Linear Algebra II - Worksheet 5

Exercise 1: Which of the following matrices are orthogonal?

$$
A=\left[\begin{array}{ll}
0.8 & 0.6 \\
0.6 & 0.8
\end{array}\right] \quad B=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right]
$$

Exercise 2: We suppose that A and B are orthogonal $n \times n$ matrices. Which ones of the following matrices are necessarily orthogonal?

$$
C=3 A ; \quad D=-B ; \quad E=A B ; \quad F=A+B ; \quad G=B^{-1} ; \quad H=B^{-1} A B ; \quad K=A^{\mathrm{T}}
$$

Exercise 3: In each case, tell if an orthogonal transformation with the given property can exist. If it is the case, give an example of such a transformation.

1. $T\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$ and $T\left[\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ -3 \\ 0\end{array}\right]$.
2. $T\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$ and $T\left[\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right]=\left[\begin{array}{c}2 \\ 0 \\ -3\end{array}\right]$.
