Linear Algebra II - Homework 3 - Answer

Exercise 1. It's easy to see that

$$\begin{vmatrix} 8 & 4 \\ 1 & 3 \end{vmatrix} = 8 \cdot 3 - 4 \cdot 1 = 20$$

and

$$\begin{vmatrix} 7 & 1 & 2 \\ 1 & 3 & 4 \\ & 2 & 3 \\ 4 & 1 & 8 \end{vmatrix} = (-1)^{3+3} \begin{vmatrix} 7 & 1 \\ 1 & 4 \\ 4 & 1 \end{vmatrix} + (-1)^{3+4} \begin{vmatrix} 7 & 1 & 2 \\ 1 & 3 \\ 4 & 1 & 8 \end{vmatrix} = 21.$$

Exercise 2-1. It's easy to see that

$$\begin{vmatrix} a & 3 & d \\ b & 3 & e \\ c & 3 & f \end{vmatrix} = 3 \begin{vmatrix} a & 1 & d \\ b & 1 & e \\ c & 1 & f \end{vmatrix} = 3 \cdot 7 = 21.$$

Exercise 2-2. It's easy to see that

$$\begin{vmatrix} a & 3 & d \\ b & 5 & e \\ c & 7 & f \end{vmatrix} = \begin{vmatrix} a & 2 & d \\ b & 4 & e \\ c & 6 & f \end{vmatrix} + \begin{vmatrix} a & 1 & d \\ b & 1 & e \\ c & 1 & f \end{vmatrix} = 2 \begin{vmatrix} a & 1 & d \\ b & 2 & e \\ c & 3 & f \end{vmatrix} + 7 = 2 \cdot 11 + 7 = 29.$$

Exercise 3. By letting *i*-th row minus (i - 1)-th row from *n*-th row, we have $\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \end{vmatrix}$

T	T	T	•••	T			T	T	•••	T	
1	2	2	• • •	2			1	1	• • •	1	
1	2	3	• • •	3	=			1	•••	1	= 1
÷	÷	÷		÷		а а			·	÷	
1	2	3	•••	n						1	

Exercise 4-1. It's easy to see that

$$|M_t| = (t + m_{11})\tilde{M}_{11} + m_{12}\tilde{M}_{12} + \dots + m_{1n}\tilde{M}_{1n}$$

= $t\tilde{M}_{11} + m_{11}\tilde{M}_{11} + \dots + m_{1n}\tilde{M}_{1n} = t\tilde{M}_{11} + |M|.$

Exercise 4-2. Assume that the first two situations don't happan. Then, the second situation not happening tells us that there exists t_0 such that $|M_{t_0}| \neq 0$, which implies that $\tilde{M}_{11} \neq 0$ or $|M| \neq 0$. Note that if $\tilde{M}_{11} = 0$ and $|M| \neq 0$, the first situation will always happen, which contradicts to our assumption. Thus, we have $\tilde{M}_{11} \neq 0$. Then, if we regard $|M_t|$ as a function of t, it will be a linear function, which intersect with y = 0 for precisely one point.