Linear Algebra II - Homework 2 - Answer

Exercise 1-1. It's easy to see that

$$
|\vec{u}|=\sqrt{(\vec{u}, \vec{u})}=\sqrt{1^{2}+1^{2}}=\sqrt{2}, \quad|\vec{v}|=\sqrt{170}
$$

and

$$
(\vec{u}, \vec{v})=1 \cdot 7+1 \cdot 11=18 .
$$

Therefore, we have

$$
\langle\vec{u}, \vec{v}\rangle=\arccos \frac{(\vec{u}, \vec{v})}{|\vec{u}||\vec{v}|}=\arccos \frac{18}{\sqrt{2} \sqrt{170}}=\arccos \frac{9 \sqrt{85}}{\sqrt{85}} .
$$

Exercise 1-2. It's easy to see that

$$
|\vec{u}|=\sqrt{10}, \quad|\vec{v}|=3 \sqrt{6}, \quad\langle\vec{u}, \vec{v}\rangle=\arccos \left(-\frac{\sqrt{15}}{30}\right) .
$$

Exercise 2-1. It's easy to see that

$$
\left|\vec{u}_{1}\right|=\left|\vec{u}_{2}\right|=\left|\vec{u}_{3}\right|=1, \quad\left(\vec{u}_{1}, \vec{u}_{2}\right)=\left(\vec{u}_{1}, \vec{u}_{3}\right)=\left(\vec{u}_{2}, \vec{u}_{3}\right)=0 .
$$

Exercise 2-2. Let $\vec{u}_{4}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)$. Since $\left(\vec{u}_{i}, \vec{u}_{4}\right)=0, i=1,2,3$, we have

$$
\left\{\begin{array}{l}
\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}+\frac{1}{2} x_{4}=0 \\
\frac{1}{2} x_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3}-\frac{1}{2} x_{4}=0 \\
\frac{1}{2} x_{1}-\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{4}=0
\end{array} .\right.
$$

Then, from

$$
\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & & & -1 \\
& 1 & & 1 \\
& & 1 & 1
\end{array}\right)
$$

we see that

$$
\vec{u}_{4}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=k\left(\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right), \quad k \in \mathbb{R} .
$$

Since $\left|\vec{u}_{4}\right|=1$, we have $4 k^{2}=1$, which implies that $k= \pm \frac{1}{2}$. Therefore,

$$
\vec{u}_{4}=\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right) \quad \text { or } \quad \vec{u}_{4}=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) .
$$

Exercise 3. Let

$$
\vec{\alpha}_{1}=\left(\begin{array}{l}
1 \\
7 \\
1 \\
7
\end{array}\right), \quad \vec{\alpha}_{2}=\left(\begin{array}{l}
0 \\
7 \\
2 \\
7
\end{array}\right), \quad \vec{\alpha}_{3}=\left(\begin{array}{l}
1 \\
8 \\
1 \\
6
\end{array}\right) .
$$

Then, we have

$$
\begin{aligned}
& \vec{\beta}_{1}=\vec{\alpha}_{1}=\left(\begin{array}{c}
1 \\
7 \\
1 \\
7
\end{array}\right), \\
& \vec{\beta}_{2}=\vec{\alpha}_{2}-\frac{\left(\vec{\alpha}_{2}, \vec{\beta}_{1}\right)}{\left(\vec{\beta}_{1}, \vec{\beta}_{1}\right)} \vec{\beta}_{1}=\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right) \\
& \vec{\beta}_{3}=\vec{\alpha}_{3}-\frac{\left(\vec{\alpha}_{3}, \vec{\beta}_{1}\right)}{\left(\vec{\beta}_{1}, \vec{\beta}_{1}\right)} \vec{\beta}_{1}-\frac{\left(\vec{\alpha}_{3}, \vec{\beta}_{2}\right)}{\left(\vec{\beta}_{2}, \vec{\beta}_{2}\right)} \vec{\beta}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right) .
\end{aligned}
$$

Exercise 4. The the coefficient matrix of $x_{1}+x_{2}+x_{3}=0$ is

$$
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right),
$$

which implies that any vector on the plane can be denoted by

$$
\vec{\gamma}=k_{1}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+k_{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad k_{1}, k_{2} \in \mathbb{R}
$$

It follows from the equation above that we can obtain two linearly independent vectors

$$
\vec{\alpha}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad \vec{\alpha}_{2}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)
$$

on the plane just by letting $k_{2}=0$ and $k_{1}=0$, respectively. By the GramSchmidt process, we have two orthogonal vectors

$$
\vec{\beta}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad \vec{\beta}_{2}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-1
\end{array}\right)
$$

on the plane. Normalizing $\vec{\beta}_{1}, \vec{\beta}_{2}$, we can obtain an orthonormal basis $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ of the plane, where

$$
\vec{e}_{1}=\frac{\vec{\beta}_{1}}{\left|\vec{\beta}_{1}\right|}=\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} \\
0
\end{array}\right), \quad \vec{e}_{2}=\left(\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
-\frac{2}{\sqrt{6}}
\end{array}\right)
$$

Exercise 3-26. It is easy to see that $c=d=0$, since

$$
a \cdot 0+c \cdot 1+e \cdot 0=0 \text { and } b \cdot 0+d \cdot 1+f \cdot 0=0 .
$$

Moreover, we have

$$
\left\{\begin{array}{l}
a^{2}+b^{2}=1 \\
e^{2}+f^{2}=1 \\
a e+b f=0
\end{array} .\right.
$$

Let $\left\{\begin{array}{l}a=\cos \theta \\ b=\sin \theta\end{array}\right.$ and $\left\{\begin{array}{l}e=\cos \varphi \\ f=\sin \varphi\end{array}\right.$. It follows from the third equation of the system of equations above that

$$
\cos \theta \cos \varphi+\sin \theta \sin \varphi=0 \quad \Leftrightarrow \quad \cos (\theta-\varphi)=0 .
$$

Hence, we have

$$
\theta=\varphi+\frac{2 k+1}{2} \pi, \quad k \in \mathbb{Z} .
$$

Therefore, the matrix becomes

$$
\left(\begin{array}{ccc}
\cos \theta & \sin \theta & \\
& & 1 \\
\cos \varphi & \sin \varphi &
\end{array}\right)=\left(\begin{array}{ccc}
\cos \left(\varphi+\frac{2 k+1}{2} \pi\right) & \sin \left(\varphi+\frac{2 k+1}{2} \pi\right) & \\
\cos \varphi & \sin \varphi & 1
\end{array}\right), \quad k \in \mathbb{Z} .
$$

When k is even, the matrix has the form

$$
\left(\begin{array}{ccc}
\cos \left(\varphi+\frac{2 k+1}{2} \pi\right) & \sin \left(\varphi+\frac{2 k+1}{2} \pi\right) & \\
\cos \varphi & \sin \varphi & 1
\end{array}\right)=\left(\begin{array}{ccc}
-\sin \varphi & \cos \varphi & \\
\cos \varphi & \sin \varphi & 1
\end{array}\right)
$$

When k is odd, the matrix has the form

$$
\left(\begin{array}{ccc}
\cos \left(\varphi+\frac{2 k+1}{2} \pi\right) & \sin \left(\varphi+\frac{2 k+1}{2} \pi\right) & \\
\cos \varphi & \sin \varphi & 1
\end{array}\right)=\left(\begin{array}{ccc}
\sin \varphi & -\cos \varphi & \\
\cos \varphi & \sin \varphi & 1
\end{array}\right)
$$

