Linear Algebra II - Quiz 10 Solution

Find the eigenvectors and eigenvalues of the following matrix:

$$
M=\left[\begin{array}{ll}
-1 & 2 \\
-3 & 4
\end{array}\right]
$$

First of all, we compute the characteristic polynomial of M :

$$
f_{M}(\lambda)=\operatorname{det}\left(M-\lambda I_{3}\right)=\operatorname{det}\left[\begin{array}{cc}
-1-\lambda & 2 \\
-3 & 4-\lambda
\end{array}\right]=(-1-\lambda)(4-\lambda)+6=\lambda^{2}-3 \lambda+2
$$

We have

$$
\lambda^{2}-3 \lambda+2=(\lambda-3 / 2)^{2}-9 / 4+2=(\lambda-3 / 2)^{2}-1 / 4
$$

so the roots satisfy $\lambda_{1}-3 / 2=-1 / 2$ and $\lambda_{2}-3 / 2=1 / 2$ so $\lambda_{1}=1$ and $\lambda_{2}=2$.
Let us find the eigenvectors associated with 1 : we compute:

$$
E_{1}=\operatorname{ker}\left[\begin{array}{cc}
-1-1 & 2 \\
-3 & 4-1
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ll}
-2 & 2 \\
-3 & 3
\end{array}\right] .
$$

So it is immediate that

$$
E_{1}=\left\{\left.\left[\begin{array}{l}
t \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

and the eigenvectors associated to 1 are

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

for $t \neq 0$.
Let us find the eigenvectors associated with 2: we compute:

$$
E_{2}=\operatorname{ker}\left[\begin{array}{cc}
-1-2 & 2 \\
-3 & 4-2
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ll}
-3 & 2 \\
-3 & 2
\end{array}\right] .
$$

So it is immediate that

$$
E_{2}=\left\{\left.\left[\begin{array}{l}
2 t \\
3 t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

and the eigenvectors associated to 1 are

$$
\left[\begin{array}{l}
2 t \\
3 t
\end{array}\right]
$$

for $t \neq 0$.

