Linear Algebra II - Quiz 1
 Solutions

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 10 .
We consider the set V of 2×2 matrices S satisfying

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S=S\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

1. Prove that V is a subspace of $M_{2}(\mathbb{R})$.

Let us prove that

- $0 \in V$. Indeed, we have

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

so $0=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \in V$.

- for $M, N \in V, M+N \in V$. Let $M, N \in V$. We have

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right](M+N)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] M+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] N=M\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+N\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=(M+N)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]} \\
& \text { so } M+N \in V \text {. }
\end{aligned}
$$

- for $\lambda \in \mathbb{R}$ and $M \in V, \lambda M \in V$. Let $\lambda \in \mathbb{R}$ and $M \in V$. We have

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right](\lambda M)=\lambda\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] M\right)=\lambda\left(M\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=(\lambda M)\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\text { so } \lambda M \in V \text {. }
$$

2. Determine a basis of V.

Let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in V$. We have

$$
M \in V \Leftrightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \Leftrightarrow\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
c & 0
\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}
a=a \\
b=0 \\
0=c \\
0=0
\end{array}\right.
$$

so

$$
V=\left\{\left.\left[\begin{array}{cc}
a & 0 \\
0 & d
\end{array}\right] \right\rvert\, a, d \in \mathbb{R}\right\} .
$$

As usual, a basis is determined by putting a parameter to 1 while the others are put to 0 , for each parameter. So a basis of V is

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

