Linear Algebra II - Quiz 5
 Solutions

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 10 .
Let $\theta, \varphi \in \mathbb{R}$. Prove that the following matrix is orthogonal:

$$
\left[\begin{array}{ccc}
\cos \theta & \sin \theta \cos \varphi & \sin \theta \sin \varphi \\
-\sin \theta & \cos \theta \cos \varphi & \cos \theta \sin \varphi \\
0 & -\sin \varphi & \cos \varphi
\end{array}\right]
$$

Let us call $\vec{u}, \vec{v}, \vec{w}$ the columns of the matrix. We need to check that $\{\vec{u}, \vec{v}, \vec{w}\}$ is an orthonormal basis.

- We have $\|\vec{u}\|^{2}=(\cos \theta)^{2}+(-\sin \theta)^{2}=1$;
- We have

$$
\begin{aligned}
\|\vec{v}\|^{2} & =(\sin \theta \cos \varphi)^{2}+(\cos \theta \cos \varphi)^{2}+(-\sin \varphi)^{2} \\
& =\left(\sin \theta^{2}+\cos \theta^{2}\right)(\cos \varphi)^{2}+(\sin \varphi)^{2}=(\cos \varphi)^{2}+(\sin \varphi)^{2}=1
\end{aligned}
$$

- We have

$$
\begin{aligned}
\|\vec{w}\|^{2} & =(\sin \theta \sin \varphi)^{2}+(\cos \theta \sin \varphi)^{2}+(\cos \varphi)^{2} \\
& =\left(\sin \theta^{2}+\cos \theta^{2}\right)(\sin \varphi)^{2}+(\cos \varphi)^{2}=(\sin \varphi)^{2}+(\cos \varphi)^{2}=1 ;
\end{aligned}
$$

- We have

$$
\vec{u} \cdot \vec{v}=\cos \theta \times \sin \theta \cos \varphi+(-\sin \theta) \times \cos \theta \cos \varphi=(\cos \theta \sin \theta-\sin \theta \cos \theta) \cos \varphi=0 ;
$$

- We have
$\vec{u} \cdot \vec{w}=\cos \theta \times \sin \theta \sin \varphi+(-\sin \theta) \times \cos \theta \sin \varphi=(\cos \theta \sin \theta-\sin \theta \cos \theta) \sin \varphi=0 ;$
- We have

$$
\begin{aligned}
\vec{v} \cdot \vec{w} & =\sin \theta \cos \varphi \times \sin \theta \sin \varphi+\cos \theta \cos \varphi \times \cos \theta \sin \varphi+(-\sin \varphi) \times \cos \varphi \\
& =\left((\sin \theta)^{2}+(\cos \theta)^{2}\right) \cos \varphi \sin \varphi-\sin \varphi \cos \varphi=0
\end{aligned}
$$

so the matrix is orthogonal.

