Linear Algebra II - Quiz 4 Solution

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 10 .
We consider the following vectors of \mathbb{R}^{4} :

$$
\vec{u}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{w}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
$$

1. Justify that \vec{u}, \vec{v} and \vec{w} form a basis of the subspace V of equation $x_{1}+x_{2}+x_{3}+x_{4}=$ 0.

The map $T: \mathbb{R}^{4} \rightarrow \mathbb{R}$ defined by $T(\vec{x})=x_{1}+x_{2}+x_{3}+x_{4}$ has clearly rank 1 so, by rank-nullity theorem, its kernel V has dimension 3. Moreover, $\{\vec{u}, \vec{v}, \vec{w}\}$ is clearly included in V. If $\lambda \vec{u}+\mu \vec{v}+\nu \vec{w}=0$, we get $\lambda=0,-\lambda+\mu=0,-\mu+\nu=0$ and $-\nu=0$ so clearly $\lambda=\mu=\nu=0$ so $\{\vec{u}, \vec{v}, \vec{w}\}$ is linearly independent. Finally, it has to be a basis of V.
2. Using the Gram-Schmidt process, compute an orthonormal basis of V.

The first step of Gram-Schmidt process consist to normalize \vec{u} :

$$
\vec{u}_{1}=\vec{u} /\|\vec{u}\|=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right] .
$$

Then, we compute

$$
\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}\right)}(\vec{v})=\left(\vec{u}_{1} \cdot \vec{v}\right) \vec{u}_{1}=\frac{1}{2}(\vec{u} \cdot \vec{v}) \vec{u}=\frac{1}{2} \times(-1) \vec{u}=\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

so we have

$$
\vec{v}-\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}\right)}(\vec{v})=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right]
$$

and we take

$$
\vec{u}_{2}=\frac{\vec{v}-\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}\right)}(\vec{v})}{\left\|\vec{v}-\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}\right)}(\vec{v})\right\|}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right]
$$

In the next step, we need to compute $\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}\right)}(\vec{w})$:

$$
\operatorname{proj}_{S p a n}\left(\vec{u}_{1}, \vec{u}_{2}\right)(\vec{w})=\left(\vec{u}_{1} \cdot \vec{w}\right) \vec{u}_{1}+\left(\vec{u}_{2} \cdot \vec{w}\right) \vec{u}_{2}=0 \vec{u}_{1}-\frac{2}{\sqrt{6}} \frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
-1 \\
-1 \\
2 \\
0
\end{array}\right] .
$$

so we have

$$
\vec{w}-\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}\right)}(\vec{w})=\frac{1}{3}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-3
\end{array}\right]
$$

and we take

$$
\vec{u}_{3}=\frac{\vec{w}-\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}\right)}(\vec{w})}{\left\|\vec{w}-\operatorname{proj}_{\operatorname{Span}\left(\vec{u}_{1}, \vec{u}_{2}\right)}(\vec{w})\right\|}=\frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-3
\end{array}\right]
$$

Finally, an orthonormal basis of V is given by

$$
\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 \\
1 \\
-2 \\
0
\end{array}\right], \frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
1 \\
1 \\
1 \\
-3
\end{array}\right]\right\}
$$

