Linear Algebra II - Homework 2

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 20 . The number of points for each exercise is specified between parenthesis. To hand in May 26 at the beginning of the tutorial.

Exercise 1: In both case, compute the length of both vectors and the angle between them.

$$
\text { 1) } \vec{u}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \vec{v}=\left[\begin{array}{c}
7 \\
11
\end{array}\right] \quad \text { 2) } \vec{u}=\left[\begin{array}{c}
1 \\
-1 \\
2 \\
-2
\end{array}\right] ; \vec{v}=\left[\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right] \text {. }
$$

Exercise 2: We consider the vectors

$$
\vec{u}_{1}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right] ; \quad \vec{u}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right] ; \quad \vec{u}_{3}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] .
$$

1. Prove that \vec{u}_{1}, \vec{u}_{2} and \vec{u}_{3} form an orthonormal family.
2. Find all possible vectors \vec{u}_{4} which make $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}\right\}$ an orthonormal basis.

3 . Interpret geometrically your previous answer.

Exercise 3: Perform the Gram-Schmidt process on the following sequence of vectors:

$$
\left[\begin{array}{l}
1 \\
7 \\
1 \\
7
\end{array}\right] ; \quad\left[\begin{array}{l}
0 \\
7 \\
2 \\
7
\end{array}\right] ; \quad\left[\begin{array}{l}
1 \\
8 \\
1 \\
6
\end{array}\right] .
$$

Exercise 4: Find an orthonormal basis of the plane $x_{1}+x_{2}+x_{3}=0$.
Exercise 5: Find all orthogonal 3×3 matrices of the form

$$
\left[\begin{array}{lll}
a & b & 0 \\
c & d & 1 \\
e & f & 0
\end{array}\right] .
$$

hints:

- You can separate cases $a=0$ and $a \neq 0$.
- Try to express solutions in terms of an angle θ.

