## Linear Algebra II - Quiz 11 Solution

Let $a \in \mathbb{R}$. Find the eigenvectors and eigenvalues of the following matrix, and give the algebraic and geometric multiplicity of each eigenvalue:

$$
M=\left[\begin{array}{cc}
a & 1 \\
-1 & a+2
\end{array}\right]
$$

We start by computing the characteristic polynomial:

$$
\begin{aligned}
f_{M}(\lambda) & =\operatorname{det}\left[\begin{array}{cc}
a-\lambda & 1 \\
-1 & a+2-\lambda
\end{array}\right]=(a-\lambda)(a+2-\lambda)+1 \\
& =\lambda^{2}-(2 a+2) \lambda+a^{2}+2 a+1=(\lambda-a-1)^{2} .
\end{aligned}
$$

So $M$ has a unique eigenvalue $a+1$ with algebraic multiplicity 2 .
Let us compute the eigenspace $E_{a+1}$.

$$
E_{a-1}=\operatorname{Ker}\left(M-(a+1)_{2}\right)=\operatorname{Ker}\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]=\operatorname{Span}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

so the eigenvectors of $M$ associated with the eigenvalue $a+1$ are

$$
\left[\begin{array}{l}
x \\
x
\end{array}\right]
$$

for $x \neq 0$. The geometric multiplicity of $a+1$ is $\operatorname{dim} E_{a+1}=1$.

