Consider the following three functions \(u_1(t) = e^t \), \(u_2(t) = te^t \), \(u_3(t) = \frac{t^2}{2} e^t \) defined on \(\mathbb{R} \).

(1) Let \(V \) be the real vector space \(V \) of real valued \(C^\infty \)-functions on \(\mathbb{R} \). Show that
\[\{ u_1(t), u_2(t), u_3(t) \} \]
are linear independent as elements \(V \).

(2) Let \(W \) be the \(\mathbb{R} \)-subvector space of \(V \) generated by \(u_1(t), u_2(t), u_3(t) \). Verify that \(\frac{d}{dt} \) is a linear map from \(W \) to \(W \), and calculate the representing matrix \(A \) with respect to the basis \(\{ u_1(t), u_2(t), u_3(t) \} \).

(3) Prove that the solution space of the differential equation
\[
\frac{d^3 u}{dt^3} - 3 \frac{d^2 u}{dt^2} + 3 \frac{du}{dt} - u = 0
\]
contains the 3-dimensional vector space spanned by \(u_1(t), u_2(t), u_3(t) \).

(4) Prove that if \(u(t) = C(t)e^t \) is a solution of the differential equation
\[
\frac{d^3 u}{dt^3} - 3 \frac{d^2 u}{dt^2} + 3 \frac{du}{dt} - u = 0,
\]
then \(C(t) \) is a polynomial of degree at most 2.

(5) Determine the space of solutions of the differential equation
\[
\frac{d^3 u}{dt^3} - 3 \frac{d^2 u}{dt^2} + 3 \frac{du}{dt} - u = 0.
\]
Define the functions \(\phi_n (n = 1, 2, \ldots) \) on \([0, \infty)\) by \(\phi_n(x) = n^2 xe^{-nx} \).

(1) Calculate \(\int_0^\infty \phi_n(x) \, dx \).

(2) Show that, for any \(\delta > 0 \), the functions \(\{\phi_n\} \) converge uniformly to 0 on \([\delta, \infty)\).

(3) Show that for any bounded, continuous function \(f \) on \([0, \infty)\),

\[
\lim_{n \to \infty} \int_0^\infty f(x)\phi_n(x) \, dx = f(0)
\]

holds.
3. Answer the following questions

1. Assume that the function $f(z)$ is regular on a domain containing the disk $D_R = \{ |z \in \mathbb{C}, |z| \leq R \}$. Prove that if $z \in \mathbb{C}$ lies in the disc D_R, then

$$f'(z) = \frac{1}{2\pi i} \int_{|\zeta|=R} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta.$$

2. Use (1) to prove that a regular function $f(z)$, which is bounded on the whole complex plane, satisfies $f'(z) \equiv 0$.

3. Determine the subset of the z-plane which maps under the regular function $w = e^z$ to the domain $\{ w \in \mathbb{C}, |w| < a \} \ (a > 0)$ of the w-plane, and graph it.

4. Show that a regular function defined on the whole complex plane whose real part is non-positive is a constant function.
For a subset M of \mathbb{R}^n and a point x of \mathbb{R}^n define

$$d(x, M) = \inf\{|x - y| : y \in M\}.$$

Here $|x|$ is the Euclidean norm, i.e. for $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ we define $|x| = \sqrt{\sum_{i=1}^{n} x_i^2}$.

1. Show that $d(x, M) = 0$ is a necessary and sufficient condition for $x \in M$.

2. Show that $d(x, M) \leq |y - z| + |x - y|$ for any two points x, y in \mathbb{R}^n, and any point z in M.

3. Show that for fixed M, the function $x \mapsto d(x, M)$ is continuous on \mathbb{R}^n.

4. Show that if M is closed, then for any $x \in \mathbb{R}^n$ there is a $y^* \in M$ such that

$$|x - y^*| = d(x, M).$$