Linear Algebra II - Worksheet 4

We consider the three vectors

$$
\vec{u}=\left[\begin{array}{l}
1 \\
7 \\
1 \\
7
\end{array}\right], \vec{v}=\left[\begin{array}{l}
0 \\
7 \\
2 \\
7
\end{array}\right], \vec{w}=\left[\begin{array}{l}
1 \\
8 \\
1 \\
6
\end{array}\right]
$$

and the matrix

$$
M=\left[\begin{array}{lll}
1 & 0 & 1 \\
7 & 7 & 8 \\
1 & 2 & 1 \\
7 & 7 & 6
\end{array}\right]
$$

1. Find an orthonormal basis of $V=\operatorname{Span}(\vec{u}, \vec{v}, \vec{w})$ by using the Gram-Schmidt process.
2. Find the $Q R$ factorization of M (use computations of the first question).
3. For $\vec{x} \in \mathbb{R}^{4}$, give an interpretation of $Q^{\mathrm{T}} \vec{x}$ in terms of the vectors of the orthonormal basis.
4. Deduce that $\left[\operatorname{proj}_{V}\right]=Q Q^{\mathrm{T}}$ (with as few computations as possible).
5. Compute $\left[\operatorname{proj}_{V}\right]$.
