Linear Algebra II - Worksheet 2

We recall that P is the space of polynomials and P_{k} is the space of polynomials of degree at most k.

Exercise 1: We consider the following maps. Determine which ones are linear and, for those which are linear, if they are isomorphisms:

1. $T: P_{2} \rightarrow \mathbb{R}$ defined by $T(P)=P(1) P(2)$.
2. $T: P_{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(P)=\left[\begin{array}{c}
P(0) \\
P^{\prime}(1) \\
P(2)
\end{array}\right] .
$$

3. $T: P \rightarrow P$ defined by

$$
T(P)(t)=\int_{0}^{t} P(x) \mathrm{d} x
$$

Exercise 2:

1. Give a basis of P_{2} and a basis of P_{3}.
2. Give the matrix of the linear map $T: P_{3} \rightarrow P_{2}$ from P_{3} to P_{2} in the bases of question 1 where $T(P)=P^{\prime}$.
3. Check the commutative diagram of the course on this example.
