Linear Algebra II - Quiz 9
 Solutions

1. Let A be a square matrix. We suppose that A has an eigenvector \vec{v} associated with eigenvalue 3 . Is \vec{v} necessarily an eigenvector of the matrix $A^{3}-4 A$? If it is the case, give the associated eigenvalue.
By definition, $A \vec{v}=3 \vec{v}$. Therefore,

$$
\left(A^{3}-4 A\right) \vec{v}=A^{2}(A \vec{v})-4 A \vec{v}=3 A^{2} \vec{v}-12 \vec{v}=9 A \vec{v}-12 \vec{v}=27 \vec{v}-12 \vec{v}=15 \vec{v}
$$

so \vec{v} is an eigenvector associated with the eigenvalue 15 of $A^{3}-4 A$.
2. Find (all) the eigenvectors of M associated with the eigenvalue 2 where

$$
M=\left[\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right]
$$

We look for all non-zero $\vec{v}=\left[\begin{array}{ll}x & y\end{array}\right]^{\mathrm{t}}$ such that $M \vec{v}=2 \vec{v}$ or in other terms

$$
\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right]=\left[\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
4 x+y \\
2 x+3 y
\end{array}\right]
$$

so we have to solve the system of equation

$$
\left\{\begin{array} { l }
{ 4 x + y = 2 x } \\
{ 2 x + 3 y = 2 y }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
2 x+y=0 \\
2 x+y=0
\end{array}\right.\right.
$$

the set of solution of which is $\{(x,-2 x) \mid x \in \mathbb{R}\}$ so the set of eigenvectors of M associated with eigenvalue 2 is

$$
\left\{\left.\left[\begin{array}{c}
x \\
-2 x
\end{array}\right] \right\rvert\, x \in \mathbb{R} \backslash\{0\}\right\}
$$

