Linear Algebra II - Homework 3

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 20 . The number of points for each exercise is specified between parenthesis. To hand in June 30 at the beginning of the tutorial.

Exercise 1: (5) Compute the determinant of the following matrices:

$$
A=\left[\begin{array}{ll}
8 & 4 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{llll}
7 & 1 & 2 & 0 \\
1 & 0 & 3 & 4 \\
0 & 0 & 2 & 3 \\
4 & 1 & 0 & 8
\end{array}\right]
$$

Exercise 2: (5) We suppose that

$$
\operatorname{det}\left[\begin{array}{lll}
a & 1 & d \\
b & 1 & e \\
c & 1 & f
\end{array}\right]=7 \quad \text { and } \quad \operatorname{det}\left[\begin{array}{lll}
a & 1 & d \\
b & 2 & e \\
c & 3 & f
\end{array}\right]=11
$$

1. Compute det $\left[\begin{array}{lll}a & 3 & d \\ b & 3 & e \\ c & 3 & f\end{array}\right] . \quad$ 2. Compute $\operatorname{det}\left[\begin{array}{lll}a & 3 & d \\ b & 5 & e \\ c & 7 & f\end{array}\right]$.

Exercise 3: (5) Find a formula computing

$$
\operatorname{det}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 2 & \cdots & 2 \\
1 & 2 & 3 & \cdots & 3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 3 & \cdots & n
\end{array}\right]
$$

as a function of n.
hint: Start Gaussian elimination.
Exercise 4: (5) Let M be a matrix. For $t \in \mathbb{R}$, we write

$$
M_{t}=M+\left[\begin{array}{cccc}
t & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] .
$$

1. Express $\operatorname{det}\left(M_{t}\right)$ as a function of $\operatorname{det}(M), t$ and $\tilde{M}_{1,1}$.
2. Prove that one of the following happen:

- for all $t \in \mathbb{R}, M_{t}$ is invertible;
- for all $t \in \mathbb{R}, M_{t}$ is not invertible;
- there is exactly one value of t such that M_{t} is not invertible.

