THE MOTIVIC GALOIS GROUP,
THE GROTHENDIECK-TEICHMULLER GROUP
AND
THE DOUBLE SHUFFLE GROUP

HIDEKAZU FURUSHO

1. THE MOTIVIC GALOIS GROUP

We recall the motivic Galois group of the category of mixed Tate motives over Z
[DG] in this section. This is related with the Drinfel’d’s Grothendieck-Teichmiiller
group ([Dr91]) in §2 and the Racinet’s double shuffle group ([R]) in §3.

Let k be a field with characteristic 0. Levine [L2] and Voevodsky [V] constructed
a triangulated category of mixed motives over k. Levine [L2] showed an equivalence
of these two categories. This category denoted by DM (k)q has Tate objects Q(n)
(n € Z). Let DMT (k)q be the triangulated sub-category of DM (k)q generated
by Q(n) (n € Z). Levine [L1] extracted a neutral tannakian Q-category MT'(k)q
of mixed Tate motives over k from DMT(k)q by taking a heart with respect to a -
structure under the Beilinson-Soulé vanishing conjecture which says gr} K,,(k) =0
for n > 2i. Here LHS is the graded quotient of the algebraic K-theory for k with
respect to y-filtration.

Assume that k is a number field. In this case the Beilinson-Soulé vanishing con-
jecture holds and we have MT'(k)q. This category satisfies the following expected
properties: Each object M has an increasing filtration of subobjects called weight
filtration, W : --- C W, M C W, M C W,,,.aM C ---, whose intersection is
0 and union is M. The quotient Gr;‘,’fn M = Wepmpa M [/WamM is trivial and
GriV M = Wy M /Wypm1 M is a direct sum of finite copies of Q(m) for each
m € Z. Morphisms of MT(k)q are strictly compatible with weight filtration. The
extension group is related to K-theory as follows

. Kom_i(k)q fori=1,
Bty 1o (Q0), Q(m) = {0 il fort =
There are realization fiber functors ([L2] and [H]) corresponding to usual cohomol-
ogy theories.

Let S be a finite set of finite places of k. Let Og be the ring of S-integers in k.
Deligne and Goncharov [DG] defined the full subcategory MT(Og) of mixed Tate
motives over Og, whose objects are mixed Tate motives M in MT(k)q such that for
each subquotient F of M which is an extension of Q(n) by Q(n+1) for n € Z, the

extension class of E in Extj r (Q(n), Q(n+1)) = Extyrq, (QO0), Q1) = kg
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lies in OF ® Q. In this category the following hold:

0 form < 1,
Ewt}\lT(Os)(Q(O)a Q(m)) =405 2Q form =1,
' Kom-1(k)q form >1,

Exthyr(0,)(Q(0), Q(m)) =0,

Let wean : MT(Og) — Vectq (Vectq: the category of Q-vector spaces) be the
fiber functor which sends each motive M to ®,Hom(Q(n), Gr%,, M). Define the
motivic Galois group to be the pro-algebraic group Gal™(0s) = Aut® (MT(O5) :
Wean)- The action of Gal™(Os) on wean (Q(1)) = Q defines a surjection Gal™ (Og) —
G, and its kernel #Gal™ (Os) is the unipotent radical of Gal™(Os). There is a
canonical splitting 7 : G,,, = Gal(Og) which gives a negative grading on the Lie
algebra Liel Gal™ (Og) (consult [D] §8 for'the full story). The above computations
of Ext-groups follows

Proposition 1 ([D] §8, [DG] §2). The graded Lie algebra Lield Gal™! (OS) is free
ab

and its degree n-part of (LieL{GalM(OS)) =UGa™(05)? is isomorphic to the

dual of Extyre,(Q(0), Q(—n)).

Let us restrict in the case of k = Q, S = (), Og = Z. By Proposition 1 the Lie
algebra LieldGal™ (Z) of the unipotent part Z/Gal™(Z) of Gal™(Z) should be a
“graded free Lie algebra generated by one element in each degree —m (m > 3: odd).
In [DG] §4 they constructed the motivic fundamental group m (X : 01) with
X = P1\{0,1,00}, which is an ind-object of MT(Z). This is an affine group
MT(Z)-scheme (cf. [DG]). Since all the structure morphism of mM (X : (ﬁ) belong
to the set of morphisms of MT(Z) and wean (7 (X : 01)) = F, where F} is the free
pro-unipotent algebraic group of rank 2, we have

@ : UGAIM(Z) - AutF.
On this map ¢ the following is one of the basic problems.
Problem 2. Is ¢ injective?

This might be said a problem which asks a validity of a unipotent variant of
the so-called ‘Belyi’s theorem’ in [Be] in the pro-finite setting. Equivalently this
asks if the motivic fundamental group 7 (X : O_i) is a ‘generator’ of the tannakian
category MT(Z). It is related with various conjectures in several realizations (cf.
[FO7a] note 3.10); Zagier conjecture (partially proved by Terasoma [T] and Deligne-
- Gonchaov [DG]), Deligne-Thara conjecture (partially proved by Hain-Matsumoto
[HM]) and Furusho-Yamashita conjecture (partially proved by Yamashita [Y]).

2. THE GROTHENDIECK-TEICHMULLER GROUP

In his celebrated papers on quantum groups [Dr86, Dr90, Dr91] Drinfel’d came
to the notion of quasitriangular quasi-Hopf quantized universal enveloping algebras.
It is a topological algebra which differs from a topological Hopf algebra in the sense
that the coassociativity axiom and the cocommutativity axiom is twisted by an
associator and an R-matrix satisfying a pentagon axiom and two hexagon axioms.
One of the main theorems in [Dr91] is that any quasitriangular quasi-Hopf quantized
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universal enveloping algebra modulo twists (in other words gauge transformations
[Ka]) is obtained as a quantization of a pair (called its classical limit) of a Lie algebra
and its symmetric invariant 2-tensor. Quantizations are constructed by ‘universal’
associators. The set of group-like universal associators forms a pro-algebraic variety,
denoted M. The associator set M ([Dr91]) is the pro-algebraic variety whose set
of k-valued points consists of pairs below (u,) satisfying the GT-relations, the
Drinfel’d’s one pentagon equation (1) and his two hexagon equations (2) and (3),
and M is its open subvariety defined by p # 0. The non-emptiness of M (k) is
another of his main theorem (reproved in [Bal).

The category of representations of a quasitriangular quasi-Hopf quantized uni-
versal enveloping algebra forms a quasitensored category [Dr91], in other words, a
braided tensor category [JS]; its associativity constraint and its commutativity con-
straint are subject to one pentagon axiom and two hexagon axioms. The (unipotent
part of the graded) Grothendieck-Teichmiiller (pro-algebraic) group GRT) is intro-
duced in [Dr91] as a group of deformations of the category which change its associa-
tivity constraint keeping all three axioms. It is also closely related to Grothendieck’s
philosophy of Teichmiiller-Lego posed in [Gr]. Its set of k-valued points is defined
to be the subset of M with u = 0.

Let us fix notation and conventions: Let k be a field of characteristic 0, k its
algebraic closure and UgF2 = k{(Xo, X1)) a non-commutative formal power series
ring with two variables X and X;. Its element ¢ = (X, X1) is called group-like if
it satisfies A(p) = p®p with A(Xp) = Xo®1+1®Xp and A(X;) = X1 91+10X;
and its constant term is equal to 1. For a monic monomial W, c¢w () means the
coefficient of W in ¢. For any k-algebra homomorphism ¢ : U§; — S the image
t(p) € S is denoted by ¢(¢(Xo),¢(X1)). Let as be the completion (with respect to
the natural grading) of the Lie algebra over k with generators ¢;; (1 < 4,5 < 4)
and defining relations t;; = 0, t;; = tjs, [tij, tix + tjx] = 0 (4,5,k: all distinct) and
[tij, tri] = 0 (4,7,k,0: all distinct).

Our theorem is on the defining equations of the associator set M (and hence of
the Grothendieck-Teichmiiller group GRT;.)

Theorem 3 ([FO7b]). Let ¢ = p(Xo, X1) be a group-like element of UF2. Suppose
that o satisfies Drinfel’d’s pentagon equation:

(1) @(tia,tas + taa)p(tis + tas, t3a) = p(tas, t3a)p(tia + t13, tag + t34)p(t12, t23)-

Then there exists an element (unique up to signature) p € k such that the pair
(s, ) satisfies his two hezagon equations:

ti3 + 1 t _ t
(2) exp{w} = p(t13,t12) exp{%}sﬂ(tm;tzs) ! exp{H—22—3}(p(t12,t23),

(3) |
eXp{M(tm + t13)

_ t t _
B } = o(tas, t13) 1eXP{%}SD(tlz,tm)eXp{%}‘P(tm,tm) L

Actually this p is equal to £(24cx, x, (p))2.

It should be noted that we need to use an (actually quadratic) extension of a field
k in order to reduce the GT-relations into one pentagon equation. Particularly the
theorem claims that the pentagon equation is essentially a single defining equation
of the Grothendieck-Teichmiiller group.
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The proof of theorem 3 is reduced to the following by standard arguments of Lie
algebra.

Proposition 4 ([FO7b]). Let §o be the set of Lie-like elements ¢ in UF, (i.e.
Alp) =9p®1+1® ). Let ¢ be an element of Fo which is commutator Lie-like *
with c¢x,x, (p) = 0. Suppose that ¢ satisfies 5-cycle relation:

0(X12, X23) + ©(X34, Xus) + 0(Xs1, X12) + ©(Xa3, X34) + 0(X45, X51) =0
in ‘ﬁs. Then it also satisfies 8- and 2-cycle relation:
(X)) + oY, 2)+p(Z,X)=0with X +Y +Z =0,
P(X,Y) + (Y, X) = 0.

Here 95 stands for the completion (with respect to the natural grading) of the
pure sphere braid Lie algebra with 5 strings; the Lie algebra generated by X;;
(1 S Z,] S 5) with clear relations Xn = 0, Xij = ij', Z?:l Xij =0 (1 S ’L,] < 5)
and [Xij;Xkl] =0if {i,5} N {k,l} =0.

Proof . There is a projection from Bs to the completed free Lie algebra 2 gen-
erated by X and Y by putting X;5 = 0, X35 = X and Xp3 = Y. The image of
5-cycle relation gives 2-cycle relation.

For our convenience we denote ¢(X;;, X k) (1 < 4,7,k < 5) by ¢ijr. Then the
5-cycle relation can be read as

©123 + P345 + Y512 + 234 + P51 = 0.

We denote LHS by P. Put o; (1 < i < 12) be elements of &5 defined as follows:
o1(12345) = (12345), 02(12345) = (54231), 03(12345) = (13425), 04(12345) =
(43125), 05 (12345) = (53421), 06(12345) = (23514), o, (12345) = (23415), 05 (12345) =
(35214), 09(12345) = (53124), 510(12345) = (24135), 011(12345) = (52314) and
012(12345) = (23541). Then ‘

12
Ziﬂ 0i(P) = p123 + V345 + P512 + 234 + Pas1

+ Ps42 + Y231 + Y154 + Pa23 + Q315
+ P134 + P25 + P513 + Y342 + Pas1
+ 431 + Y125 + Ps43 + Y312 + P254
+ ©534 + Pa21 + Pisz + Q342 + P15
+ 235 + V514 + Y423 + Y351 + P142
+ P234 + Pa15 + P53 + P341 + Y152
+ p352 + P14 + Pa3s + P521 + Y143
+ @531 + V124 + 453 + P312 + P245
+ P241 + Y135 + Y524 + Pa13 + P352
+ 523 + Y314 + Pas2 + Y231 + Y145
+ 235 + Y541 + P123 + Y354 + Pa2.

By the 2-cycle relation, @;;; = —@gji (1 <1i,7,k < 5). This gives

We call a series ¢ = ¢(Xo, X1) commutator Lie-like if it is Lie-like and cx, = c¢x, = 0, in
other words ¢ € § := [F2, F2]-



ZZI 0i(P) =123 + P234
+ 231 + pa23
+ Y342 + Q312 + P342
+ 235 + 423
+ 234 + V523
+ 352 + Y312 + Y352
+ 523 + 231
+ @235 + P123
=2(p123 + 231 + P312) + 2(V234 + V342 + Qa23) + 2(P235 + Y352 + P523)

:2{‘P(X12, Xa3) + ¢(Xa3,X31) + 90(X31,X12)}
+ 2{90(X23, Xas) + (X34, X42) + ©(Xa2, X23)}

+ 2{90(X23», X35) + (X35, X52) + 90(X52,X23)}-

By [X12, X120+ X531+ X32] = [Xo3, X124+ X31+X32] = 0and ¢ € §h, p(Xq2, Xo3) =
P(=X31 — X39, Xo3) = (X34 + X35, X23). By [X31, X12+ X531+ X32] = [X12, X12+
X314+ X32] = 0 and ¢ € FY, ©(Xz1,X12) = ¢©(X31,—X31 — X32) = (—Xo3 —
X34 — X35, X34 + X35). By [Xas, Xag + Xog + Xa4] = [Xyo, Xyo + Xog + X34] =0
and ¢ € Fy, (X34, X42) = (X34, —X23 — X34). By [Xas, Xy + Xog + X34] =
[X42, X4 + Xoz + X34] = 0 and ¢ € F, (X4, Xo3) = ©(—X23 — X34, Xo3). By
[X35, X2 + Xo3 + X3s5] = [Xs2, X52 + Xos + X35] = 0 and ¢ € §y, ¢(X35, Xs52) =
0 (X35, —X23 — X35). By [Xa3, X5 + Xo3 + X35] = [X52, X52 + X33 + X35] =0 and
© € Fh, p(Xs2, Xa3) = o(—Xaz — X35, X23).

So it follows

12
Zi:l o;i(P) :2{S0(X34 + X35, X23) + p(Xo3, —Xaz — X34 — X35)

+ p(—Xa3 — X34 — X35, X34 + X35)}
+ 2{90(X23,X34) + (X34, —Xa3 — X34) + (—Xo3 — X34,X23)}
+ 2{90(X23,X35) + (X35, —Xa3 — X35) + o(—Xo3 — X35,X23)}

The elements X535, X34 and X35 generates completed Lie subalgebra §3 of P35
which is free of rank 3 and it contains Zzl o;(P). Let ¢ : §3 = §2 be the projection
sendi‘ng Xos— X, X34 Y and X35 = Y. Then

a(Y, | oi(P)) =2{ (2, X) + 0(X, =X —2Y) + p(~X —2Y,2)}

+ 4{(p(X, Y)+@(Y,-X -Y) +p(-X — Y, X)}.
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By the 2-cycle relation,
12
«(Y, 0i(P) =4{p(X,V) + 6 (¥, ~X = ¥) + p(-X - ¥, X) }
- 2{@(X, 2Y) + p(2Y, - X — 2Y) + p(—X - 2V, X)}.

Put R(Xa Y) = QO(X’ Y)+(P(Ya —"X'_Y)—'—(p(_X_Yv X) Then q(Zz 1 Ul(P)) -
4R(X,Y) — 2R(X,2Y). Since P = 0, it follows 2R(X,Y) = R(X,2Y). Expand-
ing this equation in terms of the Hall basis, we see that R(X,Y’) must be of the
form 00 a,(adX)™ 1 (Y) with a,, € k. By the 2-cycle relation, R(X,Y) =

—R(Y, X) SO a; =ag = a4 = a5 = --- = 0. By our assumption cx,x, (¢) =0, az
must be 0 either. Therefore R(X, Y) = O which is the 3- cycle relation. This yields
the validity of theorem 3. _ O

We note that the multiplication 2 of GRT} is given by

(4) 2001 = p1(paXops ', X1) - 2 = p2 - 1(Xo, 03  X1¢p2)

for o1, o € GRTi(k). By the map sending Xy — X and X; = ¢X;p71, the
group GRT; is regarded as a subgroup of AutFj. It is known that it contains the
motivic Galois image (see for example [A, F07a]), i.e

Proposition 5. o(UGal™(Z)) C GRT.

In [Ko] Kontsevich raised a mysterious speculation which connects motivic Ga-
lois groups and deformation quantizations. His speculation was based on several
conjectures and one of which was the following.

Conjecture 6. The map ¢ might induce the isomorphism /Gal™(Z) ~ GRT}.

This conjecture is clearly explained in [A] from the viewpoint of motives.

3. THE DOUBLE SHUFFLE GROUP

This section shows that the pentagon equation (1) implies the generalized double
shuffle relation (6). As a corollary, we obtain an embedding from the Grothendieck-
Teichmiiller group GRT} to Racinet’s double shuffle group DM Ry ([R]). This real-
izes the project of Deligne-Terasoma [D'T] where a different approach was indicated.
Their arguments concerned multiplicative convolutions whereas our methods are
based on a bar construction calculus. We also prove that the gamma factorization
formula follows from the generalized double shuffle relation. It extends the result
in [DT, I] where they show that the GT-relations imply the gamma factorization.

Multiple zeta values (k1,- - , km) are the real numbers defined by the following
series 1

Ckla"'7km = T ko
( ) ' O<n1;<n n’fl ’ 'nf”m
for m, ki,..., kny € N(= Zsg). This converges if and only if k,, > 1. They
were studied (allegedly) firstly by Euler [E] for m = 1,2. Several types of relations
among multiple zeta values have been discussed. We focus on two types of relations,
GT-relations and generalized double shuffle relations. Both of them are described
in terms of the Drinfel’d associator [Dr91]

Prz(Xo, X1) = 1+Z(——1)m§(k1, s k) XER X - XX 4 (regularized terms)

2For our convenience, we change the order of multiplication in the original definition of [Dr91].
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which is a non-commutative formal power series in two variables Xy and X;. Its
coefficients including regularized terms are explicitly calculated to be linear combi-
nations of multiple zeta values in [F03] proposition 3.2.3 by Le-Murakami’s method
[LM]. The Drinfel’d associator was introduced as the connection matrix of the
Knizhnik-Zamolodchikov equation and it was shown in [Dr91] that it is group-like
_ and satisfies the GT-relations with u = £27v/—1, i.e. (Pxz,+2mV/-1) € M(C),
by using symmetry of the KZ-system on configuration spaces.

The generalized double shuffle relation is a kind of combinatorial relation. It
arises from two ways of expressing multiple zeta values as iterated integrals and
as power series. There are several formulations of the relations (see [IKZ, R]). In
particular, they were formulated as (6) (see below) for ¢ = k7 in [R].

Let us fix notation and conventions: Let my : k((Xo, X1)) — k((¥1,Y>,...)) be
the k-linear map between non-commutative formal power series rings that sends all
the words ending in X, to zero and the word Xg"‘_le e X(’,“_le (N1,...,Mm €
N) to (=1)™Y,,  ---Y,,. Define the coproduct A, on k{((¥Y1,Y2,...)) by A.Y, =
Yoo Yi®Y, i with Yy := 1. For ¢ = 3 . vora W (@)W € k((Xo, X1)), define the
series shuffle regularization ¢, = @corr - Ty () with the correction term

(5) Pcorr — €XP (Z (_1)nCX61—1X1 (go)Yf) .

n
n=1

For a group-like series ¢ € UJs the generalised double shuffle relation means the
equality

(6) Aps) = SO*@‘P*-

Theorem 7 ([F08]). Let ¢ = p(Xo,X1) be a group-like element of USs. Sup-
pose that ¢ satisfies Drinfel’d’s pentagon equation (1). Then it also satisfies the
generalized double shuffle relation (6).

By [F07b] lemma 5, theorem 7 is reduced to the following.

Proposition 8 ([FO8]). Let ¢ be a group-like element of UF, with cx,(p) =
cx, (p) = 0. Suppose that ¢ satisfies the 5-cycle relation

(X34, Xa5)o(X51, X12)p(Xos, X34)p(Xas, X51)p(X12, X23) =1

in the completed universal enveloping algebra UBs of Ps. Then it also satisfies the
generalized double shuffle relation, i.e. A,(ps) = PL®Py.

Proof . Let My 4 be the moduli space {(z1, - ,z4) € (P})*|z; # 2, (i # j)}/PGLy(k)
of 4 different points in PL. Tt is identified with {z € P|z # 0,1,00} by sending
[(0,2,1,00)] to 2. Let My 5 be the moduli space {(z1,- - ,z5) € (P})5|z; # z;(i #
)}/ PGLy(k) of 5 different points in P. Tt is identified with {(z,y) € GZ |z #
L,y # 1,zy # 1} by sending [(0,zy,y, 1, 00)] to (z,y).

For M = My 4/k or Mgs/k, we consider the Brown’s variant V(M) [Br] of
the Chen’s reduced bar construction [C]. This is a graded Hopf algebra V(M) =
DL _oVim (CTVL = @2_,V;2™) over k. Here Vo = k, Vi = Hhp(M) and V,, is the
totality of linear combinations (finite sums) >, . ;ycrlwi,| - |wy] € vEm
(cr € k, wi; € V1, [wi, |- |wy,] := wi, ® - ®w;,) satisfying the integrability
condition

Z crlwi,, Iwim—I! T |wij+1 A wijl toe |wi1] =0

I=(im, 1)
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in VE™ I @ HE p(M) @ V! for all j (1< 5 <m).

‘For the moment assume that k is a subfield of C. We have an embedding
(called a realisation in [Br]§1.2, §3.6) p : V(M) — I,(M) as algebra over k
which sends 3;_(; . .yerlwi, | |wi] (er € k) to 3o erlt [ wy, 0 -ow;, . Here
Yorerlt [ wi, o---ow; means the iterated integral defined by

S | Wi (1)) @1, (1)) -0, ((12)
7 0<ty <o e <tm—q <t <1
for all analytic paths v : (0,1) — M(C) starting from the tangential basepoint
o (defined by 3‘12— for M = My 4 and defined by % and a‘% for M = Myps) at
the origin in M (for its treatment see also [D]§15) and I,(M) denotes the O3}-
module generated by all such homotopy invariant iterated integrals with m > 1 and
holomorphic 1-forms w;,,...,w;, € Q(M).

For a = (a1,--- ,ax) € Z%,, its weight and its depth are defined to be wt(a) =
‘a1 + --- + ap and dp(a) = k respectively. Put z € C with |z| < 1. Consider the
following complex function which is called the one variable multiple polylogarithm

mp
Lia(z) = .
0<m1; <mp mll o mkk

It satisfies the recursive differential equations (cf. [BF, F08]) It gives an iterated
integral starting from o, which lies on I,(Mp4). Actually it corresponds to an
element of V(Mg 4) denoted by la.

Similarly for a = (a1, -+ ,ax) € Z%,, b= (b1, -+ ,b) € Z4 and z,y € C with
|z] < 1 and |y| < 1, consider the following complex function which is called the two
variables multiple polylogarithm

. ™k ynl
Liap (z,y) = E a1 by b
0<my < - <mi ml : mk Ny 1y

<ny <o <ny

It also satisfies the recursive differential equations (cf. [BF]§5). They show that the
functions Lia b (2,y), Liab(y, ), Lia(z), Lia(y) and Lia(xy) give iterated integrals
starting from o, which lie on I,(Mps5). They correspond to elements of V(Mops)
by the map p denoted by 12}, Iy, I3, 14 and I3Y respectively.

The idea of the proof of proposition 8 goes as follows: Recall that multiple
polylogarithms satisfy the analytic identity, the series shuffle formula in I,(M,5)

Lia(z) - Lin(y) = Y Lisaw)(o(@,y)).
T ESRS (k1)
Here ShS(k,l) == U_{o : {1, ,k+1} = {1,--- ,N}|o is onto,0(1) < --- <
ok),ok+1) < --- < a(k+ 1)}, o(a,b) = ((c1,-,¢5),(¢j41, -+ ,cn)) with
{3 N} ={o(k),o(k + 1)},
as + by if 071(i) = {s,t} with s < t,
ci =X ag if o71(i) = {s} with s <k,
bs—rk if o71(:) = {s} with s >k,
Ty if o7Y(N) =k, k+1,
and o(z,y) =< (z,y) if o 1(N) =k +1,
(y,z) if o~}(N) = k.
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Since p is an embedding of algebras, the above analytic identity implies the

algebraic identity, the series shuffle formula in V(Mo )

™ = > e
c€ShS (k,1)

" Suppose that ¢ is an element as in proposition 8. Evaluation of the equation (7)
at the group-like element (451123 ° gives the series shuffle formula,

(@) (@)= D lo@ap)(®)

o€ShS (k,l)

for admissible * indices a and b because of [FO8] lemma 4.1. and 4.2.

For non-admissible indices we need a special treatment. The idea is essentially
same to the above admissible indices case except that we consider eTX51<,0451g0123
(T: a parameter which stands for logz) instead of 451123 (see [FO8] in more
detail), which completes the proof of theorem 7. |

The double shuffle group DM Ry is a pro-unipotent group introduced by Racinet
[R]. Its set of k-valued points consists of group-like series ¢ which satisfy (6) 5 and
cx, () = cx,(¢) = ex,x, (p) = 0. Its multiplication is given by the equation (4).
By the same way to the G RTj-case, the group DM Ry is regarded as a subgroup of
AutF,. This also contains the motivic Galois image.

Proposition 9. o Gal™(Z)) € DMR,.

This follows from the result in [Go] and another proof is given in [F07a]. The

following is a direct corollary of our theorem 7 since the equations (2) and (3) for
2

(1, ) imply cx,x, () = 47-
Theorem 10 ([F08]). GRT; C DMRy.

As an analogue of conjecture 6, thé following conjecture is posed (cf. [R] and see
also [A].)

Conjecture 11. The map ¢ might induce the isomorphism U GalM(Z) ~ DMRy.

The validities of conjecture 6 and conjecture 11 would imply that GRT; might
be isomorphic to DM Ry.

Remark 12. Alekseev and Torossian [AT] gave the second proof of the Kashiwara-
Vergne (KV) conjecture. It is a conjecture on a property of the Campbell-Baker-
Hausdorfl formula which was posed in [KV]. Their proof was based on Drinfel’d’s
theory [Dr91] of the Grothendieck-Teichmiiller group. They showed that the set of
solutions of the generalized KV-problem admitted a free and transitive action of the
(graded) Kashiwara-Vergne group KRV (see also [AET] for the definition). It is a
subgroup of AutF, and contains GRT1, ie, we have an embedding GRT} — KRV
They conjectured in [AT]84 that its degree>1-part K RV~ might be equal to GRT}.

3For simplicity we mean i for o(X;j, X;1) € UBs.
4An index a = (a1, ,ayg) is called admissible if ap, > 1.
5For our convenience, we change some signatures in the original definition ([R] definition 3.2.1.))
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One of the main defining equations of K RV is the cobound ‘condition
(cf. loc.cit.), which is a lift of the gamma factorization formula (8) (see below) to

the trace space %5. The following theorem might be a step to relate K RV with
DMRy.

Theorem 13 ([F08]). Let ¢ be a non-commutative formal power series in two
variables which is group-like with cx,(p) = cx, (p) = 0. Suppose that it satisfies the
generalized double shuffle relation (6). Then its meta-abelian quotient © B (zo, 1)
is gamma-factorisable, i.e. there exists a unique series T',(s) in 1+ s?k[[s]] such
that

_ Lp(@0)Ty(21)
(8) Bﬂo(z()awl) - F<P(x0 +371) .

The gamma element ', gives the correction term @ o of the series shuffle requ-
larization (5) by @eorr = Ly (—Y1) 7L

~ This theorem was proved in [F08] §5. It extends the result in [DT, I] which shows
that for any group-like series satisfying (1), (2) and (3) its meta-abelian quotient
is gamma factorisable. We note that it was calculated in [Dr91] that especially
Ly(s) = exp{zzozzgnﬂs"} = e 7°T(1 — 8) for ¢ = Pgz where v is the Euler
constant, ['(s) is the classical gamma function and @z is the Drinfel’d associator.
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