 1 step. To go further, we need to use the fixed-point

operator. We do this by abstracting on f.

MA: (KD, list, X list) — (K, %, 3 list, ¥ list)) —
(K,S,X list, ¥ list) — (K, 3, % list, S list))

(Y (A f.A)): (K,X%, X list, X list) — (K, X, % list, X list)

By applying this function to the initial state 7" we obtain a computation T'> (7", n,q’). Since we
use Y both for the transition function and for the tape, we must be careful about only reducing to
weak-head normal form.

Y (A£.A)) (@, T00), [T(=1),..], [T(D),...]) —=* (&, 7)., [T"(n —1),...],[T"(n+1),...])

Lambda-calculus: Syntax 6

9.2 Turing machine interpreting lambda-terms

In this section we consider the opposite direction, where we write a lambda-term on a tape, and use
a Turing machine to reduce it.

Before thinking about the Turing machine itself, it is important to represent lambda-terms in a
way that makes their evaluation easy. In particular, we wish to avoid a-conversion. De Bruijn indices
allows us to do that.

Definition 3 De Bruijn indices The unnamed lambda-calculus is defined as follows.
M:a=n|\M|(M M)

Indices n represent variables. The n indicates the position of the \ binding this variable, starting
from inside. For instance \x.\y.x = A2, Ax.(z x) = A\(1 1).
We need to redefine substitution

M k = k+1 k>n [N/n]n = N

I k = k E<n [N/n]k = k-1 E>n

Mt AM = Mo+ M) [N/n]k = k E<n
[N/n]AM = A([ftn N/n+1]M)

g AM N — [N/1|M [N/n|(M M) = ([N/n]M [N/n]M'")

Example 3 We extract the 1st element of a pair.

st A(1ab)=A1A2) A1ab) > A1ab) A2 A2ab—rab—a

Format of the tape We use 6 symbols {B,0,1,E, \,@}, and translate a lambda-term M into a
tape M in the following way.

n = (n’s binary representation) E
MM = \M

(M M) = QMM

Turing machine A We do not give here the definition of the Turing machine A, but it is clear
that it can be defined using operations such as copying and addition/substraction. Here we use the
leftmost strategy to weak-head normal form.

9.3 Universal Turing machine

We can represent any Turing machine as a lambda-term, and we can convert this lambda-term to a
tape evaluated by the Turing machine A. This give us a simple proof of the existence of universal
Turing machines.

Corollary 1 There exists a universal Turing machine, such that it is able to simulate any other
Turing machine, by being given its description as input.

Proof We just have to translate the simulated Turing maching and its input tape to a lambda-term,
and feed it as input to A.

