Linear Algebra II - Quiz 1 Solutions

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 10.

We consider the set V of 2×2 matrices S satisfying

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} S = S \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

1. Prove that V is a subspace of $M_2(\mathbb{R})$.

Let us prove that

• $0 \in V$. Indeed, we have

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

so
$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in V.$$

• for
$$M, N \in V, M + N \in V$$
. Let $M, N \in V$. We have
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} (M+N) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} M + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} N = M \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + N \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = (M+N) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
so $M + N \in V$.

• for
$$\lambda \in \mathbb{R}$$
 and $M \in V$, $\lambda M \in V$. Let $\lambda \in \mathbb{R}$ and $M \in V$. We have

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} (\lambda M) = \lambda \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} M \right) = \lambda \left(M \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) = (\lambda M) \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
so $\lambda M \in V$.

2. Determine a basis of V.

S

$$V = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \mid a, d \in \mathbb{R} \right\}.$$

a0 c0

As usual, a basis is determined by putting a parameter to 1 while the others are put to 0, for each parameter. So a basis of V is

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}.$$