Linear Algebra II - Worksheet 10

Exercise 1: Suppose that \vec{v} is an eigenvector associated with the eigenvalue λ of A and with the eigenvalue μ of B. We suppose that A is invertible. For each following matrix, say if \vec{v} is necessarily an eigenvector and give the eigenvalue:

$$A^{3}; A^{-1}; A + 2I_{n}; 7A; A + B; AB.$$

Exercise 2: Find all 2×2 matrices for which $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector associated with the eigenvalue 5.

Exercise 3: Let M be a square matrix. We consider

- an eigenvector \vec{v}_1 associated with eigenvalue λ_1 of M;
- an eigenvector \vec{v}_2 associated with eigenvalue λ_2 of M;
- ...;
- an eigenvector \vec{v}_n associated with eigenvalue λ_n of M.

We suppose that all λ_i are distinct. Prove that $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is linearly independent.

Exercise 4: Find the eigenvalues and eigenvectors of

$$\begin{bmatrix} 2 & 0 \\ 3 & 4 \end{bmatrix}.$$