Linear Algebra II - Homework 4 - Answer

Exercise 1-1. Projection onto the \vec{v}_{2}, \vec{v}_{3}-plane.
Exercise 1-2. Projection onto the \vec{v}_{3}-axis.
Exercise 1-3. Axisymmetric of \vec{v}_{1}-axis.
Exercise 1-4. Axisymmetric of \vec{v}_{1}, \vec{v}_{2}-plane.
Exercise 2. By letting

$$
|\lambda I-M|=\left|\begin{array}{cccc}
\lambda-2 & 2 & -3 & -1 \\
-1 & \lambda+1 & & -2 \\
& & \lambda-3 & 4 \\
& & -2 & \lambda+3
\end{array}\right|=0,
$$

we see that the eigenvalues of M are

$$
\lambda_{1}=0, \quad \lambda_{2}=1, \quad \lambda_{3}=-1
$$

In terms of λ_{1}, since

$$
\begin{aligned}
& \lambda_{1} I-M=\left(\begin{array}{cccc}
-2 & 2 & -3 & -1 \\
-1 & 1 & & -2 \\
& & -3 & 4 \\
& & -2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & -1 & \frac{3}{2} & \frac{1}{2} \\
& & \frac{3}{2} & -\frac{3}{2} \\
& -3 & 4 \\
& & -2 & 3
\end{array}\right) \\
& \xrightarrow{x_{2} \leftrightarrow x_{3}}\left(\begin{array}{cccc}
1 & \frac{3}{2} & -1 & \frac{1}{2} \\
& \frac{3}{2} & & -\frac{3}{2} \\
& -3 & & 4 \\
& -2 & & 3
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & & -1 & 2 \\
& 1 & & -1 \\
& & & 1 \\
& & & 1
\end{array}\right) \\
& \xrightarrow{x_{3} \leftrightarrow x_{4}}\left(\begin{array}{cccc}
1 & & 2 & -1 \\
& 1 & -1 & \\
& & 1 & \\
& & 1 &
\end{array}\right) \rightarrow\left(\begin{array}{llll}
1 & & & -1 \\
& 1 & & \\
& & 1 & \\
& & &
\end{array}\right),
\end{aligned}
$$

we see that the eigenvectors of λ_{1} are

$$
\left\{\left.k\left(\begin{array}{c}
1 \\
1 \\
\end{array}\right) \right\rvert\, k \in \mathbb{R}, k \neq 0\right\}
$$

Indeed, the solution corresponding to the last matrix is

$$
k\binom{1}{1}, \quad k \in \mathbb{R}
$$

but when we deal with the original matrix $\lambda_{1} I-M$ above, we have changed the order of x_{2}, x_{3} and x_{3}, x_{4}, so we need to change them back, i.e

$$
\binom{1}{1} \xrightarrow{x_{4} \leftrightarrow x_{3}}\binom{1}{1} \xrightarrow{x_{3} \leftrightarrow x_{2}}\left(\begin{array}{l}
1 \\
1 \\
\end{array}\right) .
$$

Similarly, the eigenvectors of λ_{2} are

$$
\left\{\left.k\left(\begin{array}{c}
2 \\
1 \\
\end{array}\right) \right\rvert\, k \in \mathbb{R}, k \neq 0\right\}
$$

and the eigenvectors of λ_{3} are

$$
\left\{\left.k\left(\begin{array}{c}
2 \\
1 \\
-1 \\
-1
\end{array}\right) \right\rvert\, k \in \mathbb{R}, k \neq 0\right\}
$$

Exercise 3-1. It's easy to see that

$$
m_{t+1}=(1-a) m_{t}+b n_{t} \text { and } n_{t+1}=a m_{t}+(1-b) n_{t} .
$$

Exercise 3-2. It's easy to see that

$$
m_{t+1}+n_{t+1}=(1-a) m_{t}+b n_{t}+a m_{t}+(1-b) n_{t}=m_{t}+n_{t} .
$$

Exercise 3-3. It's easy to see that

$$
M=\left(\begin{array}{cc}
1-a & b \\
a & 1-b
\end{array}\right) .
$$

Exercise 3-4. It's easy to see that the eigenvalues are

$$
\lambda_{1}=1 \text { and } \lambda_{2}=1-a-b .
$$

The eigenvectors of λ_{1} are

$$
\left\{\left.k\binom{b}{a} \right\rvert\, k \in \mathbb{R}, k \neq 0\right\}
$$

and the eigenvectors of λ_{2} are

$$
\left\{\left.k\binom{1}{-1} \right\rvert\, k \in \mathbb{R}, k \neq 0\right\} .
$$

Exercise 3-5. Yes, it is. It's easy to see that the diagonalization of M is

$$
\left(\begin{array}{cc}
1 & \\
& 1-a-b
\end{array}\right) .
$$

Exercise 3-6. It's easy to see that

$$
\begin{aligned}
M^{t} & =\left(\begin{array}{cc}
b & 1 \\
a & -1
\end{array}\right)\left(\begin{array}{cc}
1 & \\
& (1-a-b)^{t}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{a+b} & \frac{1}{a+b} \\
\frac{a}{a+b} & -\frac{b}{a+b}
\end{array}\right) \\
& =\left(\begin{array}{cc}
b & 1 \\
a & -1
\end{array}\right)\left(\begin{array}{l}
1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{a+b} & \frac{1}{a+b} \\
\frac{a}{a+b} & -\frac{b}{a+b}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\frac{b}{a+b} & \frac{b}{a+b} \\
\frac{a}{a+b} & \frac{a}{a+b}
\end{array}\right), t \rightarrow \infty .
\end{aligned}
$$

Therefore,

$$
\binom{m_{t}}{n_{t}}=M^{t}\binom{m_{0}}{n_{0}}=\left(\begin{array}{cc}
\frac{b}{a+b} & \frac{b}{a+b} \\
\frac{a}{a+b} & \frac{a}{a+b}
\end{array}\right)\binom{m_{0}}{n_{0}}=\binom{\frac{b\left(m_{0}+n_{0}\right)}{a+b}}{\frac{a\left(m_{0}+n_{0}\right)}{a+b}}, t \rightarrow \infty
$$

