Linear Algebra II - Homework 1

All the solutions should be properly justified and explained. Clarity of the presentation will also be rewarded.

The maximal number of points awarded is 20 . The number of points for each exercise is specified between parenthesis. To hand in April 28 at the beginning of the tutorial.

Exercise 1: (4) Page 163, Exercises 6 and 8. For each of the following sets of matrices, tell if it is a subspace of $M_{3}(\mathbb{R})$. If it is the case, give a basis.

6 . The set of invertible 3×3 matrices;
8. The set of upper triangular 3×3 matrices.

Recall that a matrix is upper triangular if it is of the form

$$
\left[\begin{array}{lll}
a & b & c \\
0 & d & e \\
0 & 0 & f
\end{array}\right] .
$$

Exercise 2: (3) Page 163, Exercise 12. Recall that a real sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is called arithmetic if it is of the form $u_{n}=a+n b$ for some real numbers a and b. Tell whether the set of a arithmetic real sequences is a subspace of the set of real sequences (and justify).

Exercise 3: (7) Page 170, Exercises 12, 14, 24 and 28. For each of these maps, tell whether it is a linear map. If it is a linear map, tell whether it is an isomorphism (i.e. invertible).
12. $T(c)=c\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ from \mathbb{R} to $M_{2}(\mathbb{R})$;
14. $T(M)=M\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] M$ from $M_{2}(\mathbb{R})$ to $M_{2}(\mathbb{R})$;

Recall that P_{2} is the space of polynomial of degree at most 2 , that is functions of the form $f(t)=a t^{2}+b t+c$ where a, b and c are real numbers.
24. $T(f)=f^{\prime \prime} \times f$ from P_{2} to P_{2};
26. $T(f)=-f$ from P_{2} to P_{2}.

Exercise 4: (6)

1. Give bases of $\mathbb{R}, M_{2}(\mathbb{R})$ and P_{2} (as in Exercise 3).
2. For each question of Exercise 3 where the map is linear, give a matrix in the bases of Question 1.
