Linear Algebra II - Homework 4

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 20 . The number of points for each exercise is specified between parenthesis. To hand in June 21 at the beginning of the tutorial.

Exercise 1: (5) We suppose that $M \in \mathrm{M}_{3,3}(\mathbb{R})$ admits three eigenvectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} such that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthonormal basis. We suppose that the associated eigenvalues are λ_{1}, λ_{2} and λ_{3}. Give a geometrical interpretation of M in each following cases:

1. $\lambda_{1}=0, \lambda_{2}=\lambda_{3}=1$;
2. $\lambda_{1}=\lambda_{2}=0, \lambda_{3}=1$;
3. $\lambda_{1}=-1, \lambda_{2}=\lambda_{3}=1$;
4. $\lambda_{1}=\lambda_{2}=-1, \lambda_{3}=1$.

Exercise 2: (5) Find the eigenvectors and the associated eigenvalues of

$$
M=\left[\begin{array}{cccc}
2 & -2 & 3 & 1 \\
1 & -1 & 0 & 2 \\
0 & 0 & 3 & -4 \\
0 & 0 & 2 & -3
\end{array}\right]
$$

Exercise 3: (10) We consider two real numbers $0<a<1$ and $0<b<1$. We have a solution containing m_{0} molecules of a product A and n_{0} molecules of a product B. Each second, the proportion a of molecules of A are transformed into molecules of B and the proportion b of molecules of B are transformed into molecules of A.

We denote by m_{t} the number of molecules of A after t seconds and n_{t} the number of molecules of B after t seconds.

1. Express m_{t+1} and n_{t+1} as functions of m_{t} and n_{t}.
2. Explain why $m_{t+1}+n_{t+1}=m_{t}+n_{t}$ and check that it is the case in your answer to the previous question.
3. Find a 2×2 matrix M such that

$$
\left[\begin{array}{c}
m_{t+1} \\
n_{t+1}
\end{array}\right]=M\left[\begin{array}{c}
m_{t} \\
n_{t}
\end{array}\right] .
$$

4. Find the eigenvectors and eigenvalues of M.
5. Is M diagonalizable? If it is the case, diagonalize M.
6. If we wait long enough, which proportion of molecules of A will be contained in our solution?
