Linear Algebra II - Worksheet 1

Exercise 1: Page 163, Exercise 32. We consider the set V of 2×2 real matrices S such that

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] S=S\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
$$

1. Prove that V is a subspace of $M_{2}(\mathbb{R})$.
2. Find a basis of V.

Exercise 2: Page 163, Exercise 14. We consider the set V of real sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ that satisfy $\lim _{n \rightarrow \infty} x_{n}=0$.

1. Prove that V is a subspace of the space of real sequences.
2. What is the dimension of V ?

Exercise 3: Page 170, exercise 6 and 8. For each of the following maps from $M_{2}(\mathbb{R})$ to $M_{2}(\mathbb{R})$, determine if it is linear and if it is an isomorphism.
6. $T(M)=M\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$;
8. $T(M)=M\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] M$.

