Linear Algebra II - Quiz 7 Solution

Compute the determinant of

$$
M=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 7 \\
1 & 2 & 3 & 4 & 6 & 7 \\
1 & 2 & 3 & 5 & 6 & 7 \\
1 & 2 & 4 & 5 & 6 & 7 \\
1 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 5 & 6 & 7
\end{array}\right]
$$

First of all, recall that row operations of the form $R_{i} \leftarrow R_{i}+\lambda R_{j}$ for $i \neq j$ do not change the determinant. Thus, we start by doing $R_{6} \leftarrow R_{6}-R_{5}$:

$$
\operatorname{det} M=\operatorname{det}\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 7 \\
1 & 2 & 3 & 4 & 6 & 7 \\
1 & 2 & 3 & 5 & 6 & 7 \\
1 & 2 & 4 & 5 & 6 & 7 \\
1 & 3 & 4 & 5 & 6 & 7 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

then, we do $R_{5} \leftarrow R_{5}-R_{4}$ and so on till $R_{2} \leftarrow R_{2}-R_{1}$ and we get at the end:

$$
\operatorname{det} M=\operatorname{det}\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 7 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The only pattern which is non-zero in this matrix is the one corresponding to the second diagonal. The number of inversions is $5+4+3+2+1=15$ (5 with the lower left corner, 4 with the second cell in the diagonal except the lower left corner, ...). So

$$
\operatorname{det} M=(-1)^{15} 1 \times 1 \times 1 \times 1 \times 1 \times 7=-7 .
$$

