Linear Algebra II - Quiz 3
 Solutions

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 10 .
We consider the following vectors of \mathbb{R}^{4} :

$$
\vec{u}=\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
0 \\
2 \\
1 \\
-\sqrt{2}
\end{array}\right]
$$

1. Compute $\|\vec{u}\|,\|\vec{v}\|, \vec{u} \cdot \vec{v}$ and the angle between \vec{u} and \vec{v}.

$$
\begin{gathered}
\|\vec{u}\|=\sqrt{2^{2}+3^{2}+1^{2}+0^{2}}=\sqrt{14} \\
\|\vec{v}\|=\sqrt{0^{2}+2^{2}+1^{2}+\sqrt{2}^{2}}=\sqrt{7} \\
\vec{u} \cdot \vec{v}=2 \times 0+3 \times 2+1 \times 1+0 \times(-\sqrt{2})=7
\end{gathered}
$$

and, by definition, the angle between \vec{u} and \vec{v} is

$$
\arccos \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times\|\vec{v}\|}=\arccos \frac{7}{7 \sqrt{2}}=\frac{\pi}{4} .
$$

2. Give an orthonormal basis of $V=\operatorname{Span}(\vec{u}, \vec{v})$.

We can start by taking $\vec{u}_{1}=\vec{u} /\|\vec{u}\|$. Then, let us consider the line $U=\operatorname{Span}\left(\vec{u}_{1}\right)$.

$$
\operatorname{proj}_{U}(\vec{v})=\left(\vec{u}_{1} \cdot \vec{v}\right) \vec{u}_{1}=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|^{2}} \vec{u}=\frac{1}{2} \vec{u} .
$$

Then, the vector $\vec{v}^{\perp}=\vec{v}-\operatorname{proj}_{U}(\vec{v})$ is orthogonal to U so to \vec{u}_{1}. Moreover, we clearly have $V=\operatorname{Span}\left(\vec{u}_{1}, \vec{v}^{\perp}\right)$ so we can choose $\vec{u}_{2}=\vec{v}^{\perp} /\left\|\vec{v}^{\perp}\right\|$ to get an orthonormal basis of V. Let us do the computation:

$$
\vec{v}^{\perp}=\vec{v}-\frac{1}{2} \vec{u}=\left[\begin{array}{c}
-1 \\
1 / 2 \\
1 / 2 \\
-\sqrt{2}
\end{array}\right]
$$

so an orthonormal basis of V is

$$
\left\{\vec{u}_{1}, \vec{u}_{2}\right\}=\left\{\frac{1}{\sqrt{7}}\left[\begin{array}{l}
2 \\
3 \\
1 \\
0
\end{array}\right], \frac{1}{\sqrt{14}}\left[\begin{array}{c}
-2 \\
1 \\
1 \\
-2 \sqrt{2}
\end{array}\right]\right\} .
$$

