Linear Algebra II - Homework 1 - Answer

Exercise 1-6. No, it's not. Let $\mathrm{GL}_{3}(\mathbb{R})$ be the set. It's easy to see that $I_{3},-I_{3} \in \mathrm{GL}_{3}(\mathbb{R})$, but $I_{3}+\left(-I_{3}\right)=0 \notin \mathrm{GL}_{3}(\mathbb{R})$. Therefore, it's not a subspace of $M_{3}(\mathbb{R})$.
Exercise 1-8. Yes, it is. Let U be the set. Since $I_{3} \in U, U \neq \emptyset$. For any $U_{1}, U_{2} \in U$, let

$$
U_{1}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
& a_{22} & a_{23} \\
& & a_{33}
\end{array}\right), \quad U_{2}=\left(\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
& b_{22} & b_{23} \\
& & b_{33}
\end{array}\right) .
$$

Obviously, for $k_{1}, k_{2} \in \mathbb{R}$,

$$
k_{1} U_{1}+k_{2} U_{2}=\left(\begin{array}{ccc}
k_{1} a_{11}+k_{2} b_{11} & k_{1} a_{12}+k_{2} b_{12} & k_{1} a_{13}+k_{2} b_{13} \\
& k_{1} a_{22}+k_{2} b_{22} & k_{1} a_{23}+k_{2} b_{23} \\
& k_{1} a_{33}+k_{2} b_{33}
\end{array}\right) \in U .
$$

Therefore, U is a subspace of $M_{3}(\mathbb{R})$, and $\left\{E_{11}, E_{12}, E_{13}, E_{22}, E_{23}, E_{33}\right\}$ can be a basis of U, where $E_{i j} \in M_{3}(\mathbb{R})$ such that every element of $E_{i j}$ is zero except that $a_{i j}=1$.

Exercise 2. Yes, it is. Let A be the set consisting of all arithmetic real sequences. Let $\left(v_{n}\right)_{n \in \mathbb{N}}$ be the real sequence such that $v_{n}=0$ for all $n \in \mathbb{N}$. Obviously, $\left(v_{n}\right)_{n \in \mathbb{N}} \in A$, in which case $a=0, b=0$. Hence, $A \neq \emptyset$. For any $\left(u_{n}\right)_{n \in \mathbb{N}},\left(u_{n}^{\prime}\right)_{n \in \mathbb{N}} \in A$, let

$$
u_{n}=a+n b, \quad u_{n}^{\prime}=a^{\prime}+n b^{\prime}, \quad a, b, a^{\prime}, b^{\prime} \in \mathbb{R} .
$$

Obviously, for $k_{1}, k_{2} \in \mathbb{R}$,

$$
k_{1} u_{n}+k_{2} u_{n}^{\prime}=\left(k_{1} a+k_{2} a^{\prime}\right)+n\left(k_{1} b+k_{2} b^{\prime}\right), \quad k_{1} a+k_{2} a^{\prime}, k_{1} b+k_{2} b^{\prime} \in \mathbb{R} .
$$

It follows that $k_{1}\left(u_{n}\right)_{n \in \mathbb{N}}+k_{2}\left(u_{n}^{\prime}\right)_{n \in \mathbb{N}}=\left(k_{1} u_{n}+k_{2} u_{n}^{\prime}\right)_{n \in \mathbb{N}} \in A$. Therefore, A is a subspace of real sequences.

Exercise 3-12. Yes, it is a linear map, since for $c_{1}, c_{2} \in \mathbb{R}$ and $k_{1}, k_{2} \in \mathbb{R}$, we have

$$
\begin{aligned}
T\left(k_{1} c_{1}+k_{2} c_{2}\right)=\left(k_{1} c_{1}+k_{2} c_{2}\right)\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right) & =k_{1} c_{1}\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right)+k_{2} c_{2}\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right) \\
& =k_{1} T\left(c_{1}\right)+k_{2} T\left(c_{2}\right) .
\end{aligned}
$$

No, it's not an isomorphism, since $\operatorname{dim} \mathbb{R}=1 \neq 4=\operatorname{dim} M_{2}(\mathbb{R})$.
Exercise 3-14. Yes, it is a linear map, since for any $A, B \in M_{2}(\mathbb{R})$ and $k_{1}, k_{2} \in \mathbb{R}$, we have

$$
\begin{aligned}
& T\left(k_{1} A+k_{2} B\right) \\
= & \left(k_{1} A+k_{2} B\right)\left(\begin{array}{ll}
1 & 2 \\
& 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 2 \\
& 1
\end{array}\right)\left(k_{1} A+k_{2} B\right) \\
= & k_{1}\left(A\left(\begin{array}{ll}
1 & 2 \\
& 1
\end{array}\right)-\left(\begin{array}{ll}
1 & 2 \\
& \\
& k_{1} T(A)+k_{2} T(B) .
\end{array}\right.\right.
\end{aligned}
$$

Exercise 3-24. No, it's not a linear map. Since for $f(t)=t^{2} \in P_{2}$, we have

$$
T(f+f)=4 \times 2 t^{2}=8 t^{2},
$$

while

$$
T(f)+T(f)=2 \times t^{2}+2 \times t^{2}=4 t^{2} \neq T(f+f) .
$$

Exercise 3-26. Yes, it is. For any $f_{1}(t), f_{2}(t) \in P_{2}$, let

$$
f_{1}(t)=a_{1} t^{2}+b_{1} t+c_{1}, \quad f_{2}(t)=a_{2} t^{2}+b_{2} t+c_{2} .
$$

Obviously, for $k_{1}, k_{2} \in \mathbb{R}$,

$$
\begin{aligned}
T\left(f_{1}+f_{2}\right) & =-\left(a_{1}+a_{2}\right) t^{2}-\left(b_{1}+b_{2}\right) t-\left(c_{1}+c_{2}\right) \\
& =-\left(a_{1} t^{2}+b_{1} t+c_{1}\right)-\left(a_{2} t^{2}+b_{2} t+c_{2}\right)=T\left(f_{1}\right)+T\left(f_{2}\right) .
\end{aligned}
$$

Therefore, T is a linear map. Yes, it is an isomorphism, since it's easy to see that $T^{-1}=T$.

Exercise 4-1. It is obvious that $\{1\}$ can be a basis of $\mathbb{R},\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$ can be a basis of $M_{2}(\mathbb{R})$ and $\left\{t^{2}, t, 1\right\}$ can be a basis of P_{2}.

Exercise 4-2. For 3-12, we have

$$
[T]_{\{1\}}^{\left\{E_{11}, E_{12}, E_{21}, E_{12}\right\}}=\left(\begin{array}{l}
T_{1}^{E_{11}} \\
T_{1}^{E_{12}} \\
T_{1}^{E_{21}} \\
T_{1}^{E_{22}}
\end{array}\right)=\left(\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right) .
$$

For 3-14, we have

$$
\begin{aligned}
{[T]_{\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}}^{\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}} } & =\left(\begin{array}{cccc}
T_{E_{11}}^{E_{11}} & T_{E_{12}}^{E_{11}} & T_{E_{11}}^{E_{11}} & T_{E_{22}}^{E_{11}} \\
T_{E_{12}}^{E_{12}} & T_{E_{12}}^{E_{12}} & T_{E_{21}}^{E_{12}} & T_{E_{22}}^{E_{12}} \\
T_{E_{11}}^{E_{11}} & T_{E_{21}}^{E_{21}} & T_{E_{21}}^{E_{21}} & T_{E_{21}}^{E_{21}} \\
T_{E_{11}}^{E_{22}} & T_{E_{22}}^{E_{22}} & T_{E_{21}}^{E_{22}} & T_{E_{22}}^{E_{22}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & 0 & -2 & 0 \\
1 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

For 3-26, we have

$$
[T]_{\left\{t^{2}, t, 1\right\}}^{\left\{t^{2}, 1\right\}}=\left(\begin{array}{ccc}
T_{t^{2}}^{t^{2}} & T_{t}^{t^{2}} & T_{1}^{t^{2}} \\
T_{t^{2}}^{t} & T_{t}^{t} & T_{1}^{t} \\
T_{t^{2}}^{1} & T_{t}^{1} & T_{1}^{1}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & & \\
& -1 & \\
& & -1
\end{array}\right)
$$

