Linear Algebra II - Worksheet 10

Exercise 1: Suppose that \vec{v} is an eigenvector associated with the eigenvalue λ of A and with the eigenvalue μ of B. We suppose that A is invertible. For each following matrix, say if \vec{v} is necessarily an eigenvector and give the eigenvalue:

$$
A^{3} ; \quad A^{-1} ; \quad A+2 I_{n} ; \quad 7 A ; \quad A+B ; \quad A B .
$$

Exercise 2: Find all 2×2 matrices for which $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector associated with the eigenvalue 5 .

Exercise 3: Let M be a square matrix. We consider

- an eigenvector \vec{v}_{1} associated with eigenvalue λ_{1} of M;
- an eigenvector \vec{v}_{2} associated with eigenvalue λ_{2} of M;
- ...;
- an eigenvector \vec{v}_{n} associated with eigenvalue λ_{n} of M.

We suppose that all λ_{i} are distinct. Prove that $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is linearly independent.
Exercise 4: Find the eigenvalues and eigenvectors of

$$
\left[\begin{array}{ll}
2 & 0 \\
3 & 4
\end{array}\right] .
$$

