名古屋大学 大学院多元数理科学研究科・理学部数理学科
住所: 〒464-8602 愛知県名古屋市千種区不老町

研究情報 - One-day Workshop on Geometry at Nagoya

  • WELCOME
  • 行事予定
  • 交通案内
  • 進学案内
  • 教育・就職
  • 研究情報
  • 人々
  • ジャーナル
  • 名古屋大学 理学図書室
  • 採用情報
  • 社会連携
  • 名古屋大学数理科学同窓会
  • アーカイブ
  • リンク

ファイル更新日:2024年12月03日

研究情報

One-day Workshop on Geometry at Nagoya

日 付
2024年12月6日
会 場
理学部A館 207セミナー室
講演者
Mario Micallef (University of Warwick), 豊田 哲 (工学院大学), 成田知将 (名古屋大学), 藤岡禎司 (大阪大学)
世話人
成田知将 (名古屋大学)
助成金
日本学術振興会 科学研究費補助金 基盤研究(B) 23K22393 (納谷 信)
連絡先
成田知将 ()

プログラム

12月6日(金)
10:00〜11:00
成田知将 (名古屋大学)
Ricci curvatures, Laplacians and Riemannian submersions with totally geodesic fibers
11:15〜12:15
藤岡禎司 (大阪大学)
Curvature bounds and the curvature integrals
14:00〜15:00
豊田 哲 (工学院大学)
Inequalities on six points in a CAT(0) space
15:15〜16:45
Mario Micallef (University of Warwick)
Morse index of minimal surfaces of codimension greater than one via (partial) averaging and holomorphic methods
16:45〜17:15 自由討論

アブストラクト

Mario Micallef (University of Warwick)
Morse index of minimal surfaces of codimension greater than one via (partial) averaging and holomorphic methods

The nontriviality of the normal bundle of a minimal submanifold of codimension greater than one makes the second variation difficult to study because it is not clear how to choose variations that reduce the area of the submanifold. For a 2-D minimal surface, a (partial) averaging technique is encoded by a complex-valued version of the second variation formula and this has the benefit of bringing complex analytic techniques into play. I will survey the achievements so far of this technique.

豊田 哲 (工学院大学)
Inequalities on six points in a CAT(0) space

It is an open problem posed by M. Gromov to characterize those metric spaces that admit a distance-preserving embedding into a $\mathrm{CAT}(0)$ space. As a partial result of this problem, it is known that a $5$-point metric space admits a distance-preserving embedding into a $\mathrm{CAT}(0)$ space if and only if any 4 points in it satisfy the family of inequalities called the weighted quadruple inequalities. On the other hand, it is also known that the validity of the weighted quadruple inequalities does not suffice for a 6-point metric space to admit a distance-preserving embedding into a $\mathrm{CAT}(0)$ space. This means that there exist inequalities that hold true for any 6 points in any $\mathrm{CAT}(0)$ space but do not follow from the weighted quadruple inequalities. In this talk, we establish the first examples of such inequalities.

成田知将 (名古屋大学)
Ricci curvatures, Laplacians and Riemannian submersions with totally geodesic fibers

Given a Riemannian submersion $(M, g) \to (B, j)$ each of whose fiber is connected and totally geodesic, we consider a certain $1$-parameter family of Riemannian metrics $(g_{t})_{t} > 0$ on $M$, which is called the canonical variation. Let $\lambda_{1}(g_{t})$ be the first positive eigenvalue of the Laplace–Beltrami operator $\Delta_{g_{t}}$ and $\operatorname{Vol} (M, g_{t})$ the volume of $(M, g_{t})$. The main theorem of this talk is that if each fiber is Einstein and $(M, g)$ satisfies a certain condition about its Ricci curvature, then the scale-invariant quantity $\lambda_{1}(g_{t}) \operatorname{Vol} (M, g_{t})^{2 / \dim M}$ goes to $\infty$ with $t$. In the talk, we will see as many examples to which this theorem can be applied as time permits. This talk is based on my preprint [外部サイト] arXiv:2411.17078.

藤岡禎司 (大阪大学)
Curvature bounds and the curvature integrals

Petrunin (Algebra i Analiz (2008)) proved that the total scalar curvature of a Riemannian manifold is uniformly bounded in terms of its dimension, a lower sectional curvature bound, and an upper diameter bound. In this talk I will prove a dual theorem:the total scalar curvature of a Riemannian manifold is uniformly bounded in terms of its dimension, an upper sectional curvature bound, a lower injectivity radius bound, and an upper volume bound. Based on my paper [外部サイト] arXiv:2306.11577, published in Algebra i Analiz (2024).