GEOMETRIC DERIVED HALL ALGEBRA

SHINTAROU YANAGIDA

ABSTRACT. We give a geometric formulation of Toén’s derived Hall algebra by constructing Grothendieck’s
six operations for the derived category of lisse-étale constructible sheaves on the derived stacks of complexes.
Our formulation is based on an variant of Laszlo and Olsson’s theory of derived categories and six operations
for algebraic stacks. We also give an oco-theoretic explanation of the theory of derived stacks, which was
originally constructed by Toén and Vezzosi in terms of model theoretical language.
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0. INTRODUCTION

0.1. The derived Hall algebra introduced by Toén [TT] is a version of Ringel-Hall algebra, and roughly
speaking it is a “Hall algebra for complexes”. In the case of the ordinary Ringel-Hall algebra for the abelian
category of representations of a quiver, Lusztig [Lus] established a geometric formulation using the theory
of perverse sheaves in the equivariant derived category of £-adic constructible sheaves on the moduli spaces
of the representations, and his formulation gives rise to the theory of canonical bases for quantum groups.
As mentioned in [T, §1, Related and future works], it is natural to expect a similar geometric formulation
for derived Hall algebras using the moduli space of complexes of representations.

At the moment when [T1] appears, the theory of derived stacks was just being under construction, which
would realize the moduli space of complexes. Soon after, Toén and Vezzosi [I'Vel, ['VeZ] completed the
works on derived stacks, and based on them Toén and Vaquié [T'Va] constructed the moduli space of dg-
modules. In [TVa, §0.6], it was announced among several stuffs that a geometric formulation of derived Hall
algebra was being studied. As far as we understand, it has not appeared yet.

The purpose of this article is to give such a geometric formulation of derived Hall algebras. More precisely
speaking, we want to give the following materials.

e The theory of derived categories of lisse-étale constructible sheaves on derived stacks and the con-
struction of Grothendieck’s sixz operations on them.

e The theory of perverse £-adic constructible sheaves on derived stacks.

e The geometric formulation of derived Hall algebra.
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Any such attempt will require derived algebraic geometry. Although the works [IVel, IVed, [I'Va] are
based on the language of model categories so that it might be natural to work over such a language, we decided
to work using the language of co-categories following Lurie’s derived algebraic geometry [Curd] — [Cuxrld)].

The reason is that today most papers on derived algebraic geometry uses the language of co-categories rather
than that of model categories. A “byproduct” of our project is

e A “translation” of model-categorical [I'Vell, 'Ve2, [I'Va] into the language of co-categories.

Such a translation is in fact a trivial one, and it seems that experts on derived algebraic geometry use
both languages freely. We decided to give somewhat a textbook-like explanation on this point, and we will
start the main text with some recollection on the theory of co-categories and oo-topoi (§@). The theory of
derived stacks in the sense of Toén and Vezzosi will be explained in the language of co-categories (§2).

We will construct the derived category of sheaves on derived stacks using the theory of stable co-category
established by Lurie [ELur?]. For this purpose, we will give in §B8 an exposition of the general theory of the
oo-category of sheaves on co-topoi and the associated stable co-category. There are many overlaps between
our exposition and a (very small) part of Lurie’s derived algebraic geometry [FurS]—[EnrTd]. We decided to
give a rather self-contained presentation for the completeness of this article.

The main object of this article is the [lisse-étale sheaves on derived stacks, which will be introduced in
80. Our definition is a simple analogue of the lisse-étale sheaves on the algebraic stacks established by
Laumon and Moret-Bailly [LM]. In the case of algebraic stacks, the lisse-étale topos is constructed using the
étale topos on algebraic spaces. Thus we need a derived analogue of algebraic spaces, which we call derived
algebraic spaces and introduce in §@.

In [COT, CO?), Laszlo and Orson constructed the Grothendieck six operations on the derived category of
constructible sheaves on algebraic stacks, based on the correction [T of a technical error on the lisse-étale
topos in [LM]]. In the sequel [LO3] they also give the theory of perverse ¢-adic sheaves and weights on them
over algebraic stacks. Our construction of six operations (§B, §@) and definition of perverse ¢-adic sheaves
(§8) are just a copy of their argument.

Fundamental materials will be established up to §8, and we will then turn to the derived Hall algebra. In
88 we review Toén and Vaquié’s construction [ITVa] of the moduli space of dg-modules over a dg-category via
derived stack. In §IM we explain the definition of derived Hall albebras, and give its geometric formulation,
the main purpose of this article.

Let us sketch an outline of the construction here. Let D be a locally finite dg-category over Fy (see §8 for
an account on dg-categories).

Fact ([TVa]). We have the moduli stack P{(D) of perfect dg-modules over D°P. Tt is a derived stack, locally
geometric and locally of finite presentation.

We can also construct the moduli stack of cofibrations X — Y of perfect-modules over D°P, denoted by
&(D). Then there exist morphisms

s,¢,t: E(D) — PE(D)

of derived stacks which send v : X — Y to

X
s(w) =X, cu) =Y, tu)=Y]Jo.

where s,t are smooth and c is proper. Thus we have a square

of derived stacks with smooth p and proper c.

Next let A := Q, be the field of /-adic numbers where ¢ and ¢ are assumed to be coprime. Then we have
the derived category Dg(DC, A) of constructible lisse-étale A-sheaves over a locally geometric derived stack X.
We also have derived functors (§4).
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Applying the general theory to the present situation, we have

a

Db(&(D),A) —=—= Db(Pf(D), A)

Db (Pf(D) x Pf(D), A)

Now we set
j1: DY(PE(D) x PE(D), A) — DY(PED),A), M —s eip” (M)[dim ]

Theorem (Theorem MIZH). y is associative.

We will also give a definition of derived Hall category, which will be the span of the Lusztig sheaves in
the sense of [S2]. By restricting to the “abelian category part”, we can reconstruct the Hall category in [S2],
and have a geometric formulation of the ordinary Ringel-Hall algebra via the derived category of lisse-étale
£-adic constructible sheaves on the moduli stack of objects in the abelian category. In [SY, p.2], such a stacky
construction is regarded as “(probably risky) project” and avoided. Thus our exposition will also give a new
insight to the ordinal Ringel-Hall algebra.

We postpone the study of the function-sheaf dictionary for the lisse-étale constructible sheaves on derived
stacks to a future article.

0.2. Conventions and notations. We will use some basic knowledge on
dg-categories [172, [I'4],

model categories [H],

simplicial homotopy theory |G|,

oo-categories and oo-topoi [Curl],

algebraic stacks in the ordinary sense [[LM), 02]

e derived algebraic geometry in the sense of Toén-Vezzosi [I'Ved, [I6].

We give a brief summary of the theory of co-categories and oco-topoi in §, and explanations on some topics
in Appendices B-O. Some recollections on algebraic spaces and algebraic stacks is given in Appendix Al
Here is a short list of our global conventions and notations.

e N denotes the set of non-negative integers.

e We fix two universes U € V and work on them. All the mathematical objects considered, such as
sets, groups, rings and so on, are elements of U unless otherwise stated. For example, Set denotes
the category of sets in U. We will sometimes say an object is small if it belongs to U.

e The word ‘ring’ means a unital and associative one unless otherwise stated, and the word ‘co-category’
means the one in [Curl).

e A poset means a partially ordered set. A poset (I, <) is filtered if I is non-empty and for any 4,5 € T
there exists k € I such that ¢ < k and 7 < k.

e A category will be identified with its nerve [Lurd, p.9] which is an co-category. Basically we denote
an ordinary category in a serif font and denote an oo-category in a sans-serif font. For example,
in §222 we will denote by sCom the category of simplicial commutative rings, and by sCom the
oo-category of simplicial commutative rings.

e For categories C and D, the symbol F': C 2 D : GG denotes an adjunction in the sense that we have
an isomorphism Homp (F(—), —) ~ Homc(—, G(—)) of functors. Thus it means F' 4 G. We use the
same symbol & in the co-categorical context. See §B for the detail.

e The homotopy category of a model category C will be denoted by Ho C, and the homotopy category
of an oo-category C will be denoted by h C. The functor category from a category C to another D
will be denoted by Fun(C, D).

e Finally, for an co-category C, the symbol X € C means that X is an object of C.

Acknowledgements. The author is supported by the Grant-in-aid for Scientific Research (No. 16K17570,
19K03399), JSPS. This work is also supported by the JSPS Bilateral Program “Elliptic algebras, vertex
operators and link invariant”.

1. NOTATIONS ON 0o-CATEGORIES AND 00-TOPOI

In this subsection we explain some basic notions on co-categories and oo-topoi which will be used through-
out the main text. The purpose here is just to give brief accounts and introduce symbols of them. Somewhat
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detailed accounts of selected topics will also be given in Appendix B and Appendix 0. All the contents are
given in [Curl Cur?], and our terminology basically follow loc. cit., but we use slightly different symbols.

1.1. Simplicial sets. Let us start the explanation with our notations on simplicial sets. We follow [Lurl,
§A.2.7] for symbols of simplicial sets.

Definition 1.1.1. We denote by A the category of combinatorial simplices, which is described as
e An object is the linearly ordered set [n] :={0 <1< ... <n} forn e N.
e A morphisms is a non-strictly order-preserving function [m] — [n].

Definition. For a category C, a functor A°Y — C is called a simplicial object in C. In particular, a simplicial
object in the category Set of sets is called a simplicial set.

We often use the symbol S,, := S([n]) for n € N. An element in Sy is called a vertez of S, and an element
in Sy is called an edge of S. We write v € S to mean v is a vertex of S. A simplicial set S has the face map
d; : S, = S,_1 and the degeneracy map s;j : S, — Sp41 for each j =0,1,...,n. See [Lurl, §A.2.7] for the
precise definitions of d; and s;.

As noted in [Eurd, Remark A.2.7.1], the category A is equivalent to the category LinOrd™ of all finite
nonempty linearly ordered sets, and we sometimes identify them to regard simplicial sets (and more general
simplicial objects) as functors which are defined on LinOrd™®.

Using this convention, we introduce

Definition. For a simplicial set S, we define S°P to be the simplicial set given by
S°P(J) := S(J°?) (J € LinOrd™).

Here J°P € LinOrd™ has the same underlying set as J but with the opposite ordering of J. We call S°P the
opposite of S.

Notation. The category Seta of simplicial sets is defined to be the functor category
Seta := Fun(A°P, Set).
A morphism in Seta is called a simplicial map or a map of simplicial sets.

The category Seta has a model structure called the Kan model structure. See in Appendix Bl for an
account.

For a linearly ordered set .J, we denote by A’ the simplicial set [n] — Hom([n], J), where the morphisms
are taken in the category of linearly ordered sets. For n € N, we simply write A" := Al and for 0 < j < n,
we denote by A7 C A™ the j-th horn [Curl, Example A.2.7.3].

Finally we introduce

Definition. A Kan complex is a simplicial set K such that for any n € N and any 0 < ¢ < n, any simplicial
map fy: A} — K admits an extension f: A" — K.

We will use the following fact repeatedly in the main text.
Fact 1.1.2 ([Cur2, Corollary 1.3.2.12]). Any simplicial abelian group is a Kan complex.

1.2. oco-categories. Next we give some symbols for co-categories. We use the word “co-category” in the
sense of [Lurd].

Definition ([[urd, Definition 1.1.2.4]). An oco-category is a simplicial set C such that for any n € N and
any 0 <1 <n, any map fo: A} — C of simplicial sets admits an extension f: A" — C.

Since an co-category is a simplicial set, all the notions on simplicial sets can be transfered to those on an
oo-category. For example, we have

Definition. The opposite of an co-category C is defined to be the opposite C°P of C as a simplicial set in
the sense of §II.

For an oco-category C, the opposite C°P is an oo-category. Thus we call C°P the opposite co-category of C.
Next we explain the relation between ordinary categories and co-categories.

Definition. For an oo-category C, the objects are the vertices of C as a simplicial set, and the morphisms
are the edges of C as a simplicial set.
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Thus an object of an co-category C is a simplicial maps A° — C. and a morphism of C is a simplicial
maps Al = C.
These notions are compatible with those in the ordinary category theory, which we now briefly explain.

Definition 1.2.1 ([Card, p.9]). The nerve of a category C, denoted by N(C), is a simplicial set with
N(C),, = Fun([n],C), where the linearly ordered set [n] = {0,1,...,n} is regarded as a category in the
obvious way. The face maps and degeneracy maps are defined via compositions and inserting the identity
morphisms.

By [Curdl, Proposition 1.1.2.2, Example 1.1.2.6], the nerve of any category C is an co-category. Then the
objects and the morphisms of C coincide with those of N(C). Also we have N(C°P) = N(C)°P as simplicial
sets.

Next we introduce functors of co-categories. For that, let us recall

Definition 1.2.2 ([GJ, Chap. 1 §5]). For X,Y € Seta, we define the simplicial set Mapg,, (X,Y’) by the
following description.
e Mapg,, (X,Y), := Homge, (X x A™,Y') for each n € N, where x denotes the product of simplicial
sets.
e The degeneracy maps and the face maps are induced by those on A™.

The simplicial set Mapg,, (X, Y") is called the function complex in the literature of the simplicial homotopy
theory, but we will not use this word.

Definition 1.2.3 ([Curl, Notation 1.2.7.2]). Let K be a simplicial set and C be an oo-category. We set
Fun(K, C) := Mapg,, , (K, C).

If K = B is an oo-category, then Fun(B, C) is called the co-category of functors from B to C, and its object,
i.e. a simplicial map B — C, is called a functor.

Thus a functor of oco-category is nothing but a simplicial map. The simplicial set Fun(K,C) is an oo-
category by [Lmrll, Proposition 1.2.7.3 (1)].

1.3. The homotopy category of an oco-category. The definition of the homotopy category of an co-
category is rather complicated, so we postpone a detailed explanation to Appendix §B=, and here we only
give relevant important notions.

For the definition of the homotopy category of an co-category, we need to recall the notion of a topological
category. We will use the terminology on enriched categories (see [Lurll, §A.1.4] for example).

Definition 1.3.1 ([Curll, Definition 1.1.1.6]). (1) We denote by €S the category of compactly generated
weakly Hausdorff topological spaces.
(2) A topological category is defined to be a category enriched over €S.
(3) For a topological category € and its objects X, Y € C, we denote by Mape(X,Y) € €S the topological
space of morphisms and call it the mapping space.

Next we introduce the category H called the homotopy category of spaces. Let CW be the topological
category whose objects are CW complexes and Mapey(X,Y) is the set of continuous maps equipped with
the compact-open topology.

Definition 1.3.2 ([Lurl, Example 1.1.3.3]). The homotopy category H of spaces. is the category defined as
follows.
e The objects of H are defined to be the objects of CW.
e For X,Y € €, we set Homg((X,Y) := mo(Mapew(X,Y)).
e Composition of morphisms in H is given by the application of my to composition of morphisms in C.
The category H is actually the homotopy category of CW in the sense of [Lurll, Definition 1.1.3.2].

Next we recall

Definition 1.3.3. A category enriched in Seta is called a simplicial category. We denote by Cata the
category of simplicial categories. A Seta-enriched functor between simplicial categories is called a simplicial
functor.

The category Seta itself is a simplicial category by the simplicial set Mapgg, (+,-) in Definition [2Z3.
Then there is a functor

(1.3.1) Q:H : Setpa — Cata
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by [Curl, §1.1.5] (see also Appendix B™). Then the homotopy category h S of a simplicial set .S is defined
to be

hS :=hc[s],
where the right hand side denotes the homotopy category of the simplicial category €[S] (Definition B=Z3).

Definition. The homotopy category of an co-category C is defined to be the homotopy category h C of C as
a simplicial set.

For a simplicial set S, the homotopy category h.S is enriched over H. Thus, for vertices x,y € S we may
denote

Mapg(z,y) := Homy, s(z,y) € H.

It is called the mapping space from x to y in S.

We see that a simplicial map f : S — S’ induces a functor hf : hS — hS’ between the homotopy
categories. Thus the following definitions make sense.

Definition 1.3.4 ([Curl, Definition 1.2.10.1]). Let f: S — S’ be a simplicial map.
(1) f is called essentially surjective if the induced functor h f is essentially surjective.
(2) f is called fully faithful if h f is a fully faithful functor of H-enriched categories.
(3) f is called an equivalence if it is essentially surjective and fully faithful.
For a morphism g of co-categories, the same terminology will be used with g regarded as a simplicial map.

These definitions are compatible with the notions of the ordinary category theory. In fact, for a category
C and its objects X,Y € C, we have a bijection Homc(X,Y) = mo Mapyc)(X,Y), where in the right hand
side we regard X and Y as objects of the co-category N(C).

For later use, we also introduce

Definition 1.3.5. A functor f : B — C of co-categories is conservative if the following condition is satisfied:
if 8 is a morphism in B such that f(3) is an equivalence in C, then § is an equivalence in B.

Definition 1.3.6 ([Curl, §1.2.11]). Let C be an co-category.
(1) For a subcategory B C hC, define B to be the simplicial set appearing in the following pullback
diagram of simplicial sets (see [GJ, Chap. 1] for the pullback in Seta).

B—C

L

N(B) —= N(hC)

Then B is an oo-category and called the sub-oco-category of C spanned by B.

(2) A simplicial subset C' C C is a sub-oo-category of C if it arises by this construction.

(3) If in the item (1) the subcategory B C hC is a full subcategory, then the subcategory B is called the
full sub-oo-category of C spanned by B. Similarly, a simplicial subset C' C C arising in this way is
called a full sub-oco-category.

We close this part with

Definition 1.3.7 ([Curl, Definition 1.2.12.1]). Let C be an oo-category.
(1) An object 1¢ € C is called a final object if for any X € C the mapping space Map¢(X, 1¢) is a final
object in X, i.e., a weakly contractible space.
(2) An object ) € C is called an initial object if it is a final object of C°P.

The following is a characterization of final objects in an co-category.

Fact 1.3.8 ([Curl, Definition 1.2.12.3, Proposition 1.2.12.4, Corollary 1.2.12.5]). For an object X of an
oo-category C, the followings are equivalent.
e X is a final object.
e The canonical functor C;x — C (Corollary BZ32) is a trivial fibration of simplicial sets with respect
to the Kan model structure (Fact BT3).
e The Kan complex Hom& (Y, X) (Definition B=ZH) representing the mapping space Map¢ (Y, X) is
contractible for any Y € X.

For later use, let us cite

Fact 1.3.9 ([Luxdl, Proposition 1.2.12.9]). The sub-oo-category spanned by final objects in an oo-category
either is empty or is a contractible Kan complex.



GEOMETRIC DERIVED HALL ALGEBRA 7
1.4. Simplicial nerves and the oco-category of spaces. Let us introduce the oo-category of spaces in
the sense of [Curll]. We begin with

Definition 1.4.1 ([Carl, Definition 1.1.5.6]). For a simplicial category €, there is a simplicial set Ngp1(€)
characterized by the property

Homge, (A", Ngp1(€)) = Homeyg . (C[A™], €).
It is called the simplicial nerve of €.

We have the following statements for simplicial nerves.

Fact 1.4.2 ([Curl, Proposition 1.1.5.10, Remark 1.2.16.2]). (1) For a simplicial category €, the simpli-
cial nerve Ngp1(€) is an oco-category such that the simplicial set Mape(X,Y) is a Kan complex for
every X,Y € ¢.

(2) For any X,Y € Kan, the simplicial set Mapg,,(X,Y") is a Kan complex.
By this fact, the following definition makes sense.

Definition 1.4.3 ([Lurl, Definition 1.2.16.1]). Let Kan be the full subcategory of Seta spanned by the
collection of small Kan complexes, considered as a simplicial category via Mapgc,,(—, —) C Mapg, (—, —)-
We set

8 := Ngp1(Kan)

and call it 8 the co-category of spaces.

Remark ([Curl, Example 1.1.5.8]). An ordinary category C can be regarded as a simplicial category by
setting each simplicial set Homc(X,Y') to be constant. Then the simplicial nerve Ngp1(C) of this simplicial
category C agrees with the nerve N(C) of C as an ordinary category (Definition I—2).

Let us recall a classic result on 8 due to Quillen, which justifies the name “homotopy category of spaces”
of H.

Fact (Quillen). As for the homotopy category we have
h8 ~ H.
This equivalence is induced by the adjunction |—| : Seta == €S : Sing in (BTI). See [GJ, Chap. 1,
Theorem 11.4] for a proof.

1.5. Presheaves and oo-categorical Yoneda embedding. Here we cite from [[Curll, §5.1] an analogue of
the Yoneda embedding in the theory of co-categories. We begin with

Definition 1.5.1 ([Lurd, Definition 5.1.0.1]). For a simplicial set K, we define
PSh(K) := Fun(K°P?,8)
and call it the co-category of presheaves of spaces on K. Its object is called a presheaf of spaces on K.

The following is a fundamental property of PSh(K). For the notion of (co)limits in oco-categories, see
Appendix B4.

Fact. For any simplicial set K, the co-category PSh(K) is a presentable (Definition B=3). In particular, it
admits small limits and small colimits (Fact BZX3).

For a simplicial set K, let €[K] be the associated simplicial category given at (IZ3l) in §I3. Recall
also the simplicial category Kan of Kan complexes (Definition TZ3). Then we can consider the following
simplicial functor (Definition I373):

CIK]P x €[K] — Kan, (X,Y)+— Sing [Homex)(X,Y)|.

Here we used the adjunction (BTl). We also have a natural simplicial functor €[K°P x K| — C[K]°P x €[K].
Composing these functors, we have a simplicial functor

¢[K x K] — Kan.

Then recalling Definition T2 of the simplicial nerve and Definition TZ=3 of 8, by passing to the adjoint we
have a simplicial map K°P x K — § of simplicial sets. It gives rise to a simplicial map

j: K — PSh(K) = Fun(K°P?,8).
Then by [[ardl, Proposition 5.1.3.1] j is fully faithful (Definition I=34).
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Definition 1.5.2. For a simplicial set K, the fully faithful simplicial map j : K — PSh(K) is called the
Yoneda embedding of K.

See [TVell, §2.4] for an account of the Yoneda embedding in the model categorical setting.
For the later use, we cite

Fact 1.5.3 ([Curl, Corollary 5.1.5.8]). For an oco-category C, the oo-category PSh(C) is freely generated
under small colimits by the image of the Yoneda embedding C.

1.6. The oo-category of small co-categories. For later use, let us now introduce

Definition 1.6.1 ([Curll, Definition 3.0.0.1]). (1) Define the simplicial category Cats, as follows.
e The objects are small co-categories.
e For oco-categories B and C, define Mapg,, (B, C) to be the largest Kan complex contained in
the co-category Fun(B, C).
(2) We set
Catoo 1= Ngpi(€at)

and call it the oo-category of small co-categories.

Note that Cat,, is indeed an co-category by Fact (1). Furthermore, by [Cairl, §3.3.3, §3.3.4, Corollary
4.2.4.8], Catoo admits small limits and small colimits.

Applying various constructions for simplicial sets to Cat,,, we obtain the corresponding constructions for
oo-categories. For example, we have

Definition 1.6.2. For functors f : B — D and ¢g : C — D of small oco-categories, we have the fiber product
B Xt p,y C by applying Definition B3 of fiber product to the co-category Cats.

1.7. oo-sites. In this subsection we recall the notion of Grothendieck topology on an oco-category and a
construction of co-topos following [Curll, §6.2.2]. See also [IVell] for a presentation in the theory of model
category.

Using the notion of over-co-category (Appendix §B33), we introduce

Definition ([Curll, Definition 6.2.2.1]). Let C be an co-category.
(1) A sieve on C is a full sub-oo-category C(®) C C such that if f : X — Y is a morphism in C and
Y € CO then X also belongs to C(©).
(2) For X € C, a sieve on X is a sieve on the over-oo-category C;x.

Next we want to introduce the pullback of sieves. For that, we prepare
Lemma 1.7.1. Given a functor F : B — C of co-categories and a sieve C(9) ¢ C,
FIC9:=c® x.BCB
is a sieve on B. Here the right hand side denotes the fiber product of oo-categories (Definition ICGA).

The proof is obvious.
Recall also that by Corollary BZ33, given a morphism f : X — Y in C, we have a morphism f, : C;x — C/y
of over-co-categories. Applying Lemma 71 to F' = f,, we have

Definition. Let C and f : X — Y as above. Given a sieve C/(g,) on Y, we define the pullback f*C/(g)/) to be

(0 *\ — 0
FrOy = (7Y
Definition 1.7.2 ([Lurdl, Definition 6.2.2.1]). Let C be an oco-category.
(1) A Grothendieck topology T on C consists of a collection Cov(X) of sieves on each X € C, called
covering sieves on X, satisfying the following conditions.
(a) For each X € C, the over-oo-category C,x as a sieve on X belongs to Cov(X).
(b) For each morphism f : X — Y in C and each C/((;,) € Cov(Y), the pullback f*C/(g/) belongs to
Cov(X).
(c) Let Y € C and C/(g,) € Cov(Y). If C/(;) be a sieve on Y such that f*C/(;) € Cov(X) for any
f:X—=Yin C/((;,), then C/(;,) € Cov(Y).
We denote Cov,(X) := Cov(X) to emphasize that it is associated to 7.
(2) A pair (C,7) of an co-category C and a Grothendieck topology 7 on C is called an oo-site.
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Remark. As mentioned in [Curll, Remark 6.2.2.3], if C is the nerve of an ordinary category, then the above
notion reduces to the ordinary definitions of a sieve and a Grothendieck topology [SGAZ, 1T §1]. Indeed, as
for the definition of a Grothendieck topology, we have
e The condition (a) in Definition (1) implies that the one-member family {id : X — X} is a
covering sieve on X (the condition T3 in loc. cit.).
e The condition (b) implies that collections of covering sieves are stable under fiber product (the
condition T1 in loc. cit.).
e The condition (c¢) is nothing but the local character (the condition T2 in loc. cit.).

Remark 1.7.3. In [Curl, Remark 6.2.2.3] it is explained that giving a Grothendieck topology on an oco-
category C is equivalent to giving a Grothendieck topology in the ordinary sense on the homotopy category
h C. The latter one is equivalent to the definition of a Grothendieck topology on C in [TVell, TVe?, [TH].

In the main text we construct a Grothendieck topology on an oco-category using this equivalence. Thus
we will only specify the data of covering sieves on the homotopy category of the given co-category.

Having introduced the notion of oco-sites, we now define sheaves on an oco-site.

Let (C,7) be an oo-site. Omne can construct a set S; of monomorphisms U — j(X) corresponding to
covering sieves of X € C of 7 (Definition CT3). Then a presheaf F € PSh(C) is called a 7-sheaf if it is
S;-local. We denote by

Sh(C,7) C PSh(C)
the full sub-oco-category spanned by 7-sheaves.

The oo-category Sh(C, 7) has the following properties.

Fact 1.7.4 ([Caxll, Proposition 6.2.2.7]). Let (C,7) be an co-site.
(1) The oo-category Sh(C, 7) is a topological localization [Curll, §6.2.1] of PSh(C). We call the localization
functor PSh(C) — Sh(C, 1) the sheafification functor.
(2) The oo-category Sh(C, 7) is an co-topos. We call it the associated co-topos of (C, 7).

The definition of an oco-topos will be given in the next subsection.

1.8. oo-topoi. Recall the notion of an accessible functor (Definition BTI3), a left exact functor (Definition
BTOT) and a localization functor (Definition B773).

Definition 1.8.1 ([Curll, Definition 6.1.0.4]). An oo-category T is called an co-topos if there exist a small
oo-category B and an accessible left exact localization functor PSh(B) — T.

This definition makes sense since PSh(B) is accessible for any small co-category B by [Curl, Example
5.4.2.7, Proposition 5.3.5.12] so that we can ask if a functor from PSh(B) is accessible or not.

Fact 74 can now be shown by taking T = Sh(C, 7) and B = C since we have Sh(C,7) = PSh(C)[S1].

The next statement is obvious from the definitions.

Lemma 1.8.2. Let T := Sh(C, 7) be the co-topos obtained from an oco-site (C, 7). Taking m in the value
of objects in T, one gets an topos in the ordinary sense [S(GA4] on the underlying category of C. We denote
the obtained topos by Tl

As for a general co-topos, we have the following Giraud-type theorem.

Fact 1.8.3 ([Curll, Theorem 6.1.0.6]). For an oo-category T, the following conditions are equivalent.
(i) T is an co-topos.
(ii) T satisfies the following four conditions: (a) T is presentable. (b) Colimits in T are universal [Curl,
Definition 6.1.1.2]. (¢) Coproducts in T are disjoint [Carl, §6.1.1, p.532]. (d) Every groupoid object
of T is effective [Curll, §6.1.2].

We will repeatedly use the following consequences.
Corollary 1.8.4. An oco-topos admits arbitrary small limits and small colimits.

Proof. Since an co-topos is presentable by Fact &3, it admits small colimits by Definition BZ=3, and admits
small limits by Fact BRH (1). O

Corollary 1.8.5. An oo-topos T has an initial object, which will be typically denoted by (r. Also T has a
final object, typically denoted by 17.

Proof. An initial object is a colimit of the empty diagram, so that ()t exists by Corollary [C¥4. Similarly a
final object exists since it is a limit of the empty diagram. O
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Let us also cite

Fact 1.8.6 ([Curll, Proposition 6.3.5.1 (1)]). For an oco-topos T and an object U € T, the over-oo-category
T/ is an co-topos. We call it the localized co-topos of T on U, and sometimes denote it by T|.

See Fact B4 for a complementary explanation of the localized co-topos.
Let us now introduce another notion of sheaves.

Definition 1.8.7 ([Curl, Notation 6.3.5.16]). For oo-topoi T and C admitting small limits, we denote the
full sub-oo-category of Fun(T°P, C) spanned by functors preserving small limits by

Shvc(T) C Fun(T°P, C),
and call it the oco-category of C-valued sheaves on T. We usually assume T to be an oo-topos.

This notion of sheaves on an co-topos will be fundamental for our study of sheaves on derived stacks (8,
88). At first it looks strange since the definition does not include the standard sheaf conditions. However,
as the following fact implies, it behaves nicely on an oco-topos.

Fact 1.8.8 ([Curl, Remark 6.3.5.17]). Let T be an co-topos. Then the Yoneda embedding T — Shvg(T) is
an equivalence.

See Appendix §C3 for account on the co-categorical Yoneda embedding.
Another remark on Shv is that we have the following compatibility with the symbol Sh (Definition CT2).

Fact ([Curh, Proposition 1.1.12]). Let (C,7) be an oco-site with C admitting small limits, and B be an
oo-category admitting small limits. Then we have the following equivalence of co-categories.

Shvg(Sh(C, 7)) — Shvg(C).
For later use, we introduce

Definition 1.8.9. Let T be an oco-topos and S € §. The constant sheaf valued in S on T is an object of
Shvg(T) determined by the correspondence U — S for any U € T. It will be denoted by the same symbol S.

We close this subsection by introducing basic notions on oco-topoi.

Definition 1.8.10 ([Curl, Corollary 6.2.3.5]). A morphism f : U — V in an co-topos T is called an effective
epimorphism if as an object f € T,y the truncation 7<_1(f) is a final object (Definition I=37) of T,y .

Here we used the truncation functor 7<_1 : T)yy — 7<_1T/y in Definition BXU4. This definition makes
sense since T,y is an oo-topos by Fact [CXE so that it is presentable by Fact [ZX3.

Using the notion of effective epimorphism, we can introduce analogues of ordinary notions of topoi. We
also use coproducts in an oo-category (Definition B=24).

Definition 1.8.11. A covering of an co-topos T is an effective epimorphism [[,.; U; — 17, where T denotes
a final object of T (Corollary IT83H). We denote it by {U, };c1, suppressing the morphism to T, if no confusion
will occur.

We have an obvious notion of subcovering of a covering of an co-topos.

Definition 1.8.12 ([Cur7, Definition 3.1]). Let T be an co-topos.
(1) An oco-topos T is quasi-compact if any covering of T has a finite subcovering.
(2) An object T' € T is quasi-compact if the oo-topos T,z is quasi-compact in the sense of (1).

2. RECOLLECTIONS ON DERIVED STACKS

In this section we explain the theory of derived stacks which will be used throughout the main text. The
main references are [TVe?, [I6).

Our presentation is based on the oco-categorical language, although the fundamentals of the theory of
derived stacks is developed in [I'Vell, T'Ve?] via the model theoretic language. We refer [Lurld] for the
oo-categorical language used here.
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2.1. Higher Artin stacks. We cite from [TVeZ, §2.1] the notion of higher Artin stacks, which enables one
to develop an extension of the ordinary theory of algebraic stacks. Although higher Artin stacks will not
play essential roles in our study, we give a summary of the theory by the following two reasons.

e The theory of higher Artin stacks and the theory of derived stacks are developed in a parallel way
in [TVel, §2.1, §2,2], and in the case of higher Artin stacks some parts of the theory are simple. We
give an explanation on higher Artin stacks as a warming-up for the theory of derived stacks. The
latter one will be explained in the next §Z2.

e Our discussion on derived Hall algebra has a non-derived counterpart which is developed in the
region of ordinary Artin stacks. The theory of ordinary Artin stack is naturally embedded in the
theory of higher Artin stacks, so we need some terminology on higher Artin stacks.

2.1.1. Definition. Fix a commutative ring k.
Let us consider the (ordinary) category Comy of commutative k-algebras. We denote the co-category of
the nerve of Comy, by
Comy, := N(Comy).

Remark. Let us explain other ways to define Comy, all of which give equivalent co-categories in the sense
of Definition =34
e One way is to use the co-localization (Definition BZZ) to the pair (Comy, W), where W is the set
of ring isomorphisms.
e Another way is to use the simplicial nerve (Definition IZ). Let Comy be the simplicial cate-
gory (Definition [33) of commutative k-algebras with the simplicial set Mapg,,,, (X,Y) set to be
Homcom, (X,Y) regarded as a constant simplicial set. Then we have an oo-category Ngpi(Comy).

Definition. (1) Comy is called the co-category of commutative k-algebras.
(2) The oco-category Affy. of affine schemes is defined to be the opposite co-category of Comy:

Affk = (Comk)(’p.

The object of Affy corresponding to A € Comy will be denoted by Spec A and called the affine
scheme of A.
(3) In the case k = Z, we sometimes suppress the subscript and denote Com := Comy and Aff := Aff.

This definition is just an analogue of the ordinary scheme theory: the category Aff of affine schemes is
equivalent to the opposite category Com®® of the category of commutative rings.

The oco-category Comy, can be seen as the category Comy, of commutative k-algebras equipped with “higher
structure” on the set of morphisms. See §B for a summary of the theory of co-categories. In particular, a
morphism in the category Affy of affine schemes can be regarded as a morphism of the oo-category Affy.
Thus ordinary notions on morphisms of affine schemes can be transfered to those in Affy.

Let us now consider the co-category

PSh(Aff,) := Fun ((Aff,)°P, )

of presheaves of spaces over Aff; (Definition [T5). An object of PSh(Affy) is a functor Affy — 8 of co-
categories, where 8 denotes the co-category of spaces (Definition [Z=3).

Remark. A few ethical remarks are in order.
(1) In Lurie’s theory of derived algebraic geometry [Lurh]—-[Curld], the oo-category 8 of spaces is con-
sidered to be a correct co-theoretical replacement of the ordinary category Set of sets.
(2) In [IVel, IVe?], a functor to the model category Seta of simplicial sets is called a prestack. Since
all the prestacks appearing in our discussion are valued in Kan complexes, we replace Seta by 8.

Next we consider a Grothendieck topology on the oo-category Affi. See Appendix O for the relevant
notions.

By [IVe2, Lemma 2.1.1.1], étale coverings of affine schemes give a (non-co-theoretical) Grothendieck
topology on the homotopy category h Aff;. Then by Remark 73 we have a Grothendieck topology on the
oo-category Affy.

Definition. The obtained Grothendieck topology on Aff; is denoted by et and called the étale topology on
Affy.

Now we apply the construction of an oo-topos in § to the oo-site (Affy,et). We consider the oo-category
Sh(Aff,et)
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of et-sheaves on Affy, (see §07 for an account, and Definition T2 for a strict definition). By Fact [CZ4, the
oo-category Sh(Affy, et) is an oo-topos (Definition [C&), which is a localization of the co-category PSh(Affy).
Not that by Corollary 233, this co-topos Sh(Affy, et) is hypercomplete (Definition CZ3).

Definition 2.1.1 ([TVe, Definition 1.3.2.2, 1.3.6.3]). The co-category Sty of stacks over k is defined to be
Sty = Sh(Aka,et)
An object in Sty is called a stack (over k), and a morphism in Sty, is called a morphism of stacks (over k).

Remark 2.1.2. Let us remark that in [TVeZ] the word “stack” is used in a slightly different way. Denoting
by h C the homotopy category of an co-category C (Definition BZ3), we have an adjunction

a : hPSh(Aff,) = h Sh(Affy,et) : j

between the homotopy categories of Sh(Aff,et) and PSh(Aff) with j fully faithful. In [I'Ve?] a stack means
an object in PSh(Aff;) whose class in the homotopy category h PSh(Affy) is in the essential image of the
functor j. This terminology and Definition 11 are different, but we can identify them up to a choice of
equivalence in Sti. Similarly, a morphism of stacks is defined in [TVeZ] to be a morphism in h PSh(Aff}),
which differs from our definition. Since there is no essential difference in our study, we will use Definition
211 only.

Recall the definition of the set 7 (.S) of path components of a simplicial set S (see [GJ, §1.7] for example).
Since a stack is a sheaf valued in 8§ and so is a sheaf of simplicial sets, the following notation makes sense.

Definition. (1) For a stack X € Sty, we denote by mo(X) € Fun((Aff)°P, Set) the sheaf of sets obtained
by taking mg.
(2) For a morphism f : X — Y of stacks, we denote by mo(f) the induced morphism m(X) — 79(Y) of
sheaves of sets.

A morphism between stacks means a morphism in the oco-category Stp. We then have the notion of
monomorphisms (Definition BTH). We also have the notion of effective epimorphism (Definition [CX10)
since Sty is an oco-topos.

Definition 2.1.3. A monomorphism of stacks is defined to be a monomorphism in Stg. An epimorphism
of stacks is defined to be an effective epimorphism in Sty.

Remark 2.1.4. We can describe monomorphisms and epimorphisms in St; more explicitly. For a stack
X € Sty, we denote by mp(X) € Fun((Aff;)°P, Set) the sheaf of sets obtained by taking my. Here (Affj)P is
regarded as an ordinary category. For a morphism f : X — Y of stacks, we denote by mo(f) the induced
morphism 7y (X) = m(Y) of sheaves of sets. Then
e By Fact BO4, f is a monomorphism if and only if the induced morphism mo(Ayf) of Ay : X —
X X7y, 5 X is an isomorphism in Fun((Affj)°P, Set).
e f is an effective epimorphism if and only if the induced morphism 7o(f) : mo(X) — 7 (Y) is an
epimorphism in the category Fun((Affj)°P, Set).
Note that the fiber product X xyy r X is the one in the oco-categorical sense (Definition B4d). This
description of monomorphisms and epimorphisms is consistent with [TVe?, Definition 1.3.1.2].

As in the ordinary Yoneda embedding X — Hom(—, X), we have the oco-theoretic Yoneda embedding
(Definition CZ27)

Following the terminology in [ITVed], we introduce
Definition. A stack in the essential image of the Yoneda embedding j is called a representable stack.

We will often consider Aff;, C Sti by the Yoneda embedding j and identify an affine scheme with the
corresponding representable stack. We can transfer the ordinary notions on affine schemes to those on
representable stacks. For example, we have

Definition 2.1.5. A smooth morphism of representable stacks is defined to be a smooth morphism of affine
schemes in the sense of [EGA4, 4éme partie, Définition (17.3.1)].

Next we recall the notion of geometric stacks.
Definition 2.1.6 ([ITVe2, Definition 1.3.3.1]). For n € Z>_1, we define an n-geometric stack, an object in

Stg, inductively on n. At the same time we also define an n-atlas of a stack, a n-representable morphism
and a n-smooth morphism of stacks.



GEOMETRIC DERIVED HALL ALGEBRA 13

o Let n=—1.
(i) A (—1)-geometric stack is defined to be a representable stack.

(ii) A morphism f : X — Y of stacks is called (—1)-representable if for any representable stack U
and any morphism U — Y of stacks, the pullback X xy U is a representable stack.

(iii) A morphism f : X — Y of stacks is called (—1)-smooth if it is (—1)-representable, and if for any
representable stack U and any morphism U — Y of stacks, the induced morphism X xy U — U
is a smooth morphism of representable stacks (Definition ET73).

e Let n e N.
(i) Let X be a stack. An n-atlas of X is a small family {U; — X};e;r of morphisms of stacks
satisfying the following three conditions.
— Each U; is a representable stack.
— Each morphism U; — X is (n — 1)-smooth.
— The morphism [, ; U; — X is an epimorphism of stacks.
We will sometimes denote an n-atlas {U; — X}ier simply by {U;}ier.
(if) A stack X is called n-geometric if the following two conditions are satisfied.
(a) The diagonal morphism X — X x X is (n — 1)-representable.
(b) There exists an n-atlas of X.

(iii) A morphism f : X — Y of stacks is called n-representable if for any representable stack U and
for any morphism U — Y of stacks, the derived stack X xy U is n-geometric.

(iv) A morphism f : X — Y of stacks is called n-smooth if for any representable stack U and any
morphism U — Y of stacks, there exists an n-atlas {U; }ier of X xy U such that for each i € T
the composition U; — X xy U — U is a smooth morphism of representable stacks (Definition

2.1.2. Relation to algebraic stacks. As an illustration of geometric stacks, let us explain the relation to
algebraic spaces and algebraic stacks in the ordinary sense following [IVe2, §2.1.2]. We begin with

Definition 2.1.7 ([ITVeZ, §2.1.1]). (1) Let m € N. A stack X € Sty is called m-truncated if 7;(X(U), p)
is trivial for any U € Affy, any p € mo(X(U)) and any j > m.
(2) An Artin m-stack is an m-truncated n-geometric stack for some n € N.

Here we used the homotopy groups ;(S) of a simplicial set S (see [G, §1.7] for example). Let us cite a
relation between truncation and geometricity.

Fact ([Ve2, Lemma 2.1.1.2]). An n-geometric stack is (n + 1)-truncated.

These higher Artin stacks will be the co-theoretic counterpart of algebraic spaces and algebraic stacks.
See the appendix §B for the relevant definitions. Let us now cite from [ITVe?, §2.1.2] a general construction
of an embedding of the theory of fibered categories in groupoids into the theory of simplicial presheaves.

Let S be a site. The category Grpd/S of fibered categories in groupoids over S has a model structure
such that the fibrant objects are ordinary stacks over S and the weak equivalences are the functors of fibered
categories inducing equivalences on the associated stacks. The homotopy category Ho(Grpd/S) of this model
category can be described as follows.

e The objects are ordinary stacks over S.
e The morphisms are 1-morphisms of ordinary stacks up to 2-isomorphisms.
By [IVed, §2.1.2] we have a Quillen adjunction

Grpd/S = Sh=(S),

where Shgl(S) denotes the category of sheaves of simplicial sets over S with the 1-truncated local projective
model structure [['Vell, Theorem 3.7.3].

Let us take S in the above argument to be the site (Affy,et) of affine schemes with the étale topology
over a commutative ring k (Definition BTT). Then the above Quillen adjunction yields an adjunction of
the underlying oco-categories (Definition BG2) by Fact BH3.

Notation 2.1.8. Let us denote the obtained adjunction by
a : Ngpi (Grpd/(Affy, et)) &= Sty : t.

Algebraic stacks over k in the sense of Definition B=Z3 belong to Grpd/(Affy,et). In particular, algebraic
spaces and schemes over k belong there.
Now we have the following result.
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Fact 2.1.9 ([I'Ve?, Proposition 2.1.2.1]). (1) If X is a scheme or an algebraic space over k, then a(X)
is an Artin 0-stack which is 1-geometric.
(2) If X is an algebraic stack over k, then a(X) is an Artin 1-stack which is 1-geometric.

Hereafter we consider algebraic stacks, algebraic spaces and schemes as objects of Stg, i.e., as stacks.

Remark 2.1.10. The paper [(OT] treats a slightly generalized notion of algebraic stacks. The difference is
that in [O] the diagonal morphism A is only assumed to be quasi-separated [EGA4, 1re Partie, Définition
(1.2.1)]. The statement in Fact 219 (2) still holds for an algebraic stack in this sense.

The following Fact 211 shows that the notion of Artin n-stacks is a natural extension of the ordinary
notion of schemes, algebraic spaces and algebraic stacks (see also Fact B23).

Fact 2.1.11 ([TVed, Remark 2.1.1.5]). Let X be an Artin m-stack with m € N.
(1) X is an algebraic space if and only if the following two conditions hold.
e X is a Deligne-Mumford m-stack, i.e., there exists an m-atlas {U;};c; of X such that each
morphism U; — X of stacks is an étale morphism.
e The diagonal map X — X x X is a monomorphism of stacks.
If X is an algebraic space, then X is 1-geometric.
(2) X is a scheme if and only if there exists an m-atlas {U; }ier of X such that each morphism U; — X
of stacks is a monomorphism. If so then X is 1-geometric.
(3) Assume X is an algebraic space or a scheme. Then X has an affine diagonal, i.e., the diagonal map
is (—1)-representable, if and only if it is 0-geometric.

Remark 2.1.12. By Fact 219, if X in Fact EZZI11 is an algebraic space or a scheme, then we have m = 0
and X is 1-geometric. Thus we can depict the relation between sub-oo-categories of St and subcategories of
the category St,.q of ordinary stacks as

N(Sch)&——= N(AS)—— N(AlgSt)C N(Stora)

| ]

SchC———= AS™="C—> Artin”"='C—— Artin,—; & Artin = h St C > St

geom

Here AS and AlgSt denote the category of algebraic spaced and of algebraic stacks respectively. The subscript
n in the second row denotes the geometricity of a stack, and the superscript m denotes the truncation degree.

We close this part with the recollection of a quotient stack, a standard example of algebraic stacks.

Fact ([02, Example 8.1.12]). Let S be a scheme, X be an algebraic space over S, and G be a smooth group
scheme over S. Assume G acts on X. Define [X/G] to be the ordinary stack on S (Definition B—21) whose
objects are triples (T, P, ) consisting of the following data.

e T € Schg.

e Pisa G xg T-torsor on the big étale site ET(T") (Definition B—TT).

o 7: P— X xgT is a G xg T-equivariant morphism of sheaves on Schr.
Then [X/G] is an algebraic stack. A smooth covering of [X/G] is given by ¢ : X — [X/G], which is defined
by the triple (S, Gx, p) with Gx := G x X the trivial G-torsor on X and p: Gx — X the action map of G
on X.

The algebraic stack [X/G] is called the quotient stack.

Definition 2.1.13. For a smooth group scheme G over a scheme S, the classifying stack BG of G is defined
to be the quotient stack [S/G] where G acts trivially on S.

In the case S = Speck, the classifying stack BG is a 1-geometric Artin 1-stack by Fact EZ1T9.

2.2. Derived stacks. In this subsection we present a summary of derived stacks. As in the previous §2I,
our exposition will be given in the oo-categorical language.

2.2.1. The co-category of simplicial modules. This part is a preliminary for arguments in a simplicial setting.

Let k be a commutative ring. We denote by Mody, the category of k-modules. We also denote by sMody,
the category of simplicial k-modules, i.e., of functors A°® — Mody. The category sMod;, is equipped with
the model structure given by the Kan model structure on the underlying simplicial sets. We denote by
sModj C sMody, the full subcategory of fibrant-cofibrant objects. Now recall the underlying co-category of
a simplicial model category (Definition B®53). Using this notion, we introduce
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Definition. The underlying co-category
sModj, := Ngpi(sMody))
is called the oco-category of simplicial k-modules.

Let us give another description of the oco-category sMod,. We will use basic notions on dg-categories
(see §E for a short account). We denote by C~ (k) the dg-category of non-positively graded complexes of
k-modules. Taking the dg-nerve (Definition D-3T), we have an co-category Ngg(C™ (k)). We then have an
equivalence of co-categories

ng(C_(k)) ~ SMOdk.
This equivalence is given by the Dold-Kan correspondence [GJ, Chap. III, §2], [Cur2, Theorem 1.2.3.7].

The standard tensor product on C™ (k) induces an co-operad structure on sMody, in the sense of [Lur?)].
We will often denote the obtained oco-operad sl\/Iod% by the simplified symbol sMody.

2.2.2. Derived rings. Following [T, §2.2] we introduce the co-category of affine derived schemes.
Let us fix a commutative ring k. As in the previous §€71, we denote by Comy, the category of commutative
k-algebras.

Definition 2.2.1. A simplicial object in Comy, in other words, a functor A°® — Comy, is called a simplicial
commutative k-algebra or a derived k-algebra. In the case k = Z, we call it a derived ring. We denote by
sComy, the category of derived k-algebras.

We can associate to a derived k-algebra A a commutative graded k-algebra
T (A) = @nENﬂn(A)a

where the base point is taken to be 0 € A. See [GJ, §1.7] for the definition of homotopy groups of simplicial
sets. In particular, we have a commutative k-algebra my(A).

The category sComy has a model structure induced by the Kan model structure (Fact BT2) of the
underlying simplicial sets. Then, regarding sComy, as a simplicial model category (Definition BHE), we have
the underlying co-category Ngpi(sComy) (Definition BEB2). Here sCom; C sComy is the full subcategory
spanned by fibrant-cofibrant objects with respect to the Kan model structure, and Ngpi(—) is the simplicial
nerve construction (Definition I27).

Definition 2.2.2. The obtained oco-category
sComy, := Ngpi(sComy)
is called the oo-category of derived k-algebras.

Remark. Here is another description of sComy. Consider the set W of weak equivalences in the model cat-
egory sComy, in the above sense. We apply the oco-localization (Definition BZZ1l) to the pair (N(sComy), W),
and have an equivalence of co-categories
sComy, =~ N(sComy,)[W 1.
Remark 2.2.3. We have a functor
sCom; — CAlg;"
of co-categories, which is an equivalence if k is a Q-algebra. The target CAlg" is the co-category of connected

commutative ring spectra, which is a foundation of Lurie’s spectral algebraic geometry [Lur5]-[Curld]. See
EZ for the detail.
Definition 2.2.4. (1) The oo-category dAffy of affine derived schemes over k is defined to be

dAffy := (sComy)°P,

the opposite co-category of sComy. The object in dAffy, corresponding to A € sComy, will be denoted
by dSpec A and called the affine derived scheme of A. A morphism in dAff; will be called a morphism
of affine derived schemes.

(2) For an affine derived scheme U = dSpec A over k, the morphism U — dSpeck of affine derived
schemes corresponding to k — A is called the structure morphism of U.

In terms of the co-operad sMod? (§=Z), a derived k-algebra is nothing but a commutative ring object
in sMod?.

One may infer a relation between the co-categories dAffy, and Aff in the previous §E1. We postpone the
explanation to §Z°24.

Let us now introduce some classes of morphisms of affine derived schemes.
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Definition 2.2.5 ([IVeZ, §2.2.2]). (1) A morphism A — B in sComy, is étale (resp. smooth, resp. flat)
if the following two conditions are satisfied.
e the induced morphism m(A) — 7o(B) is an étale (resp. smooth, resp. flat) morphism of com-
mutative k-algebras,
e the induced morphism m;(A) ®p,(a) T0(B) — m;(B) is an isomorphism for any 4.
(2) A morphism X — Y in the co-category dAffy of affine derived schemes is called étale (resp. smooth,
resp. flat) if the corresponding one in sComy is so.

For later use we also introduce the notion of a finitely presented morphism. We need some terminology.
e By a filtered system {C;}ics of objects in an co-category C, we mean a diagram in C indexed by a
k-filtered poset I with some regular cardinal .
e Ccy denotes the under-oo-category of an oo-category C under an object C' € C (Definition B=3T).
e Mapc(—, —) denotes the mapping space for an co-category C (Definition B=24), which is an object
of the homotopy category H of spaces (Definition I=372).

Definition 2.2.6 ([T'Ve, Definition 1.2.3.1], [I"V&, §2.3]). (1) A morphism f : A — B in sComy is
called finitely presented if for any filtered system {C;};cs of objects in (sComy) 4, the natural mor-
phism

liﬂ Map(sComk)A/ (Ba CZ) — Map(sComk)A/ (B7 hﬂ CZ)
iel iel
is an isomorphism in K.
(2) A derived k-algebra A € sComy, is called finitely presented or of finite presentation if the morphism
k — A is finitely presented in the sense of (1).

2.2.3. Derived stacks. In [T'Ve2, Chap. 2.2] derived stacks are defined in terms of homotopical algebraic
geometry context. Here we give a redefinition in terms of the theory of co-topos following |6, §3.2].
We begin with giving dAff; an oo-categorical Grothendieck topology (§I=2).

Definition 2.2.7 ([IVe?, §2.2.2]). A family {dSpec A; — dSpec A};c; of morphisms in dAff, is called an
étale covering if the following conditions are satisfied.
e For each ¢ € I, the morphism 7, (A) ®x,(a) mo(Ai) = 7«(A;) is an isomorphism of graded rings.
e There exists a finite subset J C I such that the induced morphism [, ; Specm(A;) — Specmo(A)
of affine schemes is a surjection.

Let us note that this definition is equivalent to the one in [IVed, Definition 2.2.2.12] by the argument
given there.

By the argument in ['Ve2, §2.2.2], étale coverings give a Grothendieck topology on dAffy in the sense of
Definition IC73A. In particular, étale coverings are stable under pullbacks.

Definition. The obtained oo-site is called the étale co-site and denoted by (dAffy,et)
Then, as in Definition EZI, we can introduce

Definition 2.2.8. The oco-category of derived stacks over k is defined to be
dSty, := Sh(dAka7et)
Its object is called a derived stack.

Remark. In [TVe?] the model category corresponding to dSty is denoted by D~St(k) and its object is
called a D™ -stack. See also Remark 212 on the difference of our terminology on derived stacks and that on
D~ -stacks given in [TVe?2].

The oo-category dSty has similar properties to Sti. For example, by Fact 74 and Corollary CZ33, we
have

Fact 2.2.9. dSty, is a hypercomplete co-topos (Definition C=3T).
We also have
Fact 2.2.10 ([I'Ve2, Lemma 2.2.2.13]). The oco-topos dSty, is quasi-compact (Definition IXT2).
As in the case of stacks, we have the oco-theoretic Yoneda embedding (Definition C2T)
J : dAffy, — dSty.

Definition. A derived stack in the essential image of j is called a representable derived stack.
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Hereafter, regarding dAff; as a sub-oo-category of dSty, by the Yoneda embedding j, we consider an affine
derived scheme as a derived stack. Thus every notion on affine derived schemes such as in Definition 2223
can be transfered to that on representable derived stacks.

For each X € dSt;, we have a morphism X — dSpec k in dSty, which will be called the structure morphism
of X.

Let us introduce some notions on morphisms of derived stacks. A morphism between derived stacks means
a morphism in the co-category Sti. We then have the notion of monomorphisms (Definition BTIH). We also
have the notion of effective epimorphism (Definition [C&T0) since Sty is an co-topos.

Definition 2.2.11. A monomorphism or an injection of derived stacks is defined to be a monomorphism
in dStg. A epimorphism or a surjection of derived stacks is defined to be an effective epimorphism in dSty.

Remark. As in the case of stacks (Remark PZT4), we can restate this definition more explicitly. For a
derived stack X, we denote by mo(X) € Fun((dAff;)°P, Set) the sheaf of sets obtained by taking my. For a
morphism f : X — Y of derived stacks, we denote by mo(f) the induced morphism 74(X) — 7 (Y) of sheaves
of sets. Then
e f is a monomorphism if and only if the induced morphism mo(Af) of Ay : X — X xyy ¢ X is an
isomorphism in Fun((dAffj)°P, Set).
e f is an epimorphism if and only if the induced morphism 7(f) is an epimorphism in the category
Fun((dAffj)°P, Set).
Again, our convention on monomorphisms and epimorphisms is consistent with [IVe2, Definition 1.3.1.2].

Let us also introduce

Definition 2.2.12 ([T'Ve2, Definition 1.3.6.4 (2)]). A morphism f : X — Y in dSty is quasi-compact if for
any morphism p : U — Y from an affine derived stack U, there exists a finite family {U,};cr of affine derived

stacks and a surjection [[,.,; Ui = X xzy, U.

In the most of the following sections we will work on a fixed commutative ring, but in §8 we need a base

change. For that, let us consider a field k and an extension L of k. Then, for a derived stack X € dSty, the
fiber product X Xggpeck dSpecy, in dSty, defines a derived stack over L.

Notation 2.2.13. We denote the fiber product X xggpecr dSpecy, € dSty, by X or X ®y, L.

2.2.4. Geometric derived stacks. Following [TVeZ, Chap. 2.2] and [I'V&, §2.3] we recall the notion of geo-
metric derived stack.

Definition 2.2.14 ([ITVed, Definition 1.3.3.1]). For n € Z>_1, an n-geometric stack is an object in dSty,
defined in the same way as in Definition EZT8 with the replacement of “representable stack” by “representable
derived stack”. An n-atlas, an n-representable morphism and an n-smooth morphism of derived stacks are
inductively defined in the same way.

Remark 2.2.15. (1) In the recursive definition of n-smoothness of morphisms, we use Definition P21
for smoothness of morphisms in dAff.
(2) In [IVe2, §1.3.4] it is explained that the condition (b) in the definition of n-geometric derived stacks
follows from the condition (a). Thus it is enough to assume the existence of n-atlas only.
(3) In [T6] a geometric derived stack is called a derived Artin stack. We will not use this terminology.

By definition we can check the following statement (see also Fact BT (3)).

Lemma 2.2.16. A derived stack X is 0-geometric if and only if it has an affine diagonal, i.e. the diagonal
morphism X — X x X is (—1)-representable.

We will repeatedly use the following properties.

Fact 2.2.17 ([I'Ved, Proposition 1.3.3.3, Corollary 1.3.3.5]). Let n € Z>_;.
(1) An (n — 1)-representable (resp. (n — 1)-smooth) morphism is n-representable (resp. n-smooth). In
particular, an (n — 1)-geometric stack is n-geometric.
(2) The class of n-representable (resp. n-smooth) morphisms are stable under isomorphisms, pullbacks
and compositions.
(3) For n € N, the oco-category of n-geometric derived stacks is stable under pullbacks and taking small
coproducts.

We next recall the following extended class of geometric derived stacks.
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Definition 2.2.18 ([I'V&, Definition 2.17]). A derived stack X is called locally geometric if X is equivalent
to a filtered colimit
~ lim X;
of derived stacks {X;};c; satisfying the following conditions.
e Each derived stack X; is n;-geometric for some n; € Z>_;.
e Each morphism X; — X; X X; of derived stacks induced by X; — X is an equivalence in dSty.

Definition 2.2.19 ([I'Va, §2.3]). (1) An n-geometric derived stack X is called locally of finite presen-
tation if it has an n-atlas {U; };er such that for each representable derived stack U; ~ dSpec A; the
derived k-algebra A; is finitely presented (Definition 2ZZ8).

(2) A locally geometric derived stack X is locally of finite presentation if writing X ~ %nz X; each
geometric derived stack X; can be chosen to be locally of finite presentation in the sense of (1).

The class of locally geometric derived stacks locally of finite presentation contains the moduli stack of
perfect dg-modules by the following theorem of Toén and Vaquié [I'Va]. This fact is very important for us
and will be explained in detail in §&4.

Fact 2.2.20 ([I'Va, Theorem 3.6]). For a dg-category D over k of finite type, we have the moduli space
M(D) of perfect D°P-modules, which is a locally geometric derived stack locally of finite presentation.

For later use, we record

Definition 2.2.21 ([ITVeZ, Definition 1.3.6.2, Lemma 2.2.3.4]). Let Q be either of the following properties
of morphisms in dAffy:

Q = flat, smooth, étale, locally of finitely presented.
A morphism f : X — Y of derived stacks has property Q if it is n-representable for some n and if for any
affine derived scheme U and any morphism U — Y there exists an n-atlas {U; };er of X xy U such that each
morphism U; - X xy U — U in dAff; has property Q.

In this definition the choice of n is irrelevant by [T'Vel, Proposition 1.3.3.6]. We also note that for
Q = smooth, Definition 22721 of an n-representable morphism being a smooth morphism and Definition
214 of an n-smooth morphism are compatible.

Fact 2.2.22 ([T'Ve2, Proposition 1.3.6.3]). Let Q be one of the properties of morphisms in Definition =221,
(1) Morphisms of derived stacks having property Q are stable under equivalences, compositions and
pullbacks.
(2) Let f:X — Y be a morphism of n-geometric derived stacks. If there is an n-atlas {U; — Y};er such
that each projection X xy U; — U; has property Q, then f has property Q.

Next we introduce the relative dimension of a smooth morphism. One can check the following is well-
defined using Fact 22222 and Definition ZZ23.

Definition 2.2.23. A morphism f : X — Y of derived stacks is smooth of relative dimension d if it satisfies
the following condition.

e For any U € dAff; and any morphism U — Y of derived stacks, take an n-atlas {U;};c; of X xy U
as Definition ZZZ0. Denote by g : U; — X xy U — U the smooth morphism in dAffi. Then
mo(g) : mo(U;) — mo(U) is smooth of relative dimension d in the scheme-theoretic meaning [EGA4,
Chap. IV, §17.10].

Let us also introduce immersions of derived stacks.

Definition 2.2.24 ([I'Ve?, Definition 2.2.3.5]). (1) A morphism of derived stacks is an open immersion
if it is locally of finite presentation (Definition E227211), flat (Definition EZ221) and a monomorphism
(Definition Z271T).

(2) A morphism F — X of derived stacks is a closed immersion if it is (—1)-representable and if for any
representable stack U ~ dSpec A and any morphism U — X the morphism F xo U ~ dSpec B —
U ~ dSpec A induces an epimorphism 7o(A4) — mo(B) of rings.

Note that an open immersion in the above sense is called a Zariski open immersion in [TVeZ]. One can
check by definition that a closed immersion i : ¥ — X of derived stacks determines an open immersion
U — X with the property [U(T)] = [X(T)] \ [F(T)] for any affine derived scheme T, where [—] denotes the
homotopy type of a simplicial set (Definition B=ZT). Moreover U is unique up to contractible ambiguity.
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Notation 2.2.25. We call the open immersion U — X the complement of i : F — X.
We finally have

Definition 2.2.26. A morphism of derived stacks is of finite presentation if it is locally of finite presentation
(Definition P22Z1) and quasi-compact (Definition ZZ212).

2.2.5. Truncation. Let us now explain the relationship of higher Artin stacks in §21T2 and geometric derived
stacks. We follow the argument in [TVe3, §§2.1.1, 2.1.2, 2.2.4].

Recall the oo-category Comy, of commutative k-algebras (see §€71). Regarding commutative k-algebras as
constant derived k-algebras, we have an embedding Com; — sComy of co-category. Taking the opposites,
we have the corresponding embedding i : Aff, — dAff;. It gives rise to an adjunction

o : dAff, = Affy : ¢

of oo-categories (Definition B-h3), where 7y denotes the functor taking mp of derived k-algebras. This
adjunction naturally extends to a new adjunction PSh(Aff) z PSh(dAff;) of the co-categories of presheaves
(Definition [5). In [TVel, §4.8] the corresponding Quillen adjunction is denoted by i : PSh(Affy) =
PSh(dAffy) : ¢*.

By the argument of [IVe2, §2.2.4], the last adjunction (i, :*) yields a Quillen adjunction between simplicial
categories, whose underlying adjunction on the homotopy categories can be expressed as h Sh(Affy, et) =—
h Sh(dAffg,et). Then by Fact B3, we can construct from the Quillen adjunction an adjunction of oco-
categories. Let us denote it by

Dex : Sty = Sh(Affg,et) == dSt,, = Sh(dAff,et) : Trc.
Fact (["Ve2, Lemma 2.2.4.1]). The functor Dex : Sty — dSty, is fully faithful.

Definition 2.2.27 ([I'VeZ, Definition 2.2.4.3]). (1) Trc : dSty — Sty is called the truncation functor
and Dex : St — dSty is called the extension functor.
(2) A derived stack X € dSty, is called truncated if the adjunction Dex(Trc(X)) — X is an isomorphism
in hdStg.

As noted in [T'Ve2], Trc commutes with limits and colimits, and Dex is fully faithful and commutes with
colimits, but Dex does not commute with limits. However we have the following results.

Fact 2.2.28 ([ITVed, Proposition 2.2.4.4]). (1) The truncation functor Trc sends an n-geometric derived
stack to an n-geometric stack and a flat (resp. smooth, resp. étale) morphism between n-geometric
derived stacks to a morphism of the same type between n-geometric stacks. The functor Trc also
sends epimorphisms of derived stacks to epimorphisms of stacks.

(2) Dex sends n-geometric stacks to n-geometric derived stacks, pullbacks of n-geometric stacks to those
of n-geometric derived stacks, and flat (resp. smooth, resp. étale) morphisms of n-geometric stacks
to those of n-geometric derived stacks.

Recall that an algebraic stack over k (Definition BA=23) belongs to the category h(Grpd/(Affy,et)) and
that we have the fully faithful functor a (Notation ETR). Now we introduce

Definition 2.2.29. Consider the composition
¢ := Dexoa : Ngp1(Grpd/(Affy, et)) — Sty — dSty.
For an algebraic stack X, we call the image ¢(X) the derived stack associated to X.
By Fact 19, Remark EET10 and Fact ZZ28, we have

Lemma 2.2.30. Let X be an algebraic stack. Then the derived stack ¢(X) is truncated and 1-geometric
(Definition Z21d).

Remark 2.2.31. As in Remark T2, we can depict the relation between sub-oco-categories of St and
sub-oo-categories of dSt as

Sche—— AS™=C— Artin”"='C— Artin,,—; & Artin = St""» S

geom

T T

dStm=0C > 4SSt > dStTC > 4SSt O > St

n=1 geom
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One also can check that the notions ordinary algebraic stacks (§BA=) are compatible with those on derived
stacks under the functor Dex. As for the properties of morphisms, we collect the corresponding definitions
in the following table. We will give an additional table after introducing derived algebraic spaces (Remark

A2T3)

property of morphisms

derived stacks

algebraic stacks

surjective
locally of finite presentation
étale
smooth of relative dimension d
quasi-compact
closed immersion

Definition 2211
Definition 227211
Definition 222211
Definition 2223
Definition 22212
Definition

Definition B—21
Definition B—27
Definition B2
Definition B2
Definition BA—2Y
Definition B—ZR

TABLE 2.1. Morphisms between derived and algebraic stacks

2.2.6. Derived stacks of quasi-coherent modules and vector bundles. We close this subsection by giving some
examples of geometric derived stacks following [TVed, §1.3.7, §2.2.6.1]. Let k be a commutative ring as
before.

For a derived k-algebra A, an A-module means an A-module object in the oo-operad sMod,? (§2=2m).
A-modules form an co-category denoted by sMod4. It has an induced oo-operad structure from sMod%7 and
the obtained oco-operad is denoted by sMod%. Derived A-algebras mean commutative ring objects in sMod%7
which form an oo-category denoted by sCom 4.

For a derived k-algebra A, the category QCoh(A) of quasi-coherent modules on A is defined as

e An object is a data (M, ) consisting of a family M = {Mp}p of B-modules for B € sCom,4 and a
family o = {a, : Mp ® g B’ — Mp},, of isomorphisms for morphisms u : B — B’ in sComy4 such
that av, o (e, ®pr B”) = yoy for any composable morphisms B - B’ % B”.

e A morphism f: (M,a) = (M',d') is a family f = {fp : Mp — Mp/}p of morphisms of B-modules
for B € sComy such that for any u : B — B’ in sComy we have fp o, = o, o (fp ®p B’) :
Mp®p B' — MJ/B"

The category QCoh(A) inherits a model structure induced from Kan model structure of simplicial sets.
Let us now consider the subcategory QCoh(A)$, C QCoh(A) consisting of equivalences between cofibrant
objects. Taking the nerve, we have an oo-category QCoh(A) := N(QCoh(A)§,). It enjoys the property
71 (QCoh(A), M) ~ Authsmod , (M). Now we cite

Fact ([I'Ve2, Theorem 1.3.7.2]). The correspondence A — QCoh(A) determines a derived stack
QCoh : sCom = (dAff)°P — 8.

Next we turn to the definition of vector bundles.

Definition 2.2.32. Let A be a derived k-algebra, and let » € N. An A-module B € sMod 4 is called a rank
r vector bundle if there exists an étale covering A — A’ (Definition EZ270) such that M ®4 A’ ~ (A’)" in
hsMody4:.

We have the corresponding full sub-oo-category Vect, C QCoh(A) and the derived stack Vect, of rank r
vector bundles.

Recall the classifying stack BG for a smooth group scheme G over a scheme S (Definition EZT13). It is
an algebraic stack, so that we have the corresponding truncated derived stack ¢(BG).

In the case G = GL,, regarded as a group scheme over k, the classifying stack B GL, is nothing but the
moduli space of rank r vector bundles. Now we have

Fact 2.2.33 ([IVeZ, §2.2.6.1]). We have
Vect, ~ (B GL,.).

In particular, Vect, is a truncated (Definition 2227 (3)) 1-geometric derived stack with (—1)-representable
diagonal. Tt is also locally of finite presentation (Definition 2Z2T9).

Note that in [I'Ve?, §2.2.6.1] the word “affine diagonal” is used for “(—1)-representable diagonal”.
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3. SHEAVES ON RINGED 00-TOPOI

This section is a preliminary for our study of sheaves on derived stacks. In a general setting of ringed
oco-topoi, we introduce the notions of sheaves of modules and functors between them. Some of them are
already given in Lurie’s work [Lmrd, Curf, Enrd]. These will give us an oo-theoretical counterpart of the
theory of (unbounded) derived categories ([Sp], [KS, Chap. 18]).

We manly focus on sheaves of stable modules, so that the resulting oco-category will be stable in the sense
of [CurZ, Chap. 1]. A stable oco-category is an oo-theoretical counterpart of a triangulated category. Thus
our oco-category of sheaves of stable modules will be an co-categorical counterpart of the derived category of
sheaves of modules.

3.1. Geometric morphisms of co-topoi. In this subsection we give some complementary explanation on
oo-topoi.
Since an co-topos is an co-category, we automatically have

Definition. A morphism or a functor of oo-topoi is defined to be a functor of oo-categories (Definition

However, this definition is poor as the correct notion of morphisms between (ordinary) topoi implies.
Recall that a morphism f : T — T’ of topoi is defined to be an adjunction f*:T' =— T : f, [SGA4, IV.7].
In this subsection we recall the notion of geometric morphisms, which is the genuine notion of morphisms
between oo-topoi.

Definition 3.1.1. A morphism f, : T — T’ of co-topoi is geometric if it admits a left adjoint f* : T — T
which is left exact (Definition BT). In this case, the resulting adjunction will be denoted by

T =T:f.

Remark 3.1.2. Since either of f, and f* determines the other up to contractible ambiguity, we sometimes
refer to f* as a geometric morphism. Following [Curl, Remark 6.3.1.7], we always denote a left adjoint by
upper asterisk such as f*, and denote a right adjoint by lower asterisk such as f,.

By [Curl, Remark 6.3.1.2] any equivalence of co-topoi, which is defined to be an equivalence as oo-
categories, is a geometric morphism. Also, by [Lurl, Remark 6.3.1.3], the class of geometric morphisms is
stable under composition.

We now introduce the oco-category RTop of co-categories and geometric morphisms.

Definition 3.1.3. The oco-category RTop is given by the following description.
e The objects are (not necessarily small) co-topoi.
e The morphisms are functors f, : T — T’ of co-topoi which has a left exact left adjoint.

We also have the oo-category LTop whose objects are the same as RTop but morphisms are functors
f*: T/ — T preserving small colimits and finite limits. By [Curl, Corollary 6.3.1.8], we have an equivalence
LTop ~ RTop°P. Here is a list of some properties of RTop.

Fact 3.1.4. (1) RTop admits small colimits [Eurll, Proposition 6.3.2.1].
(2) RTop admits small limits [Curdl, Corollary 6.3.4.7].
(3) The oco-category 8 of spaces is a final object of RTop [[Lurll, Proposition 6.3.3.1].

Recall that for an oo-topos T and U € T, the over-oco-category T,y is an oo-topos (Fact [C=M). It is
equipped with the following geometric morphisms.

Fact 3.1.5 ([Lurll, Proposition 6.3.5.1 (2)]). For U € T, the canonical functor ji : T/ — T of the over-oo-
category T,y (Corollary B=39) has a right adjoint j* which commutes with colimits. Thus j* has a right
adjoint j,, and we have two geometric morphisms of oco-topoi:

Ty e=T:j% 7 :Te=Ty: .

Following the standard terminology in [SGA4], we call the triple (ji,5*,j«) biadjunction. We close this
part by

Notation 3.1.6. Given an oo-topos T, U € T and F € Shvc(T) for some oo-category C admitting small
limits, we denote F|; := j*(JF) and call it the restriction of F to U.

3.2. Ringed oo-topoi.
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3.2.1. Definition. We will use the language of oco-operad [Lurd] in the following. Let C be a symmetric
monoidal oo-category [Cur?, §2.1]. Then we have the notion of commutative ring objects in C, and they form
an oo-category CAlg(C).

Remark 3.2.1. Let us give a more strict explanation. Let EE = Comm® be the commutative co-operad
[Lur?, §2.1.1, §5.1.1]. Then we have the oo-category Algg_(C) of Ec-algebra objects in C [Lur2, §3.1]. In
the above we denoted CAlg(C) := Algg_ (C). Let R € Algy_ (C).

Let T be an oo-topos. Consider the co-category Shvcaig(c)(T) of sheaves valued in CAlg(C) on T (Definition
[CX). Its object R € Shvcag(c)(T) is called a sheaf of commutative ring objects on T.

Definition 3.2.2. Let C be a symmetric monoidal co-category.
(1) A ringed co-topos is a pair (T,R) of an oco-topos T and a sheaf of commutative algebras R €
Shvcaig(c) (T)-
(2) A functor (T,R) — (T',R’) of ringed co-topoi is a pair (f, f*) of
e A geometric morphism f : T — T’ of co-topoi corresponding to an adjunction f* : T' =T : f,
(Definition BI).
e A morphism f* : R — f.A in Shvcag(c)(T’), where f,R is defined by (f.R)(U’) := R(f*U’) for
each U' € T'.

Our definition is an co-theoretical analogue of the ordinary ringed topos [SGA4, IV.11, 13]. Note that in
(2) we used geometric morphisms (Definition BI), which is the correct notion of functors of co-topoi.

In the later sections we mainly discuss constructible sheaves by setting k = F; or Q; and C := Mod;, =
N(Mody), the nerve of the category of k-modules. The monoidal structure on C is given by the standard ®y.

An ethical remark is in order.

Remark. As mentioned in Remark P23, Lurie explores the theory of spectral algebraic geometry based
on the sheaves of spectral rings in [Lurh]-[LnrT4]. Under the notation above, his theory is developed in
Shvcaig, (T), where K denotes an E.-ring (see Appendix ET) and CAlgg = CAlgy(Mod(Sp)) denotes the
oo-category of K-algebra objects in Mod(Sp), which is the co-category of module objects in the co-category
Sp of spectra equipped with the smash product monoidal structure. A pair (T,A) with A € Shvcayg, (T) is
called a spectrally ringed co-topos [Eurd, Definition 1.27].

As noted in [Enrd, Remark 2.1], a commutative rings is a discrete Eoo-ring, so that the theory for C = Mody,
with k£ a commutative ring can be embedded in that for C = Modk (Sp) with K an arbitrary E,,-ring. Thus
our presentation is basically included in Lurie’s exposition.

3.2.2. Sheaves of R-modules on co-topoi. Let us first recall the notion of modules over commutative rings
in the oo-categorical setting. Let C be a symmetric monoidal co-category as in the previous part. Take a
commutative algebra object R € CAlg(C). Then we have the notion of R-module objects in C, and they form
an oo-category Modg(C). It is equipped with a symmetric monoidal structure, and the associated tensor
product is denoted by ®g.

Remark. Let us continue Remark B2, Since the commutative operad EZ, is coherent, we have the oo-
operad Mod (C)® of R-module objects in C [Lur?, §3.3]. Tt is equipped with a fibration Mod = (C)® — E
of co-operads. We denoted Mod(C) := Mod'= (C) above.

Now we turn to the discussion of sheaves on co-topoi. Let T be an co-topos and assume that the symmetric
monoidal co-category C is presentable. Then by [[ird, Lemma 1.13] the symmetric monoidal structure on
C induces the pointwise symmetric monoidal structure on Shvc(T). In particular, we have the oco-category
CAlg(Shvc(T)) of commutative ring objects in the symmetric monoidal co-category Shve(T).

Let us continue to assume that C is presentable. As in the argument of [Lur7, Remark 1.18], the for-
getful functor CAlg(C) — C is conservative (Definition [Z3H) and preserves small limits. Thus we have an
equivalence

ShVCAIg(C) (T) = CAlg(ShVC(T))a

where in the right hand side we are considering the pointwise symmetric monoidal structure.

Now let us take a sheaf R € Shvcaig(c)(T) of commutative ring objects. Considering it as an object
of CAlg(Shvc(T)), we can consider the oco-category Modx (Shve(T)) of R-module objects in the symmetric
monoidal oo-category Shvc(T). It is equipped with a symmetric monoidal structure. Moreover, by [Cur?,
Theorem 3.4.4.2], the oco-category Modx(Shve(T)) is presentable, and the tensor product associated to the
symmetric monoidal structure preserves small colimits in each variable. In total, we have
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Proposition 3.2.3. Let C be a symmetric monoidal presentable co-category and T be an oo-topos. For an
R € Shvcag(c)(T), we have a symmetric monoidal presentable co-category

Modzx (Shvc(T))
of R-module objects. We call its object a sheaf of R-modules on T. The associated tensor product
®x : Modx (Shvc(T)) x Modg(Shve(T)) — Modx (Shvc(T))
preserves small colimits in each variable.

3.3. Sheaves of spectra. In this subsection we discuss sheaves of spectra following [[aird]. We will use the
theory of spectra in the oo-categorical setting, which is developed extensively in [[air?]. See also Appendix
Bl where we give a brief summary.

3.3.1. Sheaves of spectra in general setting. Let C be an oo-category admitting finite limits. We denote by
Sp(C)

the oco-category of spectra in C (Definition ETT). Hereafter C is assumed to be presentable (Definition
B=R3). Then the oo-category Sp(C) is stable (Definition DT9) since a presentable co-category admits finite
limits so that Fact [ET4 works. Moreover Sp(C) has a t-structure (Definition '2Z2) by Fact [ET3. Hereafter
we call it the t-structure of Sp(C).

Let T be an oco-topos. We now consider the oo-category

ShVSp(C) (T)

of sheaves on T valued in spectra in C. This co-category inherits properties of Sp(C) mentioned above.

Lemma 3.3.1. Let C be a presentable co-category and T be an co-topos. Then the oo-category Shvsyc)(T)
is stable.

Proof. We follow the argument in [Curd, Remark 1.3]. Since Sp(C) is stable, the co-category Fun(TP, Sp(C))
is also stable by [Lux?, Proposition 1.1.3.1]. Clearly Shvs,c)(T) C Fun(T°P,Sp(C)) is closed under limits
and translation. Then by [Lur2, Lemma 1.1.3.3] we have the conclusion. g

Lemma 3.3.2. Assume C is a presentable oco-category equipped with a functor ¢ : C — 8, which preserves
small limits. Here 8, denotes the co-category of pointed spaces (Definition ET). Then the stable co-category
Shvsy(c)(T) has a t-structure determined by

(ShVSp(C) (T)§07 ShVSp(C) (T)ZO) y
which will be given in Definition BZ33.

Our construction of t-structure is a slight modification of [[Lur7, Proposition 1.7]. For the explanation,
we need some preliminaries.

Let Q> : Sp(C) — C be the functor in Definition ET3. Composition with € : C — 8, and the forgetful
functor 8, — 8 yields Sp(C) — 8., which further induces

g: ShVSp(C) (T) — ShVS (T)

since € preserves limits. Now recall the equivalence Shvg(T) ~ T (Fact [ZX). We also have the truncation
functor 7<¢ : T — 7<T (Definition BZI4). Combining these functors, we have

Definition 3.3.3. (1) We define mq : Shvgy(cy(T) — 7<o T by
70+ Shvgp(c)(T) = Shvs(T) =5 T =% 7 T.
(2) For n € Z, we define 7, : Shvs,cy(T) — 7<0 T by
Ty o ShVSp(C) (T) Q—> Sthp(c)(T) ﬂ——0> TS()T.

Here " is the functor induced by the iterated loop functor Q" : Sp(C) — Sp(C) (Definition [ T4).
We call the image 7, M of M &€ Shvgyc)(T) the n-th homotopy group of M.

Remark. As explained in [Lur?, Remark 1.5], for n > 2, 7, can be regarded as a functor from h Shvgyc)(T)
to the category of abelian group objects in 7<¢T. In fact, 7, can be rewritten as the composition

n—2
Shvsp(c) (T) —— Shvsp(c) (T) — Shvs, (T) =5 T 22 7T,

where we used
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e For an oo-category B, the symbol B, denotes the full sub-oo-category of Fun(Al, B) spanned by
pointed objects (Definition ET).

e The functor Shvs,c)(T) — Shvs, (T) is given by the composition Shvsyc)(T) — Shvsys,)(T) —
Shvg, (T). The first functor is induced by the limit-preserving € : C — 8,. The second one comes
from the description of Sp(8.) as the limit of the tower

Q Q Q
e — 8 — 8, — 8,

e The equivalence Shvg, (T) ~ T, is shown similarly to Shvg(T) ~ T (Fact CX3).

Then the image of 7, is included in the full sub-oo-category EM,,(T<oT) C (7<oT)s« of Eilenberg-MacLane
objects [Lurll, Definition 7.2.2.1]. In the case C = 8, and € = id, then the image of m,, is equal to EM,,(7<oT).
For n > 2, the oco-category EM,,(T<oT) is equivalent to the co-category of abelian group objects by [Lurl,
Proposition 7.2.2.12].

3.3.2. Sheaves of spectra. We now take C = §, and € = id in the argument so far, and consider the oo-
category Sp = Sp(8.) of spectra. See Appendix ET for a summary. Let us mention here that the smash
product gives a symmetric monoidal structure on 8 [Curd, §6.3.2].

By the argument in the previous §82371, we have the oco-category

Sthp(T)
of sheaves of spectra on an oco-topos T. We list its formal properties below.

Lemma 3.3.4. (1) Shvsy(T) is stable and equipped with a t-structure (Shvsy(T)<o,Shvsy(T)>0) given
in Lemma BZ332. Hereafter we call it the t-structure of Shvs,(T).

(2) Shvsy(T) has a symmetric monoidal structure induced by the smash product on Sp. Hereafter we call
it the smash product symmetric monoidal structure. Moreover it is compatible with the ¢-structure
in the sense of Definition D2A.

(3) Shvsy(T) is presentable.

Proof. (1) is discussed in the previous §823l. (3) is stated in [LurH, Remark 1.1.5]. (2) is discussed in [Cur7d,
81] with much length, so let us give a summary. The symmetric monoidal structure on Sp given by the
smash product induces a symmetric monoidal structure on the oo-category Fun(K, Sp) of morphisms for any
simplicial set K by [Cur?, Remark 2.1.3.4]. Then by [Cur8, Proposition 1.15], it further induces a symmetric
monoidal structure on Shvs,(T). Also it is compatible with the ¢-structure by [Lurd, Proposition 1.16]. O

For later use, let us introduce

Definition 3.3.5 ([Lur?, Definition 1.6]). Let T an oo-topos and M &€ Shvs,(T).
(1) M is connective if the homotopy groups 7, M vanish for n € Z.,. We denote by Shvs,(T)>¢ the full
sub-oo-category spanned by connective objects.
(2) M is coconnective if QM is a discrete object, i.e., a O-truncated object (Definition BT). We
denote by Shvs,(T)<o the full sub-co-category spanned by coconnective objects.

3.4. Sheaves of commutative ring spectra and modules. In this subsection we discuss sheaves of
stable A-modules with A a sheaf of commutative ring spectra following [Lur8, §2.1]. As mentioned in the
beginning of this section, these objects can be regarded as oco-theoretic counterparts of complexes of sheaves,
and the corresponding oco-categories are counterparts of derived categories.

3.4.1. Sheaves of commutative ring spectra. Let CAlg(Sp) be the oco-category of commutative ring objects
in Sp regarded as a symmetric monoidal category with respect to smash product monoidal structure. An
object of CAlg is nothing but an E.-ring (Appendix E3), so we call CAlg(Sp) the co-category of B -rings.

Let T be an oco-topos. Since Shvs,(T) is a symmetric monoidal presentable co-category by Lemma B34,
we can apply the arguments in §8271 to C = Shvs,(T). Thus we have the co-category

CAlg(Shvsy(T))

of commutative ring objects. As mentioned in [Cur7, Remark 1.18], since CAlg(Sp) — Sp is conservative
(Definition [3H) and preserves small limits, we have an equivalence

CAlg(Shvs,(T)) =~ Shvcaig(sp) (T).
Thus we may call an object of CAlg(Shvsy(T)) a sheaf of commutative ring spectra on T.
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3.4.2. Sheaves of stable modules over commutative ring spectra. Let us continue to use the symbols in the

previous part. Next we apply the argument in §822 to the symmetric monoidal presentable co-category
C = Shvs,(T).

Definition. Let T be an oo-topos, and R € Shvcajgsp)(T) be a sheaf of commutative ring spectra. We
denote the co-category of R-module objects in Shvsy(T) by
Mod5t*(T) := Mods (Shvs,(T))
and call it the oco-category of stable R-modules on T.
The oco-category Modggab(T) has a symmetric monoidal structure whose tensor product is denoted by
— ®x — : Mod5i®®(T) x Mod$*™(T) — Mod5i*"(T).
We cite some formal properties of Mod$™"(T).
Fact 3.4.1 ([Lur®, Proposition 2.1.3]). Let T be an oo-topos and R € Shvcajg(sp)(T).
(1) The oo-category Mod5i*®(T) is stable.
(2) The co-category Mod:i*"(T) is presentable and the tensor product @ preserves small colimits in
each variable.

(3) The forgetful functor 6 : Mod5*®(T) — Shvs,(T) is conservative (Definition I3H) and preserves
small limits and colimits.

The item (1) is the origin of our naming of stable R-modules.
Let us next recall the natural t-structure on Modit™(T) which is induced by the t-structure on Shvs,(T)
in Lemma BZ32. Recall the oo-categories Shvs,(T)>( and Shvs,(T)<o in Definition BZ33.
Fact 3.4.2 ([CuxR, Proposition 2.1.3]). Let T be an oo-topos and R € Shvcaig(sp)(T). Assume that R is
connective (Definition BZ3H).
(1) The stable oo-category Mod:i®®(T) has a t-structure determined by

Mod5t™ (T)s0 := 071 Shvsy(T)0,  Modi™ (T)<p := 871 Shvs,(T)<o.

Here 6 : Modi™(T) — Shvs,(T) denotes the forgetful functor. We call it the t-structure of
Mod$t* (T) from now.

(2) The t-structure on Modx(T) is accessible, that is, the co-category Modx(T)>¢ is presentable.

(3) The t-structure on Modi*®(T) is compatible with the symmetric monoidal structure. In other
words, the sub-oo-category Modii*”(T)so contains the unit object of Modi*”(T) is stable under
tensor product. B

(4) The t-structure on Mod$i*™(T) is compatible with filtered colimits. In other words, the sub-co-
category Mod$™”(T)<( is stable under filtered colimits.

(5) The t-structure on Modx (T) is right complete (Definition D=2ZH).

For R € Shvcaig(T), the 0-th homotopy myR (Definition B33) is a commutative ring object of Shvg(T) ~ T,
where the equivalence is given by Fact TXR. Let us denote by Mod,,»(Shvg(T)) the co-category of moR-
module objects. Then the equivalence Shvg(T) ~ T induces Mod,x(Shvs(T)) ~ Mod,»(T). If we further
assume R is connected, then the following statement holds. The proof is by definition and omitted.

Lemma 3.4.3 ([Lur8, Remark 2.1.5]). For a connective sheaf R of E.-rings on an co-topos T, we have
Mod5t*®(T)® ~ Mod = (T),
where the left hand side is the heart (Definition D24) of the ¢-structure of Fact B2 (1).
For later use, let us introduce

Notation ([Cur?, Notation 1.1.2.17]). Let C be a stale co-category, and let X,Y € C. We define the abelian
group Ext¢(X,Y) by
Ext¢(X,Y) := Homy, c(X[-n],Y).
where [—n] denotes the shift (Definition DT4) in the stable co-category C. For n = 0, we denote
Homc(X,Y) := Extd(X,Y) = Homy, c(X,Y).
For n € Z>g, we can identify Ext¢(X,Y) ~ w_,, Mapc(X,Y).
Notation. Let T be an oo-topos and R € Shvcajgsp)(T). For M, N € Modﬁgab(T) and n € Z, we denote

Extiy (M, N) := Extyjogean ) (M, N),  Homg (M, N) := Extg (M, N).



26 SHINTAROU YANAGIDA

3.4.3. Functors on stable R-modules. Fix an oo-topos T and take R € Shvcajgsp)(T). In this part we
introduce some functors on the stable co-category of stable R-modules.

Let us begin with internal Hom functor, which will give an oo-theoretical counterpart of the tensor-hom
adjunction. For M € Modit*”(T), the functor

— @ M : Modi™(T) — Mod%*"(T)
is right exact (Definition BTIO) since it preserves small colimits by Fact B2 (2) and we can apply the
criterion of right exactness (Fact BZA (2)). Then by Fact B3 there is a right adjoint of — @ M. We
denote it by
Homg (M, —) : Mod5i™ (T) — Mod5i?>(T).
By a similar argument on the first variable, we obtain a bifunctor
Homz(—,—) : Modit® (T)°P x Mod$*(T) — Mod5i*P(T).

We call it the internal Hom functor.
The internal Hom functor agrees with the morphism object [Lur2, Definition 4.2.1.28]. Then by [Lur2,
Proposition 4.2.1.33] we have

Lemma. For any £, M,N € Modii*"(T), there is a functorial equivalence
Homg (L @x M,N) = Homx (L, Homg(M,N))
which is unique up to contractible ambiguity.

Next we introduce the direct image and inverse image functors. Our presentation basically follows [CurR,
§2.5] but with a slight modification. Let

(f, %) = (T,R) — (T',R)
be a morphism of ringed co-topoi (Definition B22). Thus f : T — T’ is a geometric morphism of oco-topoi
with the associated adjunction f*: T z= T: f., and f*: R — f.R is a morphism in Shvcaigsp) (T’).
Composition with f, : T — T’ gives a symmetric monoidal functor f=! : Shvs,(T’) — Shvs,(T).
Then we can regard f~'®R’ as an object of Shvcaig(sp)(T). Moreover f~! induces a functor Mod$(T') —
MOdStaly/( ). Abusing the symbol, we denote it by

71 Modi® (T) — Mod 75, (T).

Note also that f* and f yield a morphism f~'®R’ — R in Shvcaig, (T) so that we can regard R as an object
in l\/IodStalgzl (T). Thus we have the functor

£ Mo dstab(T ) — Modqmb(T), M — M = fﬁlM/ Qp-13/ R.

Since the inverse image functor f* : Mod5i(T’) — Modit*”(T) preserves colimits, and since the oo-
categories of stable R-modules are presentable (Fact B2 (2)), there is a right adjoint

e : Mod™ (T) — Modii™(T').
It is also described as follows. The composition with f* : T" — T gives a functor Shvs,(T) — Shvs,(T'),
which induces Mod%*"(T) — Mod$%2(T’). Then the morphism f* induces f. : Mod*"(T) — Mod3:"(T").

Notation 3.4.4. We call f* the inverse image functor, and f, the direct image functor.

3.5. Sheaves of commutative rings and modules on co-topoi. This subsection is a complement of
the previous §84. We will give notations for sheaves of commutative rings, sheaves of modules over them,
derived categories and functors between them on co-topoi. These will be essentially the same with those on
ordinary topoi, and we write them down just for the completeness of our presentation.

3.5.1. Sheaves of modules over commutative rings. Let Ab denote the category of additive groups, and
Ab := N(AD) be its nerve. The oco-category Ab has the symmetric monoidal structure. Also we see that Ab
is a presentable co-category. One can show it directly by definition, and also by using the equivalence [[Lurl,
Proposition A.3.7.6] between a presentable co-category and the nerve of the subcategory of fibrant-cofibrant
objects in a combinatorial simplicial model category.

Let T be an oco-topos. We can now apply the argument in §82292 to the symmetric monoidal presentable
oo-category C = Ab. Noting that CAlg(Ab) ~ Com which is the co-category of commutative rings (§21), We
call the co-category

CAlg(Shvap(T)) = Shvcaigab) (T) = Shvcom(T)
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the co-category of sheaves of commutative rings on T.
Taking a sheaf A € Shvcom(T) of commutative rings, we also have the co-category of sheaves of A-modules
on T (Proposition B=Z3). We denote it by

MOdA (T) = MOdA(ShVAb(T)).

Recall that it is a symmetric monoidal presentable oo-category. The associated tensor product is denoted
by ®.,4. We also have the following standard claim.

Proposition 3.5.1. The homotopy category A := hMod4(T) is a Grothendieck abelian category (Definition

Proof. We omit the proof of the claim that A is an abelian category since the argument for ordinary topos
works. The claim that A is a presentable category is a consequence of the presentability of the co-category
Mod 4 (T).

Let us show that the class of monomorphisms is preserved by small filtered colimits Let {f; : A; — B;} be
a filtered diagram of monomorphisms in A. We have the corresponding filtered diagram of fiber sequences

A; ELN B; — B;/A; in Mod4(T). We can take the filtered colimit since Mod 4(T) is presentable so that it has

colimit. The resulting colimit A BB /A is a fiber sequence, so that f is a monomorphism in A. O

Remark. The presentability of A means that there is a small family of generators. We can explicitly
give such generators as follows. Recall from Fact BTH that we have the canonical functor j : Ty — T
for each U € T, and we have the biadjunction j) : T)y == T : j* and j* : T z= T,y : j«. Then, for
A € Shvcag(ab) (T), we have Al := j*A € Shvcagab) (T/r) (Definition 8232, Notation BTH). Then we also
have an adjunction

Jr:Mod y, (Tyr) &= Modx(T) : j*

of oo-categories. Now {jij*A}yeT gives the desired family of generators (note that we tacitly assume that
T is small). In fact, for each M € Mod4(T) the adjunction gives

Mapyiog , () (715" A, M) >~ Mabyoq (1) (A 57"M) = (G M)(U) = M(U).

Now the same argument as §823 gives functors on sheaves of modules over sheaves of commutative rings.
We list them in the following proposition.

Proposition. Let T, T’ be oo-topoi and A, A’ be sheaves of commutative rings on T, T’ respectively. Let
also (f, f¥) : (T,A) — (T',.A’) be a functor of ringed co-topoi.
(1) For M € Mod4(T), the right exact functor
—®aM: MOdA(T) — MOdA(T)
has a right adjoint denoted by
Homa (M, —) : Mod 4(T) — Mod4(T).
It gives rise to a bifunctor

Homa(—,—) : Mod 4 (T)°P x Mod4(T) — Mod4(T)

called the internal Hom functor.
(2) We have the inverse image functor

f*:Modg (T') — Mody(T), M — f*M = 1M ®-14 A.
f
It is right exact, and have a a right adjoint
f* : |V|OdA(T) — MOdA/ (T/)

called the direct image functor.
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3.5.2. Derived oco-categories. For a Grothendieck abelian category A one can construct the derived-co-
category Doy (A), which is an oco-categorical counterpart of the unbounded derived category of A. It is
a stable oco-category equipped with a ¢-structure, which is also an co-categorical counterpart of triangulated
category with a t-structure. See Appendix D32 for an account on Dy (A).

Let T be an oo-topos and A be a sheaf of commutative rings on T. Denote by Mod4(T) the oco-category
of A-modules on T. By Proposition BZ5TI,

Mod (T) := hMod, (T)

is a Grothendieck abelian category, so we can apply to it the construction in Appendix D=3™. Thus we have
the derived co-category of sheaves of A-modules on T

Doo(Mod 4(T)) = Ngg(C(Mod4(T))°).
We collect its properties in

Lemma 3.5.2. The derived oo-category D := D (Mod 4(T)) enjoys the following properties.

(1) D is a stable co-category (Definition D TH).

(2) D is equipped with a t-structure (Definition Z3) determined by (D<¢, D>¢). Here D<g (resp. D>g)
is the full sub-co-category of D spanned by those objects M such that H, (M) = 0 for any n > 0
(resp. n < 0). Hereafter we call it the t-structure on D.

(3) The heart of the t-structure (Definition IZZA) is DY ~ Mod.4 (T).

(4) D is right complete with respect to the t-structure (Definition D273).

(5) D is accessible with respect to the ¢-structure (Definition 28).

Proof. All the claims are explained in Appendix D32 and D=373. O

In particular, the homotopy category h D (Mod4(T)) is a triangulated category with a t-structure. It
can be regarded as the unbounded derived category of the abelian category Mod 4(T) as mentioned before.

Since a Grothendieck abelian category has enough injective objects, we also have the left bounded derived
oo-category (Definition [DZ34)

DL (Mod(T)) = Nag (C* (Mod.a (T)iny))-
It is stable and equipped with a t-structure. Moreover, by Fact [IE38, we have a fully faithful t-exact functor
(Definition D=39)
D3 (Moda(T)) — Doo(Moda(T))
whose essential image is Upez Doo(Mod .4 (T)) <.
Recall that we have the stable oco-category Modﬁab(T) of stable A-modules by taking R := A in the

argument of §8AA. It is equipped with a right complete t-structure. Thus we also have a fully faithful
t-exact functor

D (Mod4 (T)) — ModSi*(T)

whose essential image is U, ez Mod5i*®(T)<,,. Since Do (Mod 4 (T)) and Mod5*"(T) are both right complete,
we have

Proposition 3.5.3. The fully faithful t-exact functor Duo(Mod4(T)) < Mod5i*(T) yields an equivalence
of oco-categories

Doo (Mod4 (T)) =~ ModS*P(T).

In other words, the co-category of A-module spectra can be identified with the derived oco-category of the
abelian category of (discrete) A-modules.

Remark. As noted in [Eur?, Remark 7.1.1.16], this statement holds for a discrete ring spectra R.

3.5.3. Derived functors. We continue to use the symbols in the previous part. We now discuss functors on
Doo(Moda (T)).

Let T, T’ be co-topoi, let A, A’ be sheaves of commutative rings on T, T respectively, and (f, f#) : (T, A) —
(T, A’) be a functor of ringed co-topoi. Then we have seen in §8751 that there are the tensor functor ®, and
the internal Hom functor J#Zomp on each of the co-categories Mod4(T) and Mod 4/ (T'). We also have the
adjunction f* : Mod4(T) = Mod4/(T’) : f. of the inverse image functor f* and the direct image functor
f«. They are the ordinary functors on the category of sheaves of A-modules.
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On the other hand, by §8233, we have functors ® 4, #om 4, f.« and f* on the co-categories Modi\tab(T)
and Mod$™"(T’) of stable A-modules. With the view of the fully faithful ¢-exact functor

Mod4 (T) =~ Deo(Mod 4 (T))® «— Doo(Mod 4 (T)) ~ Mod5*>(T)
(Proposition BZ53), the functors on stable A-modules are the extensions of those on A-modules, and corre-
spond to the derived functors in the ordinary categorical setting.

Hereafter we change the symbols of the functors on the stable modules by the standard derived functors,
as collected in the following proposition.

Proposition 3.5.4. Let T, T’ be co-topoi, let A, A’ be sheaves of commutative rings on T, T’ respectively,
and (f, f1): (T, A) = (T’,A") be a functor of ringed co-topoi.
(1) The tensor product functor ® 4 : Mod 4(T) x Mod4(T) — Mod4(T) is a right exact functor in each
variable, and has a left t-exact extension

@Y% : Doo(Mod 4 (T)) X Do (Mod4(T)) — Duo(Mod4(T)).

(2) Let M € Mod4(T). Then the internal Hom functor #om4(M, —) : Moda(T) — Mod4(T) is left
exact, and has a right t-exact extension J#om .4 (M, —) : Do (Mod 4(T)) = Doo(Mod4(T)). It yields
a bifunctor

Homa(—,—) : Deo(Mod 4(T))°P X Doo(Mod 4(T)) — Doo(Mod 4 (T)).

We denote it by J#omp__ (mod, (1)) if we want to distinguish it from H#om 4 on Mod4(T).
(3) The direct image functor f. : Mod4(T) — Moda(T’) is left exact and has a right t-exact extension

f+: Doo(Mod4(T)) — Do (Mod4 (T')).
(4) The inverse image functor f* : Mod 4 (T’') — Mod 4(T) is right exact and has a left t-exact extension
f* i Doo(Mod 4 (T")) — Deo(Mod 4 (T)).

Remark. Taking the homotopy categories, we recover the derived functors on unbounded derived categories
n [KS, §14.4).

We also introduce

Notation 3.5.5. Let T and A be the same as Proposition B5d. For M, N € D, (Mod4(T)) and n € Z, we
set
Ext ) (M, N) = 7o Homp,_ (Mod (1)) (M[—7], N) € Mod4(T).

3.6. Open and closed geometric immersions. In this subsection we introduce the notions of open and
closed geometric immersions in an co-topos. As for closed geometric immersion, our presentation is just a
citation from [Curll, §7.3].

Hereafter we fix an oo-topos T.

3.6.1. Open geometric immersion. Let 11 € T be a final object (Corollary [CZH).

Definition 3.6.1. Denote by Sub(1y) the set of equivalence classes of monomorphisms U — 11 in T. We
regard Sub(1t) as a poset under inclusion.

Note that Sub(1t) can be identified with the set of equivalence classes of (—1)-truncated objects in T.
Also, the poset Sub(1t) is independent of the choice of 11 up to canonical isomorphism by Fact I-39.

Recall that any over-oo-category T,c of C' € T is an oo-topos (Fact IXH). Thus for U € Sub(17) we can
define an oo-topos T,y by T/ := T,ys, where U’ € T is a representative of U. A different choice of U’ will
cause an equivalent co-topos.

Let us also recall the biadjunction (ji, j*, j.) in Fact BT associated to an object U € T. Here j, : T)yy — T
is the canonical functor of the over-oo-category T,y (Corollary BZ32), and we have a pair of geometric
morphisms of co-topoi

T e=T:5% 5 :Te=T:j.

Now we introduce the notion of an open geometric immersion.

Definition 3.6.2. A geometric morphism f : U — T corresponding to the adjunction f* : T2 T’ : f, of co-

topoi is an open geometric immersion if there exists U € Sub(1t) such that the composition U ELNS JEAR Tu
is an equivalence of co-categories. We denote an open geometric immersion typically by f: U < T.

Following [SGA4] we name the functors appearing in the above argument as
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Definition 3.6.3. For an open geometric immersion j : T/ < T with U € Sub(17), the functor ji : T/);y — T
is called the extension by empty, and j* : T — T,y is called the restriction functor.

Proposition 9.2.4].

Lemma 3.6.4. Let j : U< T be an open geometric immersion.
(1) The functors ji and j,. are fully faithful (Definition I=34).
(2) The counit transformation j5* — idt (Definition BZa33) is a monomorphism of functors.
(3) We have a monomorphism j, < j, of functors.

Proof. (1) Replace U by T,y with U € Sub(17), and denote by i : U — 17 the corresponding monomor-
phism. Then by Corollary BZ32 on over-oo-categories and by Fact BX9@ on monomorphisms, we
have a commutative diagram

T/ — T/,

|

T T
/v Ji
with p fully faithful. By Fact 33 on final objects, we see that ¢ is a trivial fibration of simplicial
sets with respect to Kan model structure (Fact BTT2). Then we can see that j is fully faithful.
As for j,, the result follows from biadjunction of (ji,5*, j«).
(2) For any X € T, the object 55 (X) sits in the pullback square

Ji (X)) =X

|

U%IT

Then since 7 is (—1)-truncated we deduce that ¢ is (—1) by [Carl, Remark 5.5.6.12].
(3) Since j, is fully faithful if and only if the unit transformation idy — j*j is an equivalence, the
statement follows from (1) and (2).
]

Next we give an analogue of [SGA4, XVII, Lemma 5.1.2] in the ordinary topos theory.

Let f : T" — T be a geometric morphism corresponding to the adjunction f* : T = T’ : f,, and
j:U=T;y — T be an open geometric immersion with U € Suby,. Note that f*(11) = 17 since f* is left
exact so that it commutes with limits. Thus U’ := f*(U) belongs to Sub(17), Then, setting U’ := T,y and
denoting by j’ : U’ < T’ the natural open geometric immersion, we have a square

(3.6.1) u—2sy

in RTop.
Let us give the geometric morphism g = (¢g* : U & U’ : g,) explicitly. Using the associated adjunction

ji: U= T:j* to the geometric morphism j and j* : T" =2 U’ : 5 to 5/, we set g* := (U EiNS JEARS (EAIR U’).

Since g* is a composition of left exact functors, it is also left exact. Similarly we set g, := (U’ LA JELN

T U), which is right exact. The commutativity of the square holds by definition, and the adjunction

property of (¢g*, g.) is obvious.
We call U the inverse image of U" in T.

Lemma 3.6.5. Let f : T" — T be a geometric morphism of oo-topoi, and U < T be an open geometric
immersion. Under the notation in the square (B61) there exists an equivalence f*j; —» Jjig* making the
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following square commutative up to homotopy.

[ e —= 09
Here « is the base change morphism (Definition CZ2) associated to the square (BT).

Proof. By definition of g* and Lemma BTG4 there is an equivalence j{g* = f*j1. The commutativity can be
checked by restricting to U, but it is trivial. (]

3.6.2. Closed geometric immersion. Next we turn to closed geometric immersions. We begin with

Definition. Let U € T.
(1) An object X € T is trivial on U if for any morphism U’ — U in T the mapping space Map+(U’, X) €
H is contractible.
(2) We denote by T/U C T the full sub-oo-category spanned by trivial objects on U.

Let U € Sub(1lt). We define a full sub-co-category T/U C T by T/U := T/U’, where U’ € T is a
representative of U. See [[Lurl, Lemma 7.3.2.5] for the independence of the choice of U’ in this definition.
Now we have

Fact ([Carl, Proposition 7.3.2.3, Lemma 7.3.2.4]). For U € Sub(17), the co-category T/U is a localization
of T and is an co-topos.

Thus there is a functor T — T/U and the following definition makes sense.

Definition 3.6.6 ([Curl, Definition 7.3.2.6]). A geometric morphism f = (f* : T & T’ : f.) of co-topoi
is a closed geometric immersion if there exists U € Sub(1t) such that f. : T" — T induces an equivalence
T’ — T/U of co-categories.

Let us remark that in [Eurdl] it is just called a closed immersion.

3.7. Simplicial co-topoi and descent theorem. In this subsection we will give an oco-analogue of the
theory of cohomological descent in [SGA4, VP] [O1, §2]. Our discussion will utilize the co-category RTop of
oo-topoi and geometric morphisms (Definition B13). Let us remark that the statements in this subsection
are much more general statements than what we need in the later sections.

3.7.1. K-injective resolutions. We begin with a restatement of [Sp, §3] in the context of ringed co-topoi.

Let (T, A) be a ringed oco-topos with A a sheaf of commutative rings as in §83. Let us denote by
Mod 4 (T) := hMod4(T) the homotopy category of the co-category of sheaves of A-modules. Recall that
Mod 4(T) is a Grothendieck abelian category. In this part we denote the unbounded derived oco-category of
sheaves of A-modules by

Doo(T, A) := Do (Mod 4(T)).
Recall that D (T, A) is stable and equipped with a t-structure whose heart is equivalent to Mod4(T). We
also denote by
Do (T, A) := Upez Do (T, A)>_p, C Doo(T, A)

the sub-oo-category of right bounded objects. Then by [Sp, 3.6] we have

Lemma 3.7.1. For any M € D (T, A), there exists a morphism f : M — J in Do (T,A) satisfying the
following conditions.
e J= ligljn with J,, € D_(T,A) and 7,7, injective for all n € N, j € Z.
e f is induced by a compatible collection of equivalences f, : 7>_, M — J,,.
e For each n, the morphism J,, — J,,_; is an epimorphism whose kernel K, belongs to D__ (T, A) and
m; Ky, are injective for any j € Z.

We now restate [Sp, 3.13 Proposition] and [LOT, 2.1.4 Proposition]. For stating that, let us recall that for
an oo-site (X, 7) we denote by Sh(X,7) the co-category of 7-sheaves on X, which is an co-topos (Definition

CT132, Fact [C7A).

Lemma 3.7.2. Let B C Mod4(T) a full sub-co-category. Assume the following conditions for (T,A) and B.
(S0) T is equivalent to an co-topos of the form Sh(X,7) with some oo-site (X, 7).
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(S1) Foreach U € X, there exists a covering {U; — U};es and an integer ng such that we have 7_,, M\Uj =
0 for any M € B, n > ng and j € J. Here M|Uj denotes the restriction (Notation B10).

Let M € Do (T, A) satisfy ;M € B for all j. Then the morphism f : M — J in Lemma BZZ1 is an equivalence
in Doo(T, A).

Remark. We can weaken the condition (S0) by the one that T is hypercomplete, but will not pursue this
point.

3.7.2. Simplicial co-topoi. We give some notations for simplicial co-topoi. The symbols are borrowed from
[COT, 2.1]. Let us begin with the following citation.

Definition ([Curl, Definition 6.3.1.6]). A map p : X — S of simplicial sets is a topos fibration if the following
three conditions are satisfied.

(1) The map p is both a cartesian fibration and a cocartesian fibration (Definition B75).
(2) For every vertex s of S, the corresponding fiber X; = X xg {s} is an oco-topos.
(3) For every edge e : s — sg in S, the associated functor X; — X, is left exact.

Recall the co-category RTop of co-topoi and geometric morphisms (Definition B13). By [Curll, Theorem
6.3.3.1], RTop admits small filtered limits. Let us explain some relevant notions in the proof of loc. cit. for
later use.

Let | be a small filtered co-category and ¢ : I°° — RTop be any functor of co-categories. Then by [Lurll,
Proposition 6.3.1.7], there is a topos fibration p : X — I°P classified by ¢ (see [Curl, Definition 3.3.2.2] for
the definition of a classifying functor of cartesian fibration).

By [Cuarll, Proposition 5.3.1.18], for any filtered oo-category |, we have a filtered poset A and a cofinal
map N(A) — | of simplicial sets. Here A is regarded as a category in which the set of morphisms is given by

<b
Hom 4 (a,b) := x} asb,
0 a £ b.
See also [Curll, Definition 4.1.1.1] for the definition of a cofinal map of simplicial sets. Thus, as for the

functor ¢ : 1°° — RTop, we can replace | by N(A).

Now let us given a functor ¢ : N(A)°® — RTop and p : X — N(A)°P be a topos fibration classified by
g. Then by [Enxdl, Proposition 6.3.3.3] the simplicial subset X C Map(N(A)°P, X) of cartesian sections of
p: X — N(A)°P is an oo-topos. Moreover by [Curll, Proposition 6.3.3.5] we find that for each a € A the
evaluation X — X, gives a geometric morphism of co-topoi. Thus X gives a filtered limit of ¢ : N(A)°? —
RTop.

Definition. Let | be a filtered co-category. An |-simplicial co-topos is a topos fibration p : T4 — 1°P which
is classified by a functor ¢ : I°P — RTop of co-categories. We will often denote T, to indicate an |-simplicial
oco-topos.

Let T, be an I-simplicial co-topos. For each § : i — j in |, we denote the corresponding geometric morphism
of co-topoi by the same symbol § : T; — T;, and denote the associated adjunction by 6= : T, = T, : ..
Note that our convention is the opposite of [LOT, 2.1].

By the above argument T, is equipped with a geometric morphism e; : T; — T4 of co-topoi for each i € |
corresponding to an adjunction e; ' : Te 2 T; : € ..

Let us explain examples of |-simplicial oco-topoi which will be used in the later text. Recall first that A
denotes the co-category of combinatorial simplices (Definition II), and that a contravariant functor of
ordinary categories from A is called a simplicial object (§ID).

Definition 3.7.3. (1) We denote by A® C A the subcategory with the same objects but morphisms
only the injective maps. A contravariant functor from A" is called a strictly simplicial object.
(2) A simplicial co-topos is defined to be a A-simplicial co-topos. A strictly simplicial co-topos is defined
to be a A% -simplicial co-topos.
(3) For a simplicial co-topos T,, we denote by TS5 the strictly simplicial co-topos obtained by restriction
to A" C A.

Remark. In the papers [0, LOT, LO2], the symbol A7 is used for our A", In [Lurl, Notation 6.5.3.6],
the symbol Aj is used and a contravariant functor from A, is called a semisimplicial object. We will not
use these notations.

Another example of an |-simplicial topos is
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Definition 3.7.4. Let N = {0,1,2....} be the set of non-negative integers, regarded as a filtered poset
with the standard order. For an oo-topos T, we denote by TV the N(N)-simplicial co-topos associated to the
constant functor ¢ : N(N) — RTop, g(n) := T. We call it the oco-topos of projective systems in T.

3.7.3. Simplicial ringed oo-topoi. We will introduce notations for simplicial ringed co-topoi. For that, let
us first consider a sheaf on a simplicial co-topoi. Let | be a filtered co-category and T, be an |-simplicial
oo-topos. Then a sheaf F, with values in an co-category C on T, consists of sheaves F; € Shvc(T,) for i € |
and morphisms 5_13"j — F; in Shvc(T;) for 6 : 4 — jin |

As in the ordinary topos theory, we introduce

Definition 3.7.5. A functor f : (T,A) — (T’,A’) of ringed oo-topoi is flat if the inverse image functor
f*:Modg/(T') — Mod 4 (T) is left and right exact.

Now we have

Definition. Let | be a filtered co-category. An |-simplicial ringed oo-topos is a pair (T,,.As) of an I-simplicial
oo-topos T, and a sheaf A, € Shvcajg(c)(Te) such that the functor 6 : (T;,A;) — (T, A;) of ringed oo-topoi
is flat for each 6 : ¢ — j in I.

As in the non-ringed case, we have a geometric morphism e; : (T;,A;) — (Te,As) of co-topoi for each
i € |, which corresponds to an adjunction e; * : (Tq, As) 2 (Ti,A;) ¢ €.

Under these preliminaries let us explain the results in [COT, 2.1]. Let | be a filtered oco-category and
(Te, As) be an I-simplicial ringed co-topos. We assume that A, is a sheaf of commutative rings. Then the
homotopy category Mod, (Ts) := hMod4, (Ts) is a Grothendieck abelian category. Thus the following
definition makes sense.

Notation 3.7.6. We denote the associated derived oo-category by
Doo(To,-A-) = DOO(MOdﬂ. (T'))

Let also Be be a full sub-oco-category of Mod 4, (T,), and for each i € | let B; be the essential image of B,
under the geometric morphism e; : (T;,A;) — (T, As).
Now Lemma B2 and the argument [COT, 2.1.9 Proposition] yield

Lemma 3.7.7. Assume the following condition on (T,,A,) and B,.
(S2) For each i € |, the ringed oco-topos (T;, A;) and the co-category B; satisfy the assumptions (S0) and
(S1) in Lemma B=2
Then for each M € Do (T, As) there exists a morphism M — J in Do (T,, A ) satisfying the conditions in
Lemma BZZ. If moreover m;M € B, for any j € Z, then f is an equivalence.

3.7.4. Descent lemma. In this part we review the result in [LOT, 2.2].

Let (S, B) be a ringed oo-topos with B a sheaf of commutative rings, i.e., B € Shvcom(ap) (S). As in §877T,
we denote the derived oo-category of sheaves of stable B-modules on S by Do (S, B) := Doo (Modg (S)) with
Modz(S) := hModg(S). We always consider the ¢-structure on Do (S, B) explained in Lemma B532. In
particular we have Do (S, B)Y =~ Mods (S).

Let B’ C Modg(S) be a sub-oo-category such that the homotopy category h B’ is a Serre subcategory of
the abelian category Modg(S). In other words, h B is closed under kernels, cokernels and extensions. We
denote by

Do, (S, B) C Doo(S, B)
the full sub-oo-category spanned by those M such that all the homotopy groups m;M belongs to B’.

Next let (T,,As) be a simplicial and strictly simplicial ringed oo-topoi respectively (Definition B73) with
A; a sheaf of commutative rings for each i € I (I = N(A) or | = N(A®™)). Let € : (To,As) — (S,B) be a
functor of ringed oco-topoi such that ¢; : (T;,A;) = (S, B) is flat (Definition BZ7H) for each i € I.

Let B, be the image of B’ under the functor €* : Do (S, B)Y — Doo(Te, As)".

Now the argument in [LOT, 2.2.2 Lemma, 2.2.3 Theorem] gives

Proposition 3.7.8. Assume the following conditions.
(S3) (Ta,Ae) and B, satisfy the condition (S2) in Lemma B=Z~2.
(S4) The (restricted) morphism €* : B’ — B, is an equivalence.
Then the homotopy category h B, is a Serre subcategory of h Dy (Ts,As)", and €* induces an equivalence
€ Doo’rB(S) — Dm’g.(T.)

of stable co-categories. The quasi-inverse is induced by the right adjoint ..
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3.7.5. Gluing lemma. In this part we recall the result in [LOT, 2.3].

Let A‘jfr be the category of possibly empty finite ordered sets with injective order preserving maps. Thus
the objects of AS" are [n] = {0,1,...,n} (n € N) and (. Hereafter we denote [—1] := (). We can regard A>"
(Definition B773) as a full subcategory of A%

Let T be an oco-topos and U™ — (1 be a strictly simplicial hypercovering of the initial object (1 of T
(Corollary I=X). We denote the localized oco-topos Ty, on U, (Fact IXW) by the same symbol U, for
n € N. We also denote U_; := (. Thus we have a strictly simplicial co-topos US'" with an augmentation
7 USY™ — T.

Let A be a sheaf of commutative rings on T. We denote the induced sheaf on US'" by the same symbol A.
Then 7 induces a functor (U™, A) — (T,.A) of ringed co-topoi, which will be denoted by the same symbol
.

We now consider the cartesian and cocartesian fibration over Aitr whose fiber is given by Mod 4 (U,,). Let
C, be a full sub-oo-category of this fibration such that h C, is a Serre subcategory of the abelian category
h Mod 4 (U,,) for each n.

We impose on T, U and A the following conditions.

(G1) For any [n] € A%, the oo-topos U, is equivalent to Sh(X,,7) with some oo-site (X,,,7) where for
each V € X,, there exists nyg € Z and a covering sieve {VJ — V}je 7 such that for any M € C,, we
have H?(V;, M) = 0 for any ¢ > ny.

(G2) The functor C_; — {cartesian sections of C3" — A®"} is an equivalence, where C§'' := Co|pun
(Definition BZZ3).

(G3) Doo(T,A) is compactly generated.

Fact 3.7.9 (|[COT, 2.3.3 Theorem]). Let T, U™ and A be as above and assume the conditions (G1)—(G3).
Consider the cartesian and cocartesian fibration Dy — A®" whose fiber over [n] € A™ is Dy ¢, (Un, A).
Let [n] = X,, € Doo.c, (Un,A) be a cartesian section of this fibration Dy — A such that &ty (Ko, Ko) = 0
for any ¢ € Z.o. Then (X,)nen determines an object K € Dooc_,(T,A) such that the natural functor
Doo,c_, (T, A) — {cartesian sections of the fibration Dy — A5} recovers (X, )nen. Moreover K is deter-
mined up to contractible ambiguity.

We will not repeat the proof, but record one useful lemma. It is used in [COT] to show the uniqueness of
the object X in the above Fact BZd.

Lemma 3.7.10 ([COT, 2.3.4. Lemma]). Let T and A be as above. Also let M and N be objects in Doo (T, A)
satisfying é"xtfq (M,N) = 0 for every i < 0. For U € T, we denote the oo-topos T,y by the same symbol U.
Then the correspondence

U — Mapp__ (y,4)(Mv, Lv)

for each U € T determines a unique object of Mod4(T).

4. DERIVED ALGEBRAIC SPACES AND ETALE SHEAVES

In this section we introduce derived algebraic spaces, which are derived analogue of algebraic spaces, and
étale sheaves on them. These will be used to define the lisse-étale sheaves on derived stacks in §8.

Let us explain a little bit more the motivation for introducing derived algebraic spaces. Our definition of
the lisse-étale oo-site for a derived stack will be a direct analogue of the lisse-étale site for an algebraic stack
(see §A=3 for a brief recollection). In the non-derived case, one can describe every object on the lisse-étale
site of an algebraic stack X in terms of an object on the big étale site of the simplicial algebraic space X,
making out of a smooth étale covering U — X, as explained in [01, 02]. Thus it will be useful for the study
of the lisse-étale oco-site to introduce a derived analogue of algebraic spaces.

In this section we work over a fixed base commutative ring k unless otherwise stated. We suppress the
notation of k unless confusion would arise. For example, dSt means dSty.

4.1. Derived algebraic spaces.

4.1.1. Geometric derived stacks as quotients. We begin with the citation from [I'Ve2, §1.3.4] on a charac-
terization of a geometric derived stack as a quotient of Segal groupoid. Our presentation is a translation of
the model-theoretic statements in loc. cit. to the co-theoretic language.

Recall the category A of combinatorial simplices (Definition ITTT), and let X, : A°® — C be a simplicial
object in an oco-category C. For n € Z~g and i =0,1,...,n — 1, we define a morphism

UiIXnHXl
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in C to be the pullback by the order-preserving map [1] — [n] given by 0 — i and 1 — i+ 1. We denote
the face map (§) of X, by

dj X, — X,

forn € Nand j =0,...,n — 1. It is defined to be the pullback by the order-preserving map [n — 1] — [n]
with i — i fori < jandi— i+ 1fori>j.

Definition 4.1.1. A Segal groupoid object in an oo-category C is a simplicial object X, : A°? — C satisfying
the following two conditions.
e For any n € Z~g, the following morphism is an equivalence in C.

n—1

H o+ Xy > X1 Xdo,Xo,do X1 Xdo,Xo,do " * X do,Xo,do X1 -
=0

n-times

e The morphism dy X dy : Xo = X1 Xg,,x,,do X1 1S an equivalence in C.

Definition. For n € Z>_;, a Segal groupoid object X, in dSt; is n-smooth if it satisfies the following two
conditions.

e The derived stacks Xy and X; are (small) coproduct of n-geometric derived stacks.

e The morphism dy : X1 — Xy of derived stacks is n-smooth in the sense of Definition ZZ2714.

Fact 4.1.2 ([TVe2, Proposition 1.3.4.2]). For a derived stack X and n € N, the following two conditions are
equivalent.
(i) X is n-geometric.
(ii) There exists an (n — 1)-smooth Segal groupoid object X, in dSty such that Xy is a coproduct of
affine derived schemes and X ~ lig[m]GA X, in dStg.

Notation. If one of the conditions in Fact BEI2 is satisfied, then we say X is the quotient stack of the
(n — 1)-smooth Segal groupoid Xs.

Note that the expression 1i_n>”1[n]6 A X in (ii) makes sense, for dSty is an oo-topos (Fact 2229) so that it
admits small limits and colimits (Corollary I"84).
Remark 4.1.3. Let us explain the indication (i) = (ii), i.e., a construction of a Segal groupoid object X,

from a given n-geometric derived stack X. Let {V;};cr be an n-atlas of X. Then we put Xo := [[,.; Vi, and
let p: X9 — X be the natural effective epimorphism of derived stacks. For n > 1, we set

iel

X = Xo Xp,2,p Xo Xp,x,p = Xp,2,p Xo -

n-times

4.1.2. Derived algebraic spaces. Recall Fact EZIT1 which characterizes schemes and algebraic spaces among
higher Artin stacks. Considering its simple analogue, we introduce

Definition 4.1.4. (1) A derived scheme X (over k) is derived stack having an n-atlas {U;}ier with
some n € Zx_; such that each morphism U; — X is a monomorphism in dSt (Definition EZ2711).
We denote by dSch C dSt the sub-oo-category spanned by derived schemes.
(2) A derived algebraic space U (over k) is a derived stack satisfying the following conditions.
o There exists an n-atlas {V;}ier of U for some n € Z>_; such that each morphism V; — U of
derived stacks is étale.
e The diagonal morphism U — U x U is a monomorphism in dSt.
We denote by dAS C dSt the sub-oco-category spanned by derived algebraic spaces.

We have the sequence dAff C dSch C dAS C dSt of co-categories. Moreover we have an analogous result
to Fact ZZ1T9.

Proposition. A derived algebraic space is 1-geometric. In particular, a derived scheme is 1-geometric.

Proof. Let U be a derived algebraic space and take an n-atlas {V;};c;. By Remark P23 (2), we see that U
is n-geometric. By Fact 12 and Remark BT3, we may assume that U is a quotient stack of (n — 1)-smooth

Segal groupoid U, with Uy := Hiel V; and Uy := Uy Xy Up. Then the morphism dy x dy : Uy — Uy x Up is a
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monomorphism, where we denoted by dy,d; : Uy — Uy the structure morphisms in U,. In fact, the diagram

do)(dl
U1 E—— U() X Uo

.

UTUXU

is a cartesian square in the co-category dSt (Definition B-ZH). Since the diagonal morphism Ay is assumed
to be a monomorphism, the morphism dy x d; is also a monomorphism as claimed above. We can also check
that {V;}ier is an n-atlas of Uy with each V; — U étale. Thus U; is a derived algebraic stack. Now note
that U; is an (n — 1)-geometric derived stack since U, is an (n — 1)-smooth Segal groupoid. Thus U; is an
(n — 1)-geometric derived algebraic space, A similar argument shows that Up is also an (n — 1)-geometric
derived algebraic spaces. Moreover, as Uy being a coproduct of affine derived schemes, it is 0-geometric by
Lemma EZZT8. Then from U; C Uy x Uy, we see that U; is also 0-geometric. Thus U, is a 0-smooth Segal
groupoid, so that the quotient stack U of U, is 1-geometric. (]

Thus the following definition makes sense.
Definition. A morphism f : U — V in dAS is smooth if it is 1-smooth in the sense of Definition EZXT4.

Remark 4.1.5. Recall the fully faithful functor Dex : St — dSt (Definition EZ227). The image of an
algebraic space under Dex is obviously a derived algebraic space, and restricting Dex to AS C St we have a
fully faithful functor

Dex : AS — dAS.
Similarly, the image of a scheme under Dex is a derived scheme. Thus we have the following diagram
(compare with Remark 2TTT9).

AffC Sch¢ ASC Stgeorn
Dex

dAffC dSch¢ dASC dStgeom

4.2. Etale co-site on a derived algebraic space.

4.2.1. oo-sites and co-topoi. Here we give some complementary explanation on oo-topoi arising from oco-sites.
We will give a construction of geometric morphisms of co-sites from a continuous functor of co-sites.

Definition 4.2.1. A continuous functor f: (C',7") — (C, 1) of co-sites is a functor C' — C of co-categories
satisfying the following two conditions.
e Forevery X’ € C' and {X] — X'}ier € Covyr(X'), the family {f(X]) — f(X')}ierisin Cov,(f(X)).
e f commutes with finite limits (if they exist).

Restating the argument in [02, §2.2], we have

Proposition 4.2.2 ([0, Proposition 2.2.26, 2.2.31]). Let f: (C',7’) — (C,7) be a functor of co-sites.
(1) The composition with f induces a functor f, : Sh(C,7) — Sh(C’,7") of co-topoi.
(2) If f is continuous, then f, has a left adjoint f* : Sh(C’,7") — Sh(C, 7).
(3) If C and C' admit finite limits and if f is continuous and commutes with finite limits, then f*

is left exact and the adjunction f* : Sh(C’',7’) = Sh(C,7) : f. determines a geometric morphism
Sh(C,7) — Sh(C', 7).

We followed Remark B2 on the notation of geometric morphisms.

Proof. These statements are essentially shown in [02, §2.2], but let us explain an outline of the proof. The
proof of (1) is standard, so we omit it.

Let us explain the construction of f* in (2). Given a sheaf § € Sh(C’,7’), we want to construct f*G €
Sh(C,7). For an object U € C, we denote by Iy the full sub-co-category of the under-oo-category Cyy
spanned by the essential image of the functor f. An object of Iy can be regarded as a pair (V,v) where
Vel andv:U — f(V) is a morphism in C. Now we define F € PSh(C) by F(U) := h—H)l(V,V)EIU G(V). It is
immediate that F is well-defined, and we define the sheaf f*§ to be the sheafification of F.

As for the item (3), since the localization functor in a topological localization is left exact [Euxll, Corollary
6.1.2.6], the sheafification functor is left exact by Fact [ZZ4. Then the construction implies that f* is left
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exact. By the same argument in the proof of [(02, Proposition 2.2.31], we have a counit transformation
f«f« — id (Definition B53). Considering the evaluation at the object (V,idf)) of Iy(V) for any V' €
Sh(C’,7"), we obtain the inverse of the counit transformation. Thus we have the desired adjunction f* :
Sh(C’',7") 2 Sh(C, 1) : f.. O

4.2.2. Etale co-site. Here we introduce an oo-theoretical analogue of étale topoi of schemes. We continue to
work over a commutative ring k.

Definition 4.2.3. Let U be a derived algebraic space.
(1) The (small) étale co-site of U is the oco-site Et(U) := (dAS{, et) consisting of

e The full sub-co-category dASﬂB of the over-oo-category dAS, spanned by étale morphisms
T — U of derived stacks (Definition EZ272T).

e The Grothendieck topology et, called the (small) étale topology, on dASS{ whose set Cove (T) of
covering sieves of T € dASS[ consists of families {T; — T}ies with [;c; 7: — T an epimorphism
of derived stacks (Definition ZZ271T).

(2) We denote the associated oco-topos (Fact IZ74) by Ue, := Sh(Et(U)) and call it the (small) étale
oo-topos on U.

The following statement is an analogue of the one in the étale topology of a scheme (see [0Z, Example
2.2.10] for example). The proof is quite similar, and we omit it.

Lemma 4.2.4. For a derived algebraic space U, let Et™ (U) := (dAfFSF, et®®) be the oo-site consisting of
e The full sub-oco-category dAff5 of the over-co-category dAff;y of affine derived schemes over U
spanned by étale morphisms of derived stacks.
e The Grothendieck topology et where a covering sieve is set to be a covering sieve in et (Definition

Then the associated oco-topos Ugart is equivalent to Uet.

The étale co-topos on a derived algebraic space is functorial in the following sense. Let f: U — V be a
morphism of derived algebraic spaces. Taking fiber products, we have the following continuous functor of
oo-sites (Definition B—27T).

1 E(Y) — Bt(W), V' —V xy U
Composition with f~! gives the following functor of co-topoi.

U — Vers (V) = TV,
Applying Proposition B222 to the present situation, we have

Lemma 4.2.5. The functor f : Ue, — Ve has a left exact left adjoint fo 1 Thus we have a geometric

*

morphism : Uet — Vet of co-topoi (Definition B-I) corresponding to the adjunction
1% et et et 1% p g )
f(;tl . Vet <:> uet . f:t.

Let us now introduce some basic notions on derived algebraic spaces. These are simple analogue of the
corresponding notions in the scheme theory. For our definitions, morphisms of schemes and algebraic spaces
will be replaced by geometric morphisms of the étale co-topoi on derived algebraic spaces. In this part, U
and V denote derived algebraic spaces over k, and f : U — V denotes a morphism between them.

We begin with the definition of open immersions by applying the discussion in BE for the summary. Our
definition is an analogue of [Lur7, Definition 9.5].

Definition 4.2.6. f: U — V is an open immersion if the geometric morphism for : Uy — Vey of the étale
oo-topoi is an open geometric immersion (Definition B52).

Let us spell out this definition differently. For an oco-topos T, we denote by Sub(11) the set of equivalence
classes of (—1)-truncated objects in T (Definition B5). Applying this notation to the étale co-topos T = Uet,
each U € Sub(1y,) is represented by an étale morphism jy : U" — U of derived algebraic spaces where U’
is an affine derived scheme.

Then we have that f : U — V is an open immersion if there is a V' € Sub(1y_, ) represented by an étale

morphism jy : V' — V such that f is equivalent to the composition U f—l> V 2% V with f/ an equivalence
of derived algebraic spaces.

Next we introduce closed immersions by adapting the general notion in [Farl, §7.2.3]. See B@ for the
summary. Let us also refer [Lurd, §4] for the relevant discussion in the spectral algebraic geometry.
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Definition. f: U — Vis a closed immersion if the geometric morphism fe; : Uy — Vet of the étale co-topoi
is a closed geometric immersion (Definition B6H).

Following [Curd, Definition 1.4.11], we introduce

Definition 4.2.7. (1) f: U —=Vis strictly separated if the diagonal morphism U — U xsy f U is a
closed immersion.
(2) U is separated if the structure morphism U — dSpec k is strictly separated.

We now introduce quasi-compact derived algebraic spaces. Recall the notion of quasi-compact oco-topoi
(Definition [CZT3).

Definition 4.2.8. A derived algebraic space U is quasi-compact if the co-topoi Uet is quasi-compact.

Next we introduce quasi-compact morphisms of derived algebraic spaces. For that, we need the notion
of quasi-compact morphisms between oco-topoi. Recall Definition 8T of quasi-compactness for objects in
oo-topoi.

Definition 4.2.9. A geometric morphism f : T — T’ of co-topoi is called a quasi-compact morphism if for
any quasi-compact object U € T’ the object f*U € T is quasi-compact.

Remark. Starting with quasi-compactness, one can introduce by induction the notion of n-coherence of oo-
topoi [Enrd, §3]. Using the n-coherence, Lurie introduced in [Lur8, §1.4] the notion of n-quasi-compactness
for spectral schemes, spectral Deligne-Mumford stacks and morphisms between them. Our definition of
quasi-compact morphism is an adaptation of this n-quasi-compactness to the case n = 0.

Definition 4.2.10. A morphism f : U — 'V of derived algebraic spaces is quasi-compact if the geometric
morphism fe : Uet — Vet of co-topoi (Lemma B-2Z3) is a quasi-compact morphism (Definition B-279).

Remark. We have already introduced the notion of quasi-compact morphisms of derived stacks in Definition
PZZT2. By a routine one can show that these two notions are equivalent.

Let us now turn to the notion of quasi-separated derived algebraic spaces. It is a direct analogue of the
notion of quasi-separated schemes and quasi-separated algebraic spaces. Let us also refer [CurT2, Definition
1.3.1] for a relevant notion for spectral Deligne-Mumford stacks.

Definition 4.2.11. (1) f is quasi-separated if the diagonal morphism U — U x ¢y ;U is quasi-compact
(Definition E—21M).
(2) U is quasi-separated if the structure morphism U — dSpec k is quasi-separated in the sense of (1).

Finally we introduce proper morphisms. Our definition is an analogue of the strongly proper morphism
in spectral algebraic geometry [Curl?, §3].

Recall the truncation functor Trc : hdSt — h St (Definition E2227). For a derived algebraic space U, the
truncation TrcU is an algebraic space.

Definition 4.2.12. (1) A morphism f : U — 'V of derived algebraic spaces is proper if the corresponding
morphism Trc U — TrcV of algebraic spaces is proper (Definition B—TT0).
(2) A derived algebraic space U is proper if the structure morphism U — dSpeck is proper in the sense

of (1).

One can check the ordinary properties of proper morphisms, such as stable under composition and base
change, hold in dAS.

Remark 4.2.13. The notions on morphisms of derived algebraic spaces given above and those of ordinary
algebraic spaces (§B) are compatible under the functor Dex in Remark ETTH.

property of morphisms ‘ derived algebraic spaces ‘ algebraic spaces

separated Definition =272 Definition BTH
quasi-separated Definition BT Definition BT 8
proper Definition =212 Definition B0

TABLE 4.1. Morphisms between derived and algebraic spaces
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4.3. Etale sheaves of rings and modules. In this subsection we collect notations for sheaves of commuta-
tive rings and modules on derived algebraic spaces in the étale topology. We work over the base commutative
ring k as before.

4.3.1. Etale structure sheaves. This part will not be used in the later sections. We record it for completeness
of our presentation.

Definition. For a derived algebraic space U, the (small) étale structure sheaf Oy of U is an object of
Shvscom,, (Uet) determined by

Oy (U) := A € sComy, for U = dSpec A € Ues.

Here U € Uy means that U € dAS({it and it is identified with an object of Ue; by the Yoneda embedding
§(U) € Sh(dASS, et) = Us.

Thus we obtain a ringed co-topos (Uet, Or¢). It is intimately related to spectral algebraic spaces in Lurie’s
spectral algebraic geometry [[Lur?, Lur]. We also have the stable oo-category Mode,, (Shvscom, (T)) of stable
étale sheaves of O-modules over U.

For a morphism f : U — V of derived algebraic spaces, we can construct a functor (fer, f*) : (Ues, Ou) —
(Vet, Oy) of ringed oco-topoi, where for : Uet — Vet is the geometric morphism in Lemma BE=23, and ft
Oy — f«Oy is a morphism in Shvscom, (Vet). We can also construct a geometric morphism corresponding to
the adjunction fZ : Mode, (Vet) = Modo,, (Uet) : f* of functors between stable oo-categories,

4.3.2. Etale sheaf of commutative rings. Recall that in §83 we introduced sheaves of commutative rings over
an oco-topos T. Let us set T = Uet, the étale co-topos of an a derived algebraic space U. Thus, for a sheaf
A € Shvcom(Uet ), we have a ringed co-topos (Uet, A). We call such an A an étale sheaf of commutative rings
on U.

Let us apply the notations in §851 to the present situation. We call

MOdA(uet) = ModA(Sthb(uet)),

the oco-category of étale sheaves of A-modules on U. It is equipped with internal Hom functor s#om 4 and
the tensor functor ® 4. We also denote by Mod 4 (Uet) := h Mod 4 (Uet) its homotopy category, which is a
Grothendieck abelian category (Proposition B5).

Next recall the notations in §8552. We denote by

Mod5*® (Ut ) := Mod5i*™ (Shvsp (Ut ))

the oco-category of sheaves of stable A-modules on U It is stable and equipped with a t-structure. It also
has the internal Hom functor 5#om 4 and the tensor functor ® 4. By Proposition B3, we also have a t-exact
equivalence

Mod%i™ (Uet) = Doo(Mod 4 (Uet))

of stable oo-categories, where the right hand side is the derived oco-category of the Grothendieck abelian
category Mod 4 (Uet). Hereafter we mainly discuss in terms of the derived oo-category, and use the following
notation.

Notation. For a derived algebraic space U and an étale sheaf A of commutative rings on U, we set
DI (Uet, A) := D5 (Moda(Uet)) *€4{0,+,—,0}
and call it the (resp. left bounded, resp. right bounded, resp. bounded) derived co-category of étale sheaves
of A-modules on U. For a commutative A, we denote by
DI (Uet, A) := D5 (Modp (Uet)) * € {0, +,—, b}
for the derived oco-category of étale sheaves of A-modules on U (with some bound condition), where we

denote the constant sheaf by the same symbol A.

Now assume that we are given a morphism f : U — V of derived algebraic spaces. Then by Lemma I—2Z3
we have a geometric morphism fe; @ Uey — Ve, S0 that the argument in §873 gives rise to the direct image
functors

ft : Modﬂ(uet) — MOdA(Vet), Doo(uet,.A) — Doo(vetwA)
and inverse image functors

fe*t : MOdA(Vet) — MOdA(uet), Doo(’vetwA) — Doo(uet,.A).
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4.3.3. Proper base change. Recall Definition B=2ZT2 of proper morphisms of derived algebraic spaces. It
enable us to translate to derived settings the proper base change theorem in the ordinary scheme theory. In
the following sections we will mainly discuss constant sheaves of commutative rings. So, for a commutative
ring A, let us denote by the constant sheaf valued in A on Uy (Definition ICX™) by the same symbol A.

Lemma 4.3.1. Let A be a torsion ring and

w2y

d )

V——sV
g

be a cartesian square in dAS with f proper. Then the base change morphism (Definition )

et g%

* et
et J f* 9 et

of functors Mody (UL;) — Moda (V) is an equivalence.

Proof. By the equivalence Uet =~ Ugpatr (Lemma B2ZA) and Definition 2212 of proper morphisms, we can
reduce the problem to the proper base change for modules over sheaves of torsion rings on schemes [SGA4,
XII, Théoreme 5.1]. O

The proper base change naturally extends to the derived oo-categories, and we have

Lemma 4.3.2. Under the same assumption with Lemma B=31, the base change morphism g% f&' — f g "

of functors between derived oco-categories Doo (UL, A) = Do (Vet, A) is an equivalence.

4.4. Direct image functor with proper support. In §8@ we will introduce dualizing complexes for
derived algebraic spaces. For that, we need the shriek functors f; and f', which will be defined in this and
the next subsections. Our argument is a simple analogue of that for schemes [SGA4, XVII]. We continue to
work over a commutative ring k.

4.4.1. Open immersions. Let j : U — V be an open immersion of derived algebraic spaces (Definition B-278).
Recall that we defined an open immersion using the more general definition of an open geometric immersion
of oo-topoi (Definition B64). By the argument in §80, associated to j we have two geometric morphisms
of oco-topoi:
jl:uctﬁvct:j*a j*:vct<:>uct:jw

Let (Uet,A) be a ringed co-topos, where U is the étale co-topos of the derived algebraic space U. Then

we have another ringed oco-topos (Ves, j*A). The above geometric morphisms induce the adjunctions
j! : MOdA(uet) ﬁ MOdj*A(Vet) Ij*7 ]* : MOdj*A(Vet) ﬁ MOdA<uet) j*
We call jy the extension by zero, and j* the restriction. We also have a morphism
j! — j*

in Fun(Mod 4 (Ue), Mod j« 4 (Ve))-

4.4.2. Compactifiable morphism. Recall that an S-morphism f : X — Y of schemes over a base scheme S
is S-compactifiable [SGAQ, XVII, Definition 3.2.1] if there exists an S-scheme P which is proper over S and
a factorization f = (X & P xgY 25 Y) with j quasi-finite and separated. If moreover S =Y, then f is
called compactifiable.

Let us define the corresponding notion for algebraic spaces as follows:

Definition. An S-morphism X — Y of algebraic spaces over a base scheme S is S-compactifiable if there
exists an algebraic space P over S which is proper (Definition A1) and a factorization f = (X EN
PxsY 25 V) with j quasi-compact (Definition BEI3), locally quasi-finite (Definition BT2) and separated
(Definition BTH (2)).

Recalling Definition B=2T2 of proper morphisms of derived algebraic spaces, we introduce a derived ana-
logue. Let us write the base commutative ring k explicitly for a while.
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Definition. A morphism f : U — V of derived algebraic spaces over k is compactifiable if there exists a
proper derived algebraic space P (Definition E-2I2) and a factorization f = (U L P Xdspeck V 2Y5 V) such

that the truncation Trc f = (TrcU M TreU Xgpeck TreV DI ¥y Ty V) makes Trc f a compactifiable
morphism of algebraic spaces.

Next we introduce an analogue of the category (S) of S-compactifiable morphisms [SGA4, XVIIL.3.2] in
the context of derived algebraic spaces.

Definition. We define dASzpt to be the sub-oco-category of dASy whose objects are derived algebraic spaces
U over k whose truncations Trc U are quasi-compact and quasi-separated algebraic spaces over Speck and
whose morphisms are compactifiable morphisms.

Then it is natural to set

Definition. Let f: U — V be a morphism in dASZpt. A compactification of f is a triangle

U

v

v
in dASy with ¢ an open immersion and f proper.

Since our definitions for derived algebraic spaces refer only to the truncated algebraic spaces, the argument
in [SGA4, XVII Proposition 3.23] works as it is, and we have

Lemma. Any morphism f in dAS;;pt has a compactification.

Note that an open immersion of derived algebraic spaces lives in dASfcpt. Recall also that we have base
change theorems for open immersions (Lemma BBGH) and for proper morphisms (Lemma BZ39). Then by
the construction in [SGA4, XVIIL.3.3, 5.1] we have

Lemma 4.4.1. Let A be a torsion commutative ring. For each morphism f : U — V in the oo-category
dASSP", we have a t-exact functor

f! : Doo(ueth) — Doo(vetaA)
which extends i) : Mod(Uet, A) — Mod(Vet, A) for open immersion ¢ : U — V in dASZpt.

4.5. Extraordinary inverse image functor. We continue to use the notations in the previous §&4. By
[SGA4, XVIII Théoréme 3.1.4] we have

Lemma. Let f: U — V be a morphism in dASZpt, and A be a torsion commutative ring. Then the functor
f1: Doo(Uet, A) = Do (Vet, A) admits a right adjoint t-exact functor

£ DI (Ver, A) — DL (Uet, A).
We call it the extraordinary inverse image functor.

4.6. Dualizing objects on derived algebraic spaces. Having introduced functors between sheaves of
modules, we can now discuss the dualizing complexes for derived algebraic spaces. Let us apologize that
our discussion is not of full generality: we only discuss a rather restricted situation over the base ring k (see
Assumption BTG below). It might be possible to take a more general base scheme as in [COT, LOZ], but we
will not pursue this point.

We will define dualizing objects for derived algebraic spaces by some gluing argument, following the
discussion for algebraic spaces in [LOT, 3.1].

Let W be a derived algebraic space over k. By Lemma B-24, we can replace the étale co-site Et(W) =
(dASSh, et) by the oco-site (dAfFSY, et®®) consisting only of étale morphisms U — W from affine derived
schemes U, and have an equivalence

Wet |y = Uggate .
Here the left hand side is the localized oco-topos (Fact IZ30).
Hereafter we assume the following conditions.

Assumption 4.6.1. e The base ring k is a finite field or a separably closed field.
e The commutative ring A is a torsion noetherian ring annihilated by an integer invertible in k.
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e The derived algebraic space W is separated (Definition B277) and of finite presentation as a geometric
derived stack (Definition 2Z228).

Then we can further replace the underlying-oo-category dAffSy, of the étale oo-site by the full sub-oco-
category dAi’F%’fp spanned by affine derived schemes of finite presentation (Definition EZZR). By this obser-
vation, we regard

Upgore = Sh(dAFFSS™ et)
in the following discussion.

A complex of k-module can be regarded as an object of the derived co-category Do ((dSpec k)ggart, A)
of étale sheaves A-modules over dSpeck. Here dSpeck is seen as a derived algebraic space. We fine the
dualizing complex over dSpec k to be

Q== A € Do ((dSpec k) gparr, A).
Recalling the extraordinary inverse image functor ' in §63, we introduce

Definition. Let u: U — W be an object of dAffS$, i.e., an étale morphism from an affine derived scheme U
over k. Let also p: U — dSpeck be the structure morphism. We define the relative dualizing object 2, to
be

Qy = 1Y € Do (Upgate, A).

Lemma 4.6.2. The above construction (u : U — W) — €, is functorial in the co-topos Weatt. In other
words, for any morphism f : U — V in Wgaer, we have a functorial isomorphism f*Q, ~ Q,,.

Proof. In the square

U ! %
" ‘f v
dSpec k
f is étale since u and v are so. Thus we have the inverse image functor f* : Do, (Vgatt, A) = Doo (Uggatt, A),
which is the desired one. O

Recall the restriction of sheaves (Notation BTH).

Proposition 4.6.3. There exists an object ., € Doy (Wes, A), uniquely up to contractible ambiguity, such
that Q| = Q.

Proof. By the discussion in [SGA43, Th. finitude, Théoreme 4.3] we have JZomp (Qy, Q) = A, which implies
Ext (Qy, Q) = 0 for any i < 0. Then the gluing lemma (Fact BZZ9) gives the consequence. O

The object ,, satisfies the following properties.

Lemma 4.6.4. (1) Q, is of finite injective dimension. In other words, m,€, = 0 for n > 0.
(2) For every M € Doo(Wet, A), the canonical map

Mapp__ (w,,,a) (M, A) — Mapp_(w,,,2) (M @4 Qu, Qo)
is an equivalence in H.
Proof. (1) is the consequence of Assumption EG. (2) is by construction. O
Following the terminology in [Curld, Definition 4.2.5], we name
Notation 4.6.5. We call Q,, € Do (Wet, A) the dualizing object.

In the later §673 we will discuss lisse-étale sheaves on derived stacks. For that, we need functionality of
dualizing objects with respect to smooth morphisms. Now the Tate twist comes into play as in the cases of
schemes and of algebraic spaces. Let us set a notation for the Tate twist.

Notation 4.6.6. Under Assumption BE61 on k and A, for M € Do (Wet, A) and d € Z, we denote by M(d)
the d-th Tate twist and set
M(dy := M(d)[2d].
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Now the proof of [LOT, 3.1.2 Lemma] works for derived algebraic spaces, and we have

Lemma 4.6.7. Let Wy and W5 be derived algebraic spaces over k which are separated (Definition B—270)
and finitely presented (Definition 22221), and let f : W1 — Ws be a smooth morphism of relative dimension
d (Definition ZZ223). We denote by (2, the dualizing objects of W; (i = 1,2). Then we have an equivalence

£y ~ Q1 (—d).
5. LISSE-ETALE SHEAVES ON DERIVED STACKS

The purpose of this section is to introduce the lisse-étale site on a derived stack of certain type and build
a theory of constructible sheaves with finite coefficient on the lisse-étale site.

Let us recall the situation in the ordinary setting. For an algebraic stack X, we consider the lisse-étale site
whose underlying category consists of algebraic spaces smooth over X and whose Grothendieck topology is
given by the étale coverings. In [CM] the theory of derived category of constructible sheaves on this lisse-étale
site is developed. As explained in [OT], some arguments in [CM] are not correct due to the non-functoriality
of the lisse-étale site. Using cohomological descent those errors are fixed in [(O1]. Based on this correction,
the theory of derived functors of Q,-sheaves on algebraic stacks is constructed in [LOT, LOZ].

As in the previous §l, we work over a fixed base commutative ring k unless otherwise stated, and suppress
the notation of k.

5.1. The lisse-étale site. The lisse-étale site for algebraic stacks is introduced in [CM, Chap. 12] in order
to build a reasonable theory of sheaves on algebraic stacks. Its definition is a mixture of étale and smooth
morphisms, reflecting Definition B—23 of algebraic stacks which uses both étale and smooth morphisms. Our
definition of the lisse-étale co-site for a derived stack will be a simple analogue of this lisse-étale site.

We begin with somewhat similar argument to §8=. For a derived stack X, we have the over-oo-category
dStx, which can be regarded as the oo-category of pairs (Y,y) consisting of Y € dSt and y : Y — X a
morphism in dSt. We denote by dAS,y the full sub-oo-category of dSt/x spanned by those pairs (U, u) with
U a derived algebraic space and u : U — X a morphism in dSt.

Definition. Let X be a geometric derived stack.
(1) The lisse-étale co-site of X is the oo-site LE(X) := (dASS, lis-et) consisting of

e The full sub-co-category dASIDiCS of dAS/yx spanned those (U,u) with v : U — X a smooth
morphism of derived stacks (Definition PZZ272T).

e The Grothendieck topology lis-et, called the lisse-étale topology, on dAS%&S whose set Covyig_et (U)
of covering sieves of U € d/—\SlfLS consists of families {U; — U};c; such that each U; — U is an étale
morphism derived stacks (Definition 222211), and the induced [],.; U; — U is an epimorphism
of derived stacks (Definition EZ271T).

(2) We denote the associated oo-topos (Fact 7)) by Xjiset := Sh(LE(X)) and call it the lisse-étale
oo-topos on X.

el

As in the non-derived case [CM, Lemma (12.1.2)] we have
Lemma. Xj.c¢ 1S equivalent to the oo-topos arising from the oco-site (dASIDiCS,lis—et’ ) where lis-et’ is the
Grothendieck topology whose covering sheaves consist only of finite families of étale morphisms.

Proof. The same argument as in the proof of [LM, Lemma (12.1.2)] works since dSt is quasi-compact (Fact
). O

We also have the following obvious statement.

Lemma 5.1.1. For a derived algebraic space U, the identity functor dASSF 3 (W, /) — (W, u) € dASPE
gives a continuous functor Et(U) — LE(U) of oo-sites. It induces an equivalence of co-topoi

€ : Wig-et —> Uet-
We have a similar statement to Lemma E24.

Lemma. Let X be a geometric derived stack, and LE*(X) := (dAff§, lis-et*T) be the co-site consisting of
e The full-co-subcategory dAffS of dAff/y spanned by affine derived X-schemes (U, u) with u: U — X
a smooth morphism of derived stacks. Here dAff/y denotes the full sub-co-category of dSt/x spanned
by affine derived schemes over X.
e The Grothendieck topology lis-et*f where a covering sieve is defined to be a covering sieve in et on

dASHE.
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Then the associated co-topos Xy egatt == Sh(LEaH(DC)) is equivalent to Xjis.et

We have the following relationship between the lisse-étale co-topos introduced above and the lisse-étale
topos on an algebraic stack in the ordinary sense (Definition B=23). Let X be an algebraic stack. Then
applying the functor ¢ = Dexoa (Definition EZZZ9) we have a derived stack ¢(X), which is 1-geometric by

Fact EZT9. Thus we have the lisse-étale oo-topos ¢(X) Then by Lemma X2, we have a topos ¢(X )Cl

lis-et " lis-et
in the ordinary sense.

cl

lis.ot 15 equivalent to the lisse-étale topos Xijs et

Lemma 5.1.2. For an algebraic stack X, the topos ¢(X)
(Definition BZ3T).

Proof. Since ¢(X) is 1-geometric, the underlying co-category dASii(SX) of LE(X) is equivalent to the nerve of
the underlying category of the lisse-étale site on X in Definition A=3. It implies the conclusion. O

In the remaining part of this subsection, we give a preliminary discussion on functors of lisse-étale sheaves.
Let f: X — Y be a morphism of geometric derived stacks. It gives rise to a continuous functor

LE(Y) — LE(X), U—U xyX

of co-sites. In fact, the morphism U xy X — X is smooth by [TVe2, Lemma 2.2.3.1 (2)] and if {U; — U}er
is an étale covering then {U; xy X — U xy X};¢ is also an étale covering. Thus U xy X belongs to LE(X).

Lemma 5.1.3. For a morphism f : X — Y of n-geometric derived stacks, we have a pair of functors
fli_s}et : Ylis-et — Xlis-et; f}«is_Et : Xis-et — Jlis-et
of co-topoi by the following construction.
(1) For F € Xjiset, we define f.F € Yisot by
(f=SF)U) = F(U xy X).
(2) For G € Yyis.et, we define fli_s}etS € Yiis-et to be the sheafification of the presheaf given by
LEX)32V +— h_H)l FU).
V=U

Here the colimit is taken in the sub-oo-category of the over-oco-category dSt,; spanned by morphisms
V — U over f with U € LE(Y). In other words, we are considering a square

(5.1.1) V—>U

|

X——Y

f

where vertical morphisms are smooth.

As in the ordinary case indicated by [O1, §3.3], the functor f~! is not left exact since the colimit in its
definition is not filtered (recall Definition BT of left exactness). In other words, the pair (f~!, f.) does
not give a geometric morphism of co-topoi (Definition BIl). However, if f is smooth, then f~! is just the
restriction functor as the diagram (B-10) suggests, so that it is exact. We take the same strategy as in [(01]
to remedy this non-exactness problem, which will be explained in the following subsections.

Let us close this subsection by introducing a terminology for sheaves over Xjis et-

Notation. Let X be a geometric derived stack and C be an co-category admitting small limits. An object
of Shve(Xiset) will be called a lisse-étale sheaf valued in C on X.

Let us close this subsection by introducing the lisse-étale co-topos for locally geometric derived stacks
(Definition EZ2TR). Recall that a locally geometric derived stack X can be expressed as a colimit ligi6 1 Xi
of a filtered family of geometric derived stacks X;.

Definition 5.1.4. Let X ~ Mie ; Xi be a locally geometric derived stack with {X;} a filtered family of
geometric derived stacks. Then we define the lisse-étale co-topos Xijs_et 0f X to be the colimit
xlis-et = hﬂ(fxi)lis-et
il
of the lisse-étale co-topoi of X;. Here we take the colimit in the oo-category RTop of oco-categories, which
admits small colimits (Fact BT4).
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5.2. Lisse-étale sheaves on derived stacks. In this subsection we introduce the notion of lisse-étale
sheaves of modules on geometric derived stacks. As before we work on a fixed commutative ring k.

5.2.1. Notations on lisse-étale sheaves. Throughout this section we will use various notions of sheaves on
ringed oo-topoi discussed in §B. So let us recollect some of them as a preliminary.

Fix a geometric derived stack X over k. Then applying to T = Xjs.et the definitions in §8, we have the
following oo-categories of lisse-étale sheaves.

Notation. (1) We call Shvcom(Xjis-ot) the oo-category of lisse-étale sheaves of commutative rings on X.
(2) For an A € Shvcom(Xiiset ), we call
MOd/l (:X:lis—et)

the oo-category of lisse-étale sheaves of A-modules on X. We also call the full sub-co-category
Mod5* (Xiis-et) € Moda (Xiis-ot)
the oco-category of lisse-étale sheaves of stable A-modules on X.
For an A € Shvcom(Xiiset ), the homotopy category
Mod 4 (Xiis-et) := h Mod 4 (Xiis-et)

is a Grothendieck abelian category (Proposition BZadl). So we can consider the associated derived oo-category
Doo(Mod 4 (Xjiseet)) (§832). Recalling the equivalence in Proposition B3, we set

Notation 5.2.1. For an A € Shvcom(Xjis.et), we denote
Dm(xlis-et7A) = Doo(MOdA(:xlis-et)) = MOd‘S/‘iab(xlis-et)
and call it the derived oco-category of lisse-étale sheaves of A-modules on X.

In the rest of this part, we introduce a derived analogue of flat sheaves of commutative rings [LIV, Chap.
12, (12.7)]. In fact, the contents will not be used essentially in our main argument, so the readers may skip
it.

In order to introduce the flatness, let us consider the following situation: Let X be a geometric derived
stack. Then for each object (U, u : U — X) of the underlying oo-category dASlgiCS of LE(X), we have the pair
of functors

u]?sl_et : xlis—et — ulis—et; UES_et : ulis—et — xlis—et
of oo-topos by Lemma bT3.

On the other hand, we have the equivalence € : Ujig.et — Uey of 00-topoi by Lemma 510, Thus we can
introduce

Notation 5.2.2. For F € Xjjst and (U, u) € dASlgiCS7 we denote
ff(um) = 5uﬁsl_et(3") € Uet-
If no confusion would occur, then we simply denote Iy := F (-

Next, let f: U — V be a morphism in the underlying oco-category dASlgiCS of LE(X). By Lemma 513, we
have a functor f=! : Vg et — Wiis-et. Using the equivalence € in Lemma 51, we have a functor Ve; — Uet.
Abusing symbols, we denote it by

f71 : Vet — uet.
Then, for F € Xjis.et, we have a morphism f~1Fy — Fy in U since F is a sheaf on dASIDICS.

Note that we can replace the oco-category Xjs.et =~ Shvs(Xjs.et) by the oco-category Shveom(Xis.et) of
lisse-étale sheaves of commutative rings in the argument so far. We summarize it in

Notation 5.2.3. Let A € Sh.vCOm(f)CliS_et) be a lisse-étale sheaf of commutative rings on X, and f : (U, u) —
(V,v) be a morphism in dASY. We denote

Ay = .A(u)u) = sufl(fl) € Shvcom(Uet)
and call it the restriction of A on (U,u). Then we have a natural morphism f~1(Ay) — Ay in the oo-

category Shvcom(Uet) of étale sheaves of commutative rings on the derived algebraic space U.
We use a similar notation My € Mod 4, (Uet) for M € Mod 4 (Xjig-et)-

Now we introduce a derived analogue of the flatness of a sheaf of commutative rings [(01], Definition 3.7].

Definition 5.2.4. Let X be a geometric derived stack, and A be a lisse-étale sheaf of commutative rings on
X. Then A is flat if for any morphism f: U — V in dASlglcs7 the morphism f~(Ay) — Ay in Shvcom(Uet) is
faithfully flat (in the ordinary sense).
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5.2.2. Cartesian sheaves. In [LNM, Définition (12.3), (12.7.3)], the notion of cartesian sheaves on algebraic
stacks is introduced and used to define quasi-coherent sheaves, derived categories of quasi-coherent sheaves
and derived functors between them. Let us briefly recall its definition.

Definition 5.2.5 ([LM, Définition (12.7.3)]). Let X be an algebraic stack (Definition B23) and A be a
flat sheaf of commutative rings on the lisse-étale topos Xiis-et (Definition B=3). A sheaf M of A-modules
on Xjiset 18 cartesian if for any morphism f : U — V in the lisse-étale site of X the natural morphism
Au ®-104y) Y (My) — My of sheaves on Ug is an isomorphism.

The essence of cartesian sheaves is shown in the following fact.

Fact 5.2.6 ([OT, Lemma 3.8]). Let X and A be as in Definition EZ3. A sheaf of A-modules M on Xjjs ot
is cartesian if and only if for every smooth morphism f : U — V in the lisse-étale site of X the natural
morphism Ay ®f-1¢4,,) f~Y(My) — My is an isomorphism.

Thus a cartesian sheaf is a sheaf of modules which is totally characterized by the behavior under smooth
morphisms.

Now let us introduce cartesian lisse-étale sheaves. We continue to use the notations in the previous parts,
so that U and V denote derived algebraic spaces in the underlying oco-category dASg‘CS of the lisse-étale co-site

LE(X) of a derived stack X. Recall also Notation BZ3 on the restriction of sheaves.

Definition 5.2.7. Let X be a geometric derived stack and A be a flat lisse-étale sheaf of commutative rings
on X. An A-modules M € Mod4 (Xjiset) is called cartesian if for any morphism f : U — V in dASID‘CS, the
morphism
Au Qf-1(Ay) f_l(Mv) — My
is an equivalence in Mod 4, (Uet). We denote by
Mod5™ (Xiis-et) C Mod g (Xiis-et)
the full sub-oo-category spanned by cartesian sheaves.
We have an analogue of Fact B220.

Lemma 5.2.8. Let X be a geometric derived stack, A € ShVCOm(DCth_et) be flat, and M € Mod 4 (Xjis-et)-
Then M is cartesian if and only if for every morphism f : U — V in d/—\Sljlcs the natural morphism Ay ®f-1(45)
F71(My) — My is an equivalence in Mod 4 (Uet)-

Proof. We follow the proof of [(O1, Lemma 3.8]. By the definition of cartesian sheaf it is enough to show
the “if” part. Let X be an n-geometric derived stack. The proof is by induction on n. Assume n = 1.
Take a 1-atlas {X;}icr of X and consider the 1-smooth effective epimorphism X’ :=[];,.; X - X. Given a

morphism f: U — V in dASlgiCS, we set V' :=V xy¢ X" and W := U xx X’. Then we have a pullback square

w Ly

U—=7V

in dAS/x. We also find that v and v are smooth and surjective and that the composition z : U EANETNG
is smooth. In order to prove that Ay ®jf-1(4,) F~1(My) — My is an equivalence, it is enough to show that

7 Aul ®u—1f—1(ﬂ_v) U_lf_l(MV) — MU/

is an equivalence since u is smooth and surjective. Hereafter let us suppress the change of ring, and denote
i:u"tf~1(My) — My. By the above square and the assumption we find = f~1(My) ~ f’_l(va), and
by the smoothness of u and the assumption we find u=1(My() =~ My. Thus we have i : f~1(My:) — M.
On the other hand, ¢ is equivalent to the pullback by x of ids,. Then by the smoothness of x and the
assumption we find that ¢ is an equivalence. O

As a corollary, we have

Corollary 5.2.9. The homotopy category
h Mod %" (Xjiset) € h Mod 4 (Xjis-et )

is a Serre subcategory.
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Now we introduce notations on the derived oo-category of lisse-étale sheaves with cartesian homotopy
groups.

Notation 5.2.10. Let X be a geometric derived stack and A € Shvcom(Xjis.et) be flat. We define
ngrt(xlis—etw/q) C Doo(xlis—etaA) = MOditab(xlis—et)

the full sub-co-category of the derived oco-category spanned by those objects M whose homotopy group
(M) € Moda (Xiis-et) is cartesian for all j € Z.

Recall that for a stale oo-category C with a t-structure we have the sub-oco-categories C*, C~ and C of
left bounded, right bounded and bounded objects (Definition [D23).

Notation. Let X be a geometric derived stack, and A € Shvcom (Xiis-et) be flat. We denote by
Dgzrt’*(xlis—et;-A) C D(C;rt(xlis—et)ﬂ) (* € {+a ] b})
the sub-oo-categories of left bounded, right bounded and bounded objects respectively.

5.3. Lisse-étale co-topos and simplicial étale co-topos. As mentioned in the beginning of 88, the lisse-
étale topos on an algebraic stack can be described by the étale topos on a simplicial algebraic space. See [(01]
and [0OZ, §9.2] for the detailed explanation of the non-derived case. In this subsection we give its derived
analogue.

Recall Fact BT2. For an n-geometric derived stack X, there exists a family {U;};cs of derived algebraic
spaces such that each of them is equipped with an (n — 1)-smooth morphism U; — X and X ~ ligj X; with
Xo = [I;c; Ui and Xj := Xg xox --- xx Xo for j € Z>y (j-times fiber product). These X;’s gives rise to
a simplicial object Xq in dASlgiCS, the underlying oco-category of the lisse étale co-site LE(X). Indeed, X,, is
a derived algebraic space for each n € N. We also note that the morphism X,, — X,, is smooth for each
[m] — [n] in A.

Definition 5.3.1. We call the simplicial object X in dASIDiCS a smooth presentation of X, and denote this
situation by
Xe — X.

Note that a smooth presentation is nothing but the (0-)coskeleton of the surjection X; — X in the sense
of [02, 9.2.1], and is also equivalent to the hypercovering of X in the sense of Definition CZ33.

Restricting to the subcategory A’ C A (Definition BZZ3), we have a strictly simplicial object X3 of
derived algebraic spaces.

Since each morphism in X5 is smooth, we have the strictly simplicial co-topoi X3 ., and X3, (Definition
B—3). Explicitly, denoting 7 = lis-et or et, for each n € N, we define X,, ; to be the co-topos associated to
the oo-site LE(X,,) or Et(X,), and for each morphism ¢ : [m] — [n] we have the corresponding geometric
morphism 51 : X, » — Xy

By restriction, we have an equivalence &, : X3 — X3 of co-topoi for each n € N. These induce an
equivalence

€: xit,fis-et — xine:t

Now let A € Shveom(Xiiset) be a flat lisse-étale sheaf of commutative rings. Then the above argument

works for the ringed oo-topos (Xjis.et, A). Thus we have a strictly simplicial ringed oco-topos (Xﬁffis_et,fl.)

and its restriction (X5%,, A,). We have the equivalence induced by restriction:

ectrv @
€ (fXZStr A.) — (Xifret,fl.).

o lis-et?
We also have the simplicial ringed co-topos (Xe e, Ae)-
We will analyze objects in Mod ™" (Xyis.et) via these (strictly) simplicial co-topoi XMis-etr Xoley- and Ao e
For that, recalling Corollary 62279 which says that h Modfqart (Xiiseet) € h Mod 4 (Xjiset) is a Serre subcategory,
we apply the notations in §874 to the present situation.

Definition 5.3.2. Let X and A be as above.
(1) Let 7 = lis-et or et. An object M, of Mod 4, (f)Cit’fiS_et) is called cartesian if M,, € Mod 4, (X, lis-et) 1S
cartesian (Definition E277) for each [n] € A%, and if the morphism §*M,, — M,, is an equivalence

in Mod™* (%, 1is-et) for each morphism 6 : [m] — [n] in A*". We denote by
Mod ™" (Xe tis-et) € Mod.a, (Xe tis-ct)

the full sub-co-category spanned by cartesian objects.
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(2) A cartesian object of Mod 4, (X c;) is defined by the same condition as (1) but replacing A™" by A.
We denote by

Modffft(x.m) C Mod g, (X et)

the corresponding full sub-oco-category.

We then have the following functors of co-categories.

ModSs (X er) 125 ModSE (05, ) =5 ModSi (XiHeee)-

ect o lis-et

Here Rst denotes the functor induced by the restriction to A% C A, and €* is the one induced by the
equivalence €.
We have the following analogue of [0, Proposition 4.4].

Proposition 5.3.3. The functors Rst and * are equivalences, and the oco-categories

Mod ™ (Xiis-et), ModZT (Xaer).  ModZr (5E,),  Mod (X5 ce)-

e.ct o lis-et

are all equivalent.

Proof. We follow the proof of [O1, Proposition 4.4]. Since ¢ is an equivalence, the induced &* is also an
equivalence. The fully faithfulness of Rst is obtained by unwinding the definition, so we focus on the
essential surjectivity of Rst.

Recall that the 0-th part of X, is given by Xy = Hie ; X, and it is a derived algebraic space. Recalling also
that X1 = Xg xx Xo and Xy = Xo xx Xo Xx Xo, let us denote by di, d} : X1 — Xo and d2,d?,d3 : Xo — X3
the projections. Compared to the ordinary symbols, we have dj = pry, di = pr; and d3 = pray, d3 = pry,
d3 = prys.

Consider the oo-category Des(Xy/X) whose object is a pair (G,¢) of § € Mod 4, (X et) and an equivalence
¢ (dD)*S = (d})*G in Mod (X1 et) such that the two equivalences (d2)*(¢) and (d9)* o (d3)* seen as
(d} 0 d2)*G — (d} 0 d2)*G are equivalent. We have a functor Mod%™*(Xiis.ct) — Des(Xo/X) by sending M to
the pair of G := My, (using Notation 522) and ¢ defined to be the composition of (di)* My, — My, and
the inverse of (d§)*Mx, — Mx,. Then the argument in [O1, Lemma 4.5] works and this functor gives an

equivalence.
On the other hand, we have a functor Mod %" (X3, ) — Des(Xy/X) by sending M, to the pair of § := My

et
and ¢ defined to be the composition of (d})*My = M; and the inverse of (d§)* My — M;. Note that the last
equivalences come from the simplicial structure. Then, by the argument in [O1, Proposition 4.4], this functor

is also an equivalence. The same construction gives Mod " (X, e;) — Des(Xo/X). Finally, the composition
ModSTt (X5, ) =5 Des(Xo/X) <= Mod§t" (Xe et) Ret, ModT" (X5, ) is equivalent to the identity functor.

et e et

Thus Rst is an equivalence,and we have shown that Mod " (e ). ModST* (X5, ) and Mod ™ (XMis.ct) are

equivalent to Des(Xo/X) ~ Modif‘rt(xﬁs_ct). O
We next discuss the derived oo-category. For 7 = lis-et or et, we denote by

Doo(xstr .A.)

the derived co-category of the Grothendieck abelian category h Mod,, (X5 ) (Notation B=Z8). Similarly we
define Doo(Xe e, Ae). An object M, of Doo(f)Cit},A.) consists of M,, € Doo(Xyy, 7, Ap) for each n € N and
5*M,, = M,, for each § : [m] — [n] in A",

Definition. Let X and A be as before.
(1) Let T = lis-et or et. An object M, of Do (X5, A, ) is called cartesian if M, belongs to D™ (X5 | A,,)

for each [n] € A® and the morphism §*M, — M,, is an equivalence in Do (X5, Ay,) for each
morphism ¢ : [m] — [n] in A", We denote by

Dggrt(xstr .A.) C Doc(:X:Str .A )

e, e, 7 Ld

the full sub-co-category spanned by cartesian objects.
(2) A cartesian object of Doo(Xe et,As) is defined by the same condition as (1) with replacing A" by
A. We denote by

Dgzrt (xo,eta Ao) C Doo (xo,e‘on)

the corresponding full sub-oco-category.
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Let us denote by 7 : DCft)fis_et — Xjis-et the functor induced by the strictly simplicial structure, which is

indeed a geometric morphisms of co-topoi. Recall the equivalence ¢ : X3 o = X5 We denote by the
same symbols the induced functors

(xitfls ety ) — (xliS-Ct? A), (xitfls et ) (xitgt’ )
of flat ringed oco-topoi, and denote the corresponding inverse images by
" DR (Wtiseet, A) — D™ (Xigers Aa)s €7 1 D™ (XL As) — DL (Xigers Ao)-

Let us also define a functor
Dgzrt (:xo,etwAO) Rst Dcart(xstr A )

e.et?
by the restriction with respect to A C A. Now we can state the main result of this part, which is a
derived analogue of [O1, Theorem 4.7].

Theorem 5.3.4. All of the functors 7*, ¢* and Rst are equivalences. In particular, the co-categories
Dgirt(xlis—etaﬂ)7 Dggrt(xstr_ A.), Dcart(xstr .A )7 Dgzrt(x-,etwAO)

o lis-et» e.ct)

are all equivalent, and hence each of them is stable and equipped with a t-structure.

Proof. ©* is an equivalence by Proposition BZ7R. £* is an equivalence since ¢ is an equivalence. As for Rst,
the argument in Proposition b233 works. O

5.4. Constructible sheaves. In this subsection A denotes a torsion noetherian ring annihilated by an
integer invertible in the base commutative ring k.
Recall the notion of a constructible sheaf on an ordinary scheme [SGA4, IX §2]:

Definition. A sheaf F of sets on a scheme X is constructible if for any affine Zariski open U C X there is
a finite decomposition U = U;U; into constructible locally closed subschemes U; such that JF| v, isa locally
constant sheaf with value in a finite set.

As noted in [EM, Remarque (18.1.2) (1)], the phrase “for any affine Zariski open U C X” can be replaced
by “for each affine scheme belonging to any étale covering of X”. In [CM, Chap. 18] the corresponding notion
is introduced for the lisse-étale topos of an algebraic stacks. In this subsection we introduce an analogous
notion for derived stacks.

We cite from [Cur2, §A.1] the definition of locally constant sheaf on an co-topos.

Definition 5.4.1 ([Curd, Definintion A.1.12]). Let T be an co-topos and F € T.
(1) Fis constant if it lies in the essential image of a geometric morphism 7* : § — T (see Remark B12
for the notation on a geometric morphism).
(2) F is locally constant if there exists a collection {U;};cr of objects U; € T satisfying the following
conditions.
o {Ui}ier covers T, i.e., there is an effective epimorphism [[;.; U; — 17, where 11 denotes a final
object of T (see Definition IC8T0 for the definition of effective epimorphism).
e The product F x U; is a constant object of the co-topos Ty, (Fact [CXM).

In order to introduce constructible sheaves on a derived stack, we start with those on a derived algebraic
space.

Definition 5.4.2. Let U be a derived algebraic space and F € Shvg(Uet) =~ Uet.
(1) Fis locally constant if it is locally constant as an object of the co-topos Uet in the sense of Definition
B2,
(2) F is constructible if for any étale covering {U; — U};cs by derived algebraic spaces U;, there is a
finite decomposition U; ~ ]| j Ui ; into affine derived schemes U; ; for each ¢ such that
o The (non-derived) affine scheme Trc(U; ;) is a constructible locally closed subscheme of Tre(U;).
e The restriction Jy, ; is a locally constant sheaf on U; ; for all j in the sense of (1).

Let us now introduce constructible sheaves of A-modules. As before, for a commutative ring A, we denote
the constant lisse-étale sheaf valued in A by the same symbol.

Definition 5.4.3. Let U be a derived algebraic space and A be a commutative ring. An object M of
Mod (Uet ) is called constructible if is is constructible in the sense of Definition B4 as an object of Shvg(Uet).

The following statement is an analogue of [(O1, Lemma 9.1]. The proof is the same with loc. cit., and we
omit it.
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Lemma 5.4.4. Let X be a geometric derived stack
(1) Let F € Shvs(Xjis-et) >~ Xiis-et be cartesian. Then the following conditions are equivalent.
(i) For any U € dAS/x, the sheaf Jy is a locally constant (resp. constructible) sheaf on Uet.
(ii) There exists a smooth presentation X4 — X (Definition B23) such that Fy, is locally constant
(resp. constructible).
(2) Let A be a commutative ring. Then the same equivalences as (1) hold for M € Mod™* (Xjiset)-

Note that the symbol Mod$**(Xijis.c;) in the item (2) makes sense since the constant sheaf A is flat
(Definition B2Z4) so that the notion of cartesian sheaves is well-defined.
Now we can state the definition of constructible lisse-étale sheaves on a derived stack.

Definition 5.4.5. Let X be a geometric derived stack and A be a commutative ring. Then a sheaf M &€
Mod§** (Xiis.et) is constructible if it satisfies one of the conditions in Lemma 5Z4. We denote by

MOdc(xlis-etyA) C Mochart (xlis-et)
the full sub-oo-category spanned by constructible sheaves.

Similarly to the case of cartesian sheaves (§623), we can describe constructible sheaves by (strictly) sim-
plicial oco-topoi. Let us take a smooth presentation X4 — X, and consider the strictly simplicial co-topoi

Xiffis_et7 f)Cif;t and the simplicial co-topoi X, ¢t. These can be ringed by the constant sheaf A.

Definition. (1) Let 7 = lis-et or et. An object M, of Mod3™* (X5 is constructible if M, is constructible
in the sense of Definition 623 for each [n] € A™. We denote by

Mod, (X3, A) € Mod§™* (5™

the full sub-co-category spanned by constructible objects.
(2) An object of Mod™* (X, ;) is defined to be constructible in the same way but replacing A% by A.
The corresponding full sub-oco-category is denoted by

Modc(Xa et A) C Mod ™ (X et)-
Proposition 5.4.6. The natural restriction functors
Mod. (Xiis-et, A) —> Mod, (5", A) — Mod, (X5

o lis-et» eet)

A),

and
Modc(Xiis-et, A) — Modc(Xe et, A) — Mod, (X5, A)

e ety

are equivalences.

Proof. Let My € Mod™"(X5') with 7 = lis-et or et. Recall that by the cartesian condition the morphism
0*M,, — M,, is an equivalence for every 0 : [m] — [n]. Thus M, is constructible if and only if My €
Mod‘j\art(x%ffis_et) is constructible. The same criterion holds for M, € Mod$**(X, ;). Now the statement
follows from Proposition B=373. O

Let us turn to derived oco-categories. Recall the stable co-category Dg‘cm (Xjisoet, A) of cartesian sheaves
in Notation B210. Since the cartesian sheaves form a Serre subcategory (Corollary 6529), the following
definition makes sense.

Definition 5.4.7. Let X be a geometric derived stack, and A be a commutative ring. We denote by
DOO,C(:X:IiS—et7 A) C Doo (xlis—eta A)

the full sub-oco-category spanned by those objects M whose homotopy sheaf ;M € Moda (Xijis-et) is con-
structible (Definition bB23) for any j € Z. We also denote by

Dzo)c(xlis—et) A) C Doo,c(xlis—et7 A) (* S {+7 s b7 [m7 n]})

the full sub-co-category spanned by constructible objects which are right bounded, left bounded, bounded
and bounded in the range [m,n].

As in the previous §63, we can describe Do ¢(Xlis-et, A) by (strictly) simplicial co-topoi.
Definition. (1) Let 7 = lis-et or et. An object M, of D (X5 A) is constructible if M, is constructible

®.7)

in the sense of Definition 6477 for each [n] € A®"". We denote by
Doo,e(XE™ ) A) C Do, (X5, A)

e, T) e, 7T)

the full sub-co-category spanned by constructible objects.
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(2) An object of DS (X4 o1, A) is defined to be constructible in the same way but replacing A% by A.
The corresponding full sub-oco-category is denoted by

Doc,c(xo,ct; A) C Doo,c(xo,c'm A)
As in 8§63, we denote by

. str . str str
T xo,lis—et > Xlig-et, € xo,lis—et X

e et
the natural geometric morphism of co-topoi. We denote the induce functors of derived co-categories by

7 Doo.o(Xiisets A) — Doge (Xilhiers Ay "t Doge (3%, A) — D e (Xt e A)-

o lis-et> e.ct e lis-et?

Theorem 5.4.8. Both 7* and &* are equivalences. In particular, DY, .(Xiiset,A) is stable and equipped
with a t-structure.

Proof. This is a direct consequence of Theorem B=34 and definitions. O

5.5. Dualizing objects for derived stacks. In this subsection we introduce dualizing complexes for the
derived category of constructible lisse-étale sheaves on derived stacks. which will be used in the construction
of derived functors (§B). The strategy of defining dualizing complexes follows that in [LOT, 3.3-3.5]: gluing
dualizing complexes over derived algebraic spaces (§€8) to obtain the global one.

5.5.1. Localized co-sites and localized co-topoi. As a preliminary, let us introduce localized co-sites explain
the relation to the localized co-topoi.

Let (C,7) be an oo-site, and X € C be an object. Then we can attach to the over-oo-category C/x a new
Grothendieck topology 7x by setting the covering sieve to be

(0 0
Covry () = {0* (Y | Y € Cov,(X)}
for each ¢ € C/x. Let us name the obtained oo-site.
Definition 5.5.1. The oo-site (C/x, 7x) is called the localized co-site on X.

In [TVel, Definition 3.3.1] the corresponding S-site is called the comma S-site.
The following statement is checked directly by definition so we omit the proof.

Lemma 5.5.2. Let (C,7) be an oco-site and f : X — Y be a morphism in C. Then composition with f
induces a continuous functor (C;x,7x) — (C/y, Ty) of oo-sites (Definition E=27T).

Recall that for an oo-topos T and U € T, we have the localized oo-topos T|,, of T at U (Fact [CZ0).
Thus, given an oo-site (C,7) and an object X € C, we can consider the localized co-topos Sh(C,T)|j(X).
Here j : C — Shv(C,7) is the co-categorical Yoneda embedding (Definition IZa2). On the other hand, we
have the localized oo-site (C,x,7x) and the associated co-topos Sh(C,x,7x).

Lemma 5.5.3. For an oo-site (C,7) and X € C, we have an equivalence Sh(C/x, 7x) 2 Sh(C, 7)|;x.-

Proof. The forgetful functor C,x — C induces a continuous functor (C;x,7x) — Sh(C,7) of oco-sites. Then
by Proposition E222, we have a geometric morphism ¢* : Sh(C/x, 7x) — Sh(C, 7) of oo-topoi (recall Notation
B132). By definition of (C/x, 7x), the geometric morphism ¢* factors through Sh(C, T)\j(X), and the factored
geometric morphism Sh(C, x,7x) — Sh(C, T)|j(X) gives an equivalence. O

Recall that a continuous functor of oco-sites induces a geometric morphism of the associated co-topoi
(Proposition B222). Thus the continuous functor (C/x,7x) — (C/y,7y) in Lemma B53 induces a geo-
metric morphism Sh(C/x,7x) — Sh(C/y,7y). Using the equivalence of Lemma B33, we denote it by
a: Sh(C,7)[;x) = Sh(C, 7))

On the other hand, for any morphism U — V' in a oo-category B, we have a functor B,;; — By (Corollary
B32) Thus we have a functor 8 : Sh(C,7);y) = Sh(C,7)|;-). Then we have

Lemma 5.5.4. The functors a and [ are equivalent.
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5.5.2. Gluing étale dualizing objects. We impose Assumption BEG1 on the base ring k& and the commutative
ring A. Namely,

e The base ring k is a noetherian ring and has a dualizing complex .

e The commutative ring A is a torsion noetherian ring annihilated by an integer invertible in k.

Let X be a geometric derived stack locally of finite presentation (Definition EZZ1d). Let A : U — X be
an object of dASlaiCS, the underlying co-category of the oo-site LE(X). Then the derived algebraic space U
satisfies Assumption BB 1:

e The derived algebraic space W is separated, quasi-compact and locally of finite presentation.
Thus we can apply the argument in §&8 to the composition « := (U ELN ot dSpec k), and have the dualizing
object Q4 € Doo(Uet, A) (Notation E6H). Recalling also Notation BGE on the shift and the Tate twist, we
define

Ka = Qa(—da) € Do c(Uet, A),

where dj4 is the relative dimension of the smooth morphism A (Definition E2223). Note that d4 is locally
constant, and that K4 is of finite injective dimension by Lemma E64.
Now the proof of [LOT, 3.2.1 Lemma] works with the help of Lemma B672, and we have

Lemma 5.5.5. Given a triangle

V—F——U

N

X
in dASlj’CS, we have an equivalence 0* K4 ~ Kp.

We now want to construct a dualizing object for the lisse-étale by gluing étale dualizing data using Lemma,
653. Let A: U — X be an object of LE(X). We denote by LE(X)|,, the localized oo-site (Definition B5T).
Then the inclusion Et(U) < LE(X)|;, of co-sites is a continuous functor, and we can apply Proposition B2
to it. Thus we have

Lemma 5.5.6. The inclusion Et(U) < LE(X)|,, induces a geometric morphism
eu - xlis—ct|u — uct
of co-topoi. We denote the corresponding adjunction by 51_(1 tUet = Xiiseet |y el

We can describe these functors more explicitly. Note that giving a sheaf § € Xiiget|y is equivalent to
giving sheaves Gy € Vg for each affine derived scheme V' over U such that the composite V. — U A
is smooth, which satisfy the gluing condition. Then, for a given F € U, the sheaf § = 5&13’ € Xiis-et |y
corresponds to Gy = ﬂ;lff for each (my : V' — U) € LE(X)|,. On the other hand, for a sheaf § € Xijs_cty
corresponding to {Gy }v_, the sheaf e%'G € Uy is given by %G = Gy(. In particular, the functor ¥ is left
and right exact.

Given a morphism f : U — V in the underlying oo-category dASljiCS of the co-site LE(X), we have a square

gu

(5.5.1) Nis-et |y, — Uet

L]

Xiis-et |\7 Teu Vet

in the oo-category RTop of co-topoi and geometric morphisms. Here f : Xiiset|y — Xiis-et|y denotes the
functor induced by f (Corollary 6552, Lemma E54).
Recalling that we are given A : U — X, let us now define

KA = gﬁ(KA) S Doo(xlis—et|u aA)7

where we denote by &7 : Doo(Uet, A) & Doo(Xiis-et |y > A) - f.e' the geometric morphism of the derived
oo-categories induced by ey(. Then, given a triangle as in Lemma 553, we have f*(kp) ~ k4 since (B551) is
a square. Recall Notation B53 of &zt. We denote by &Utiuet the functor &xtp on Do (Uet), and by &z:tix“s_et ¥
that on Do ( Xijs-ct|q)- Then we have
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Lemma 5.5.7. (1) For any M, N € Doo(Uet) and i € Z, we denote by Eut' (5, M, 5 N)u € Mody (Uset)
the restriction of &ut'y, | (M, e{N) to Uer. Then we have an equivalence
Eat' (g M, ey Ny = Exty, (M, N).
(2) For any A : U — X in dASY we have
Homp(ka,ka) = A
in Doo( Xiis-ct|q( s A). In particular, we have é‘)xt}'\(/@A, ka) =0 in Mod (Xiis-et|q) for any i € Z .

We omit the detail of the proof since (1) can be shown by the same argument of [CO1, 3.4.1. Lemma]
and (2) is a corollary of (1).

Now choose a smooth presentation p : Xo — X. Then we have an object &, € Doo(xns_et\xo ,A\) together
with the descent data to Xjis.et. Thus the gluing lemma (Fact BEZ9) can be applied, and we have an object
Qo (p) € Doo(Xiiset, A). Since k4 is of finite injective dimension for any A : U — X in dASlgiCS, the restriction
Kply = Ka is bounded in both direction.

Notation 5.5.8. We denote by

Df;zc(xlis—eta A) - Doo,c(xlis—eta A) (* € {+a ) b})
the full sub-co-category spanned by those objects M such that the restriction M|, is in D;,C(Xlis_et, A) for
any quasi-compact open immersion U < X (Definition 222712, 27224).

By the above argument, we have

Lemma. There exists Qy(p) € Doo(Xiiset, A) inducing k4 for any A € LE(DC)|x0. Moreover it is unique up
to contractible ambiguity.

We can show that independence of the presentation p, for example, by constructing a new presentation
from given two presentations. Thus the following definition makes sense.

Definition 5.5.9. The dualizing object
Qx S Doo(xlis—eth)

of X is defined to be Qx(p) with p a smooth presentation of X. It is well-defined up to contractible ambiguity,
and is characterized by Qux|y = e Ka for (A: U — X) € dASY.

5.5.3. Biduality. We impose the same conditions on k and A as in the previous §6252 (see also Assumption
B5). Let X be a geometric derived stack which is locally of finite presentation.

For (A : U — X) € dASY, we denote by K4 € Doo(Uet, A) the dualizing object for the derived algebraic
space U. Also, for M € Doo(Xjis-et, A), we use Notation BEEZ2 to denote by My € Doo(Uet, A) the restriction
of M. Then by the argument in [LOT, 3.5] we have

v 1
NN
X
be a commutative triangle in dASlgiCs7 and let M € Do (Xjiset, A).

(1) In Doo(Vet, A) we have f*Homp(My, K) = Homa(f* My, f*Ka) = Homp(f*My, Kp).
(2) For any M € Do (Xiis-et, A), we have Homa(My, K4) € Dog o(Ues, A).

Fact 5.5.10 ([COT, 3.5.2. Lemma]). Let

For U € dASIDiCS, we denote by € : Nijset|y, — Uet the geometric morphism in Lemma B58. Let also Qx
be the dualizing object for the derived stack X (Definition 6559).

Fact 5.5.11 ([LOI, 3.5.3. Lemmal). Let (A : U — X) € dASE and M € Do o(Xjiser). Then we have an
equivalence e* #omp (M, Ka) =~ Foma (M, Qx ).

By Fact b2o0 and BT we have
Lemma. For M € Do o(Xiis-et, A), we have soma (M, Qx) € Doo,c(Xiis-et, A)-

Now we can introduce
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Notation 5.5.12. The dualizing functor is defined to be
Dy := <%07’”(_aQI)C) : Doo,c(xlis—etaA) — Doo,c(xlis—etaA)op
By the standard argument using Fact b2510 and BT, we have

Proposition 5.5.13 ([LOT, 3.5.8, 3.5.9. Proposition]). (1) The natural morphism id — Dy oDy in-
duced by the biduality morphism M — Soma (Homa (M, N),N) is an equivalence.
(2) For any M, N € Mod®**"(Xiis_e, A) we have a canonical equivalence

Homp (M, N) ~ FHoma(D(N), D(M)).

6. DERIVED FUNCTORS OF CONSTRUCTIBLE SHEAVES WITH FINITE COEFFICIENTS

In this section we introduce oo-theoretic analogue of the Grothendieck’s six operations on the derived
categories of constructible sheaves with finite coefficients. Let k be the base commutative ring, and A be a
Gorenstein local ring of dimension 0 and characteristic £. We assume that £ is invertible in k. All the derived
stacks appearing in this section are defined over k.

6.1. Derived category of constructible sheaves. Let us begin with the recollection of the notations for
derived oo-categories of constructible lisse-étale sheaves on derived stacks. Let X be a geometric derived
stack over k which is locally of finite presentation. Then we have the full sub-oco-categories

D:;o)c(xlis—ctv A) - Dgzrt7*(xlis-ct7 A) - Dj;o(xlis—ct» A) (* S {Qa +; ) b})

spanned by constructible (resp. cartesian) objects in the derived oo-categories of lisse-étale A-modules on
X with prescribed bound conditions. These are stable co-categories equipped with ¢-structure by Theorem
b33 and bZ3.

We also denote

D*(xlis—eta A) =h D;o (xlis—eh A), D: (xlis—et7 A) =h DZQVC(xlis—etv A)

These are triangulated categories by Fact [DITH, and the obvious embedding D} (X,A) — D*(X,A) is a
triangulated functor.

Remark. We have an obvious relation between the derived category for a derived stack and that for an
ordinary algebraic stack. Let X be an algebraic stack over k, and +(X) be the associated derived stack (Def-
inition EZ229). Then by the construction we find that the category D*(¢(X )is-et, A) (resp. DJ (e(X)iis-et, A))
is equivalent to the derived category of complexes of A-modules (resp. the derived category of complexes of
A-modules with constructible cohomology sheaves).

Let us also recall Notation B2 8, where we denoted by
DS (Xisets A) € Dooe(Xisets A) (€ {4, —,b})
the full sub-oco-category consisting of objects M such that for any quasi-compact open immersion U < X the
restriction M|, belongs to Do " (Ujis-et, A). The homotopy categories will be denoted by DE*)(DChs_et, A) =
h DY) (Xig-ers A).
Hereafter we often suppress the symbol A to denote Do c(Xiis-et) := Doo,c(Xiis-et, A) and so on.

6.2. Derived direct image functor. Let us recall the derived direct image functor for ordinary algebraic
stacks [COT, 4.1]. Let f : X — Y be a morphism of finite type between algebraic stacks locally of finite
type over k (actually we can relax the condition on the base scheme). We denote by D(X) the derived
category of complexes of A-modules on the algebraic stack X. Then the derived direct image functor
Rf. : D(X) — D(Y) does not map the subcategory D.(X) of complexes with constructible cohomology
sheaves to D.(Y). However, we have Rf, : D{P(X) — D (Y), where D{P(X) ¢ D(X) is the full
subcategory defined similarly as Notation B2aS.

Now we consider the case of derived stacks. Recall Proposition BZad which gives derived functors between
derived oco-categories for general ringed oo-topoi. We then have the first half of the next proposition.

Proposition 6.2.1. Let f : X — Y be a morphism of geometric derived stacks. Then we have the direct
image functor

fx 1 Doo(Xiiscet) = Doo(Yhis-et), (fT)(U) = F(U xy X)
which is a t-exact functor of stable co-categories equipped with t-structures. If moreover f is quasi-compact
(Definition E22T2), then f, restricts to a functor

f* : Dgz)c(xlis—et) — Dg,)c(glis—et)-
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Recall Notation B222 on the restriction of lisse-étale sheaves. We need the following analogue of [0,
Proposition 9.8]. The proof is almost the same, and we omit it.

Lemma. Let f: X — Y be a morphism of geometric derived stacks, M € Moda (Xjis.et), and U € dAS{;S.
(1) Assume f is representable. Then we have an equivalence

(f*ff)u ad fU.Ct,*MDCXHU.

in Doo(Uet). Here fi @ Doo(Xiiscet) = Doo(Ylis-et) denotes the derived direct image functor, and
S, 1 (XxyU)ey — Ue is the geometric morphism of co-topoi induced by the projection X xyU — U.

(2) Let Xo — X be a smooth presentation, and fi, @ X;, Xy U — U be the morphism induced by f.
Assume M is cartesian. Then there is a spectral sequence

Efq = Rq(fu,n)*Mpryu - (Rerqf*M)u-

Proof of Proposition B2Z. 1t is enough to show the second half. By Lemma B=2R of the criterion of cartesian
property and by Theorem 234 of the equivalence Do (Ylis-et) =2 Doo (Ye et ), We can take a smooth presentation
Ye — Y and replace Y by a quasi-compact derived algebraic space. Take now a smooth presentation X, — X
with Xy quasi-compact. Then the spectral sequence in the above Lemma implies that it is enough to show the
result for each morphism X,, — Y. Thus we may assume that X and Y are quasi-compact derived algebraic
spaces. Since Definition B3 of constructible sheaves only depends on the truncated data, we can reduce to
the non-derived setting, where the result is shown in [0, Proposition 9.9]. (]

On the homotopy category we denote the derived functor by
Rf* : D((ng) (xlis—et) — D£+) (ylis—et)-

Remark. If we set X = «(X) and Y = «(Y) with X and Y algebraic stacks over k, then we recover the
construction in [T, CLOT)] of the derived direct image

Rfe : DI ((6X Dtiseet, A) — DS (LY Yiigeer, A).

6.3. Derived inverse image. We construction the derived inverse image with the help of simplicial de-
scription of cartesian sheaves. Let f : X — Y a morphism of geometric derived stacks which are locally
of finite presentation. Take an n-atlas {Y;}ie; of Y with some n, and denote by Yo = [[,c;Yi — Y the
natural surjection. Let us also take an n-atlas {X;};cs of the fiber product X=X xy Yo and denote
X := HjEJ X; — X. Thus we have a square dSty:

X——>X

| )

Yo——Y

Let ex : Xo — X and ey : Yo — Y be the smooth presentations with X¢y := HjeJ Xj and Yo = [[;c; Vs
The morphism f : X — Y induces a morphism Xg — Yo of derived algebraic spaces, and it further induces
a morphism f, : Xe — Yo of simplicial derived algebraic spaces. Restricting to A" C A, we have the
following square of strictly simplicial derived stacks:

ex
g

J )

t
Y

The morphism f, induces a geometric morphism

fo,et . xstr ystr

o, ct o ct

of co-topoi, which induces a functor

f&: Modc(Y3,) — Modc (X35,).

et
Here we denoted Mod.(Y3%;) := Mod.(Y3's;, A). On the other hand, by Proposition 6418, we have equiva-
lences

7o Mode(Xiiset) — Mode (X5%,), 7y : Mode(Yiiset) — Mod.(Y3™,).

e, e.ct



56 SHINTAROU YANAGIDA

Definition. We define
f* . MOdc(yliS-et) — MOdc(xlis—et)

to be the composition r;cl o f& ory, and call it the inverse image functor.

The functor f* is independent of the choice of n-atlases {Y; };cr and {X,},c up to contractible ambiguity.
Lemma 6.3.1. f* is a left adjoint of the functor f. : Mod.(Xjis.et) = Modc(Yiis-et ), and moreover f* is left
exact in the sense of Definition BT

str
e ety

Proof. Since on the simplicial level we have a geometric morphism fq ct : xifgt — the induced functor

f¥ actually sits in an adjunction
Jo : Mod,( it,lt;t) — ModC(Xif‘l;t) o
and f, . is equivalent to the functor induced by the direct image functor f*. Thus we have the conclusion. [
The same argument works for the derived oo-category. Namely, the geometric morphism fq ot : DCifgt —
Y%, induces an adjunction

fo: Doo,c(léit,gt) = DOO,C(xit,Zt) D S
and by Theorem 6278 we have also equivalences
ry - Doo,c(xlis—et) = Doo,c(:xit;t), Ty Doo,c(ylis—et) = Doo,c( it’zt)
Definition 6.3.2. We define
f* : Doo,c(ylis-et) — Doo,c(xlis—et)
to be the composition r;cl o fo ory, and call it the derived inverse image functor.

Obviously we have that the derived functor f* : Doo ¢(Yiis-et) = Doo,c(Xiis-et) s a t-exact extension of the
functor f* : Mode(Yis-ct, A) = Mod¢(Xjiset, A). On the homotopy category we denote the derived functor
by

Lf* : Dc(ylis—ct) — Dc(xlis—ct)~

Remark. If we set X = +(X) and Y = +(Y) with X and Y algebraic stacks over k, then we recover the
construction in [OT, ILOT] of the derived inverse image

Lf* : Dc((LX)lis—eta A) — DC((LY)liS-€t> A)
For later use, we record

Lemma 6.3.3. Let X and Y be geometric derived stacks locally of finite presentation, and f : X — Y be a
smooth morphism of relative dimension d. Then f*Qy ~ Qx(—d)

Proof. Take a smooth presentation Y4 — Y and consider X:=X xy Yo. Then we have a diagram

x0—>5c—>x

NS

Yo—=1Y

of derived stacks. By the assumption on f, the morphism Xg — Yq is smooth. Consider the restrictions
of f*Qy and Qx(—d) to Ixns_eqxo coincide and have zero negative &rt’s. Then Lemma BZZI0 implies the
consequence. U

6.4. Derived internal Hom functor. Recall that in §84 we discussed the internal Hom functor
Homa(—,—) : ModSi™(T)°P x Mod%*(T) — ModSi*(T)
for a ringed oo-topos (T, A). Applying it to (T, A) = (Xjis-et, A), we have
Notation. For a geometric derived stack X. we denote the internal Hom functor on Dy (Xjiset) by
Hom(—, —) : Doo(Xiscet) P X D(Xiiscet) — Doo (Xiiseet)-

We also denote it by J#omx,, ., to emphasize the dependence on Xjis.et. The associated functor on the
homotopy category is denoted by

%’hom(—, _) : D(xlis-et)op X D(xlis—et) — D(xlis-et)-

As for the constructible objects, we have
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Lemma. Let X be a geometric derived stack locally of finite presentation. Then for M € Dggi(xns_ct) and
N € DS (Xpiseet ), we have Hom (M, N) € DL (Xiiser).
Proof. We follow the argument in [COT, 4.2.1. Lemma, 4.2.2. Corollary]. For M, N € D ¢(Xjis-et) and
U e dASlls we have a functorial equivalence

Homx,,. ., (M, N) |uet ~ tomy,, (M, Ny).

Indeed, for the geometric morphism € : Xjjset|; — Uet in Lemma 658, the counit transformation e*e, M —
M and €*e, N — N are equivalences in Doo(xhs_equ) since M and N have constructible homotopy groups
and by by Proposition BZZ8. On the other hand, the unit transformation id — e,&* is an equivalence, so we
have

Hom x|, (MN) = Homy,_ ), (7M. N) = Homay,, (" e. M, e, N)
~ Homy,, (.M, e e N) = FHomyy,, (.M, e N) = FHoma,, (Mo, Ny).

. . . . . . lis, f
Now consider the following triangle with f a morphism in dAS,™™.

v Ty

N

Recall the functor f* : Deg,c(Uet) = Doo,c(Ver) (Definition B232). Then for M € D((;’)C(DCHS_“) and N €

D% (Xiiset), we have My € D o(Uet), My € D o(Ver), Nu € D& o(Uet) and Ny € DL (Ver). We also
have a morphism

fettomy,, My, Ny) — Homy,, (f*M, f*N) ~ Homy,, (My,Ny).
The consequence holds if we show this morphism is an equivalence. But we have
fratomy,, My, Ny) =~ frA* FHomy,,.,(M,N) >~ B* Homy,,.., (M, N) >~ Homy_, (My,Ny).
O
Let X¢ — X be a smooth presentation of a geometric derived stack X, and xns_et\xi" be the strictly

simplicial co-topos obtained by restricting the lisse-étale co-topos to the strictly simplicial derived algebraic
space X5, We have the associated geometric morphism denote by p : Xiis-et xstr — Xlis-et- LThen we have

Lemma. For M, N € Do ¢(Xiis.et) we have a functorial equivalence
p*Homx,, ., (M, N) ~ Hom Xtis-et | xcgor (p™M, p*N)

Proof. We follow the argument in [COT, 4.2.4. Lemma]. We can take an equivalence N — J in Do (Xjis et)
with J having injective homotopy groups. Then we have

p*%omxlis—ct (M’ N) = p*jfomxlisfct (M7 j) ~ Hom xlis.et\x§tr (p*Mv p*j)

We can also take an equivalence p*J — Jo in Dog (Xiis-et |ystr ), Where Jo has injective homotopy groups. This
equivalence induces a morphism

Hom xlis.et\xitr (p*M7p*j) — Hom -’xlis—etlxb;tr (p*M’ 30)

On the other hand, we have #omx,_,|.... ("M, p*N) = Som Lpiacet | gaer (P M, Jo). Composing these mor-
phisms, we have p* #omy, .. (M,N) = Aom Visore |, (p*M, p*N). It is enough to show that this mor-
phism is an equivalence. For that, it suffices to show that each morphism JZomx, .| ... (pr M, prd) —
Jtom Xtioret |, (prM, d,,) is an equivalence in Doo ( Xiis-et] xn), where p,, : Xjiset]| x, — Xlis-et is the geometric
morphism associated to the localization. The last claim can be checked by routine (see also the last part of
the proof of [LOT, 4.2.4. Lemmal). O

Using this Lemma, we can show the following restatement of [[LOT, 4.2.3. Proposition].

Lemma 6.4.1. Let X, — X be a smooth presentation of a geometric stack X, We denote by M, Net €

00,e (%) the restrictions of M, N to the étale co-topos of X3". Then we have a functorial equivalence

str ™
%Omxlis-etl(M,N) Xeet — f%ﬂomxiﬁgt (Met, Net)-
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Proof. We follow the proof of [LOT, 4.2.3. Proposition]. Let us denote by e : Xjis et e Xﬁfgt the

geometric morphism of co-topoi induced by Et(X5%) < LE(X5). Then we have Moy = e,p*M, Noy = e, p*N
and SHomax,,, .. (M, N)|ys = exp™ Homy,,, . (M, N) by definition. We also have equivalences e*Mey =M

and e*Ngy — 7N since the counit transformation e*e, — id is an equivalence by Proposition BZZ8. Then
Homy,,.. (M, N) g, = exp” Homx,, .,(M,N) ~ e, Htom SR (p*M, p*N)
= e, Hom Xiis-et|pger (exMeg, €xNey) = Homa,, ,(Meg, Net)-

d

Now we have the following type of projection formula. The proof is the same as in [[LOT, 4.3.1. Proposition]
with the help of Lemma 62, so we omit it.

Proposition 6.4.2. Let X, Y be geometric derived stacks locally of finite presentation, and f : X — Y be a
morphism of of finite presentation. Then, for M € Do ¢c(Yiis-et) and N € Déj)c(xhs_et), we have a functorial
equivalence

Hom(M, £.N) = f.#om(f*M,N)
in Doo,c(%lis—et)

For later use, we record the following lemma. Recall the dualizing object Q« for a derived stack X
(Definition B2 9).

Lemma 6.4.3. Let X, Y and f : X — Y be as Proposition E432. For M € Do ¢(Yis-et), the canonical
morphism

fro#tom(M, Qy) — Hom(f*M, f*Qy)
is an equivalence.

6.5. Derived tensor functor. Let X be a geometric derived stack locally of finite presentation. In the rest
part of this section, we denote by ® the tensor functor ®, on Do (Xjiset). Recall also the dualizing functor
Dx : Doo(xlis_et) — Doo (DCHS_et)OP (Notation M)

Lemma 6.5.1. (1) For M, N € Do ¢(Xiis-et), we have Som(M,N) ~ Dy (M @ Dx(N)).
(2) For M, N € D{J), (Xjis-er), we have M@ N € D) (Xjig-er)-
Proof. The argument in [LOT, 4.5.1 Lemma] works with the help of Proposition B T3. U

6.6. Shriek functors. Following the ordinary algebraic stack case [LO1, §4.6], we introduce the derived
functors fi and f' using the dualizing functor Dx.

Definition 6.6.1. Let X and Y be geometric derived stacks locally of finite presentation, and let f : X — Y
be a morphism of finite presentation. We define the functor fi by

fi:==Dyof, oDx : D) (Xiiset) —> DL (Yriseet)-
Here f, is the derived direct image functor (Proposition E21). We also define the functor f' by
fi=Dyof* oDy : Duge(Y, A) — Deo o (X, A),
where f* is the derived inverse image functor (Definition G32).
We immediately have

Proposition 6.6.2. Let X, Y and f : X — Y be as in Definition EG1. For M € Dgg}c(xhs_et) and N €
Doo.c(Ylis-et ), we have a functorial equivalence

fedtom(M, f'N) ~ som(HM,N).

Proof. The statement follows from the sequence of equivalences

FotomO, FN) 2 f Aom(Dyx N, Dx M) ©) £, Aom(F* Dy N, Da M)

2 Hom(Dy N, £.Dx M) = Aom(Dy f. Dx M. Dy Dy N) % Aom(fiM,N).

Here (1) is by Proposition B3T3 (3), (*2) is by Definition BB, (*3) is by Proposition 472, and (*4) is
by Definition EG1 and Proposition B513 (2). O

We also have the projection formula.
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Proposition 6.6.3. Let f: X — Y be of finite type.
(1) For M € Dg;)c(xns_et) and N € Dgg,{(yhs_et) we have a functorial equivalence

AOC® FN) = (fid) @ N.
(2) For M € D;)C(xhs_et) and N € Déﬁ,’c(yhs_et) we have a functorial equivalence
f' AHom(M,N) ~ som(f*M, £'N).
Proof. The argument in [COT, 4.5.2, 4.5.3] with Lemma G5 works. O

Let us give a few properties of the functors f' and f;. The proof is now by a standard argument, so we
omit it.

Lemma 6.6.4. Let X and Y be geometric derived stacks locally of finite presentation.
(1) If f: X — Y is a smooth morphism of relative dimension d, then f' = f*(d).
(2) If j : X — Y is an open immersion, then j' = j* and j is equivalent to the extension by zero functor
(see §8ZM). In particular, we have a morphism ji — j,.

In the rest part of this subsection, we discuss base change theorems for lisse-étale sheaves of derived stacks
under several situations. Let us consider a cartesian square

X=X

|l

Y —Y
of derived stacks locally of finite presentation with f of finite presentation. We have a morphism

p i — o’
in Fun(DS % (Xiiseet); DS (Yfiger)) and

P fe — ¢u
in Fun(DSE e (Xiis-et), DL (Yher))-
Proposition 6.6.5. If p is smooth, then the morphisms p* fi — @7* and p'f, — ¢.7' are equivalence.

Proof. so that the functor p* is defined on all Do ¢ (Y1is-et) and equal to the restriction from Yiis.et t0 Yie or- O

We expect to have simple extensions of the base change theorems for algebraic stacks shown in [LOT, §5],
but we will not pursuit them.

7. ADIC COEFFICIENT CASE

In this section we give an extension of the results in the previous section to the adic coefficient case.

Let k be a fixed commutative ring, and A be a complete discrete valuation ring with characteristic £. We
assume that ¢ is invertible in k. We write A = @n Apn, Ay = A/m™ with m C A the maximal ideal. We
denote by Ae = (Ay,)nen the projective system of commutative rings.

7.1. Projective systems of ringed oco-topoi. Let T be an oo-topos. Recall Definition BZZ4 of the oo-
topos of projective systems in T. It is an I-simplicial co-topos T with | = N(N), equipped with a geometric
morphism e, : T — TN of oo-topoi for each n € N. The adjunction

—1.7N .
e, T z=T:eyx.

associated to e,, is described as follows. For U, € TN7 we have e;lU. =U,. For U € T, we have

U >
(en,*U)m _ { (m > 71)7
x  (m<n).
Here * denotes a final object of 8. We also have a geometric morphism p : TN — T which corresponds to the
adjunction
p 1T P ™ Py
with p~'(U) = (U)nen.
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Let Re = (Ry)n>0 be a projective system of commutative rings, We ring the oo-topos T by the constant
sheaf R,,, and ring TV by R,. Then we have geometric morphisms

en: (T,R,) — (TNR,), p:(TV,R,) — (T, R,)

induced by e, : T = TN and p: TN = T.
Let us apply this notation for T = Xjjset and Re = A,, where X is a geometric derived stack over k and
A, is the complete discrete valuation ring in the beginning of this section. Recall the notion of A R-nullity:

Notation. A projective system M, = (M, )nen in an additive category is AR-null if there exists an r € Z
such that the projection M,,, — M, is zero for every n.

Following [CO2, 2.1.1. Definition] we introduce

Definition. Let My = (M,,)nen be an object of Doo (XX, ., As).
(1) M, is AR-null if the projective system m; M, of the j-th homotopy groups is AR-null for any j € Z.
(2) M, is constructible if m;M,, is constructible for any j € Z and n € N.

(3) M, is almost zero if the restriction (m;Ma)ly, ~is AR-null for any U € dASE and j € Z.

Following [[LOZ, 2.2], we give a description of AR-null objects and almost zero objects by the restrictions
to étale co-topos. Let us take U € dASSE. We denote by p : XN, .. — X the projection, Identifying U with
the constant projective system p*U, we have (Xiset|y ) ~ (X}, o)|, which will be denoted by X} |,
Then we have a square

N
N J N
xlis—ct }u :xlis—ct

Xiis-et ‘u T> Xiis-et

in RTop, where j and j" are the canonical functors (Corollary B=33, Fact BTH). By the exactness of j* and
(jN)*7 we have (p|u)*(]N)* = ]*p* iIl Fun(DOO(x{\iIs-et% Doo(xlis-et‘u))-
On the other hand, denoting by ey : Xijjs-ot — Uet and Eﬁ : x{?s_et — UL the geometric morphisms induced

by the natural embedding Et(U) — LE(X)|,, (Lemma B258), we have a square

N

N “u N
xlis—et U uet

xlis—et|u u > uet

in RTop. Since (ey()« and (£})). are exact, we have (pu)«(eh))« = (1)« (ply)s-

For M € Do (Xiiseet, A), we denote by My € Doo(Uet, A) the restriction (Notation 522). By the identi-
fication of U with p*U, we can regard M as an object of DOO(DCEIS_et‘u ,Ae), which will be denoted by the
same symbol M. Then by the argument above we immediately have

Lemma ([LOZ, 2.2.1. Lemma]). We have (pu)«Mu ~ ((p[q)«M)u in Do (Ues, A).
Now AR-null objects and almost zero objects are described as follows.

Fact 7.1.1 ([CO2, 2.2.2. Proposition]). Let Mo € Doo (X, o, Ao ).
(1) If My is AR-null, then p,Mq = 0 in Do ( Xiis-et|q s A)-
(2) If M, is almost zero, then p,Me = 0 in Doo( Xiis-ct|q 5 A)-

Definition. Let My = (M,,),en be an object of DOO(DCES_et,A.).

(1) M, is adic if each M, is constructible and each morphism A,, ®4,_, M, 41 — M, is an equivalence.

n+1 X

(2) M, is almost adic if each M, is constructible, and if for each U € dASH there is a morphism
N — M.y, from an adic object N € Doo (UL}, Ay) with almost zero kernel and cokernel in the
homotopy category.

(3) M, is a A-object if p;M, is almost adic for each j € Z. The full sub-oo-category of D(XY, ., As)

spanned by A-objects is denoted by Do (X}, i) Ae)

We focus on the localized oo-category of Do (X, i, Ae) by almost zero objects.
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Definition. Let W be the class of those morphisms in DOO,C(DCN

lis.ot> Ae) Which are equivalences Mo, — N,
with Ne an almost zero object. We define

DOO,C(x7 A) = Doo,C(‘rleiIs-eta A.) [W_l]

The oo-category Do (X, A4) is stable and equipped with ¢-structure induced by that on Dy (X, ., Ae)-
By Definition BZZ1 and Fact BZZ3 of oco-localization, we have a functor

Dooyc(xll\ils-em A') — DOO,C(x7 A)

N
lis-et

On the other hand, the geometric morphism p : X — Xlis-et induces an adjunction

DPx - Doo,c(xll\ils_etaAo) <:> Doo,c(xlis—etaA) :p*~

By Fact I, the functor p, factors through Do (XN ., Ae). The resulting functor is denoted by the same
symbol as

Ps i Doo e (X, A) — Do o (Xiis-ct, A)-
Definition. We define the normalization functor to be
Nrm : Dog (X, A) — Deo.o( Xl ers Ae), M —> Nrm(M) := p*p. M.
An object M € Do (X, A) is normalized if the counit transformation Nrm(M) — M is an equivalence.
Let us cite a useful criterion of normality.

Fact 7.1.2 ([CO2, 3.0.10. Proposition]). An object M € Do (XY, .., As) is normalized if and only if the

lis-et?
morphism A, ®x, ., M,+1 — M, is an equivalence for every n.

n+1

By [CO2, 3.0.14. Theorem], if M is a A-object, then Nrm(M) is constructible and the morphism Nrm(M) —
M has an almost zero cone. Then we have

Fact ([LO2, 3.0.18. Proposition]). The normalization functor sits in the adjunction

Nrm : Do o (X, A) 7= Do e (Xliger, Ao) @ Pi-
Thus D o(X, A) € Cateo.
Using the ¢-structure on D (X, A), let us introduce
Notation. We denote by
D5, (X,A) C Do o(X,A), *€{+,—.b}
the full sub-oo-category spanned by bounded objects, and by
D) (X, A) C Do o(X,A), € {+,—.b}

the full sub-co-category spanned by those objects whose restriction to any quasi-compact open immersion
U = X lies in D7 (U, A).

Finally we give a definition of the derived co-category of lisse-étale constructible Q,-sheaves. We follow
the 2-categorical limit method taken in [0, 1.1.3], [B, §6].

Let A be a discrete valuation ring with residue characteristic £, Denoting by K the quotient field of A, we
set Dog o(X, K) 1= Do o (X, A) ®4 K. Running K on the co-category FinExt(Qp) of finite extensions of Q,
these oco-categories form a cartesian fibration on FinExt(Qy,). Thus we can take

DOO,C(:X7@) = @1 DOO,C(:X,K)
K eFinExt(Qg)

It is a stable co-category equipped with a t-structure.

Notation 7.1.3. We call Do, (X, Qy) the (-adic constructible derived co-category of X. An object of the
heart is called an ¢-adic constructible sheaf on X.
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7.2. Internal hom and tensor functors on D, .. In the remaining part of this section, we fix a geometric
derived stack X locally of finite presentation, and denote

Doo,c(x) = Doo,c(xlis—et~A) or Doc,c(xlis—eta@)7 Doo,c(x) = Doo,c(xj\) or Dooc(xy@)

We also use Doo(X) := Doo(Xjis-et; A) o Doo(Xiiser, Qe). Recall also the normalization functor Nrm :
DOO7C(:X:’ A) — D<X>7C(:X:§s et7A )

We define a bifunctor J#om s : Do (X)°P X Do o(X) = Do o (XN, i, Ae) by
Homp(M,N) := Homp, (Nrm M, Nrm N).
Then we have
Fact 7.2.1 ([LO2, 4.0.8. Proposition]). F#bm gives a bifunctor
Hom : D), (X)°P x D) (X) — DL (0).
Next we discuss the tensor functor. For M, N € D o(X), we set
M @4 N :=Nrm(M) @, Nrm(N).
Thus we have a bifunctor ®4 : Deg ¢(X) X Do c(X) = Deart (X). We then have
Lemma 7.2.2 ([LOZ, 6.0.12. Proposition]). For £,M,N € Dég)C(DC) we have
HHomp (L @4 M, N) >~ Homy (L, H#omy(M,N))

Proof. Denoting £ := Nrm(£) and similarly for M, N, the usual adjunction yields Ftom A(L ®a M, N)

L
%ﬂom,\(z,%om(f/[ ﬁ)) Using Fact 12, we can show that £ ®, M is normalized. Thus we have the
consequence. O

7.3. Dualizing object. Here we explain the dualizing object with adic coefficients following [COZ, 7].

Recall that A denotes a complete discrete valuation ring and A,, = A/m”. Let S be an affine excellent
finite-dimensional scheme where the residue characteristic £ of A is invertible and any S-schemes f: U — S
of finite type has finite cohomological dimension. It means that there is an integer d € N such that for any
abelian torsion étale sheaf F over U we have R'f,F = 0 for i > d. By [LO2, 7.1.3], there exists a family
{Qsn;stn}nez., with Qg, a A,-dualizing complex on S and ¢ : A, ®a, Qgn+1 — Qs an isomorphism in
the bounded derived category D2(S, A,,) of complexes of A-modules with constructible cohomology groups.
We call it a compatible family of dualizing complexes.

Let k be an algebraic closure of the finite field F, of order g such that ¢ is invertible. Then by [LOT,
1.0.1] the affine scheme S = Speck satisfies the above conditions, and we have a compatible family
{Qspeck,ns tntnez., of dualizing complexes. Then, for a geometric derived stack X locally of finite pre-
sentation over k, we have the dualizing object

Qx,n S D(xlis-etaAn)
using dgpec k,n and the construction of §6H. The isomorphism ¢,, induces an equivalence
(Qx,n+1 OAps1 An)uet — (Qx,n)uec

for any U € dASlgiCS)fp. By the gluing lemma (Fact BZZ9), we have an equivalence
Qx,n+1 ®kn+l An ; Qx‘rw

In order to construct a dualizing object in Dy o(X), let us construct a data of dualizing objects in

so.c(XN. ). Note first that the N-simplicial co-topos X1 . is equivalent to the oo-topos associated to

the followmg oo-site: The underlying oco-category of the nerve of the category whose objects are pairs

(U,m) € dASllb x N, and whose set of morphisms from (U, m) to (V,n) is empty if n > m, and is equal

to HomhdAsx(u V). A covering sieve is a collection {(U;,m;) — (U, m)}ier with m; = m for all ¢ and
{U; = Ulicr € Coviset(U). Then, for each U € dAShS’fp and m € N, we have a sequence

Pm
xhs et|(u m) xhs et|u _> uet

in RTop. Here p,, is the geometric morphism defined by p,,'(F) = (F)n<m. Now we set
Qu,m = pfn((Qx,m)u) = (5 Opm)*Ku,m<_d>7
where K m € Doo,c(Uet, Apy) is the dualizing object for the derived algebraic space U, and d is the relative

dimension of the smooth morphism U — X. Then by the argument of [[LO2, 7.2.3. Theorem| we can apply
again the gluing lemma (Fact BZZ9) to Qqm’s.
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Fact ([LO2, 7.2.3. Theorem]). There exists a normalized object Q¢ € Do (X, ) inducing Qx ,,, and it
is unique up to contractible ambiguity.

Notation. We denote by

Qx € Do (X, A)
the image of Qy o under the projection p. : Doy (XN, ) = Doo.e(X, A), and call it the dualizing object.

lis-et

Qx is of locally finite quasi-injective dimension. Namely, for each quasi-compact open immersion U — X,
(Qo.n)u is of finite quasi-injective dimension, and the bound depends only on X and A, not on n.
Now we define the dualizing functor Dy by

Dx(j\/[) = %mA(M, Qx)

for M € Dy o(X)°P. By Fact 2, the image under Dy lies in DDO,C(DCEIS_W A,). Thus we have the induced
functor

Dx : Do o(X)°P — Do (X).
It is involutive: D3 = id.
Fact ([LO2, 7.3.1. Theorem]). The dualizing functor Dy restricts to

D DL () — DELEY
We record a corollary of this fact for later use.
Lemma 7.3.1 ([LO2, 7.3.2. Corollary]). For M,N € Dy, (X, A), we have an equivalence
Hom (M, N) ~ Hom, (Dx(M),Dx(N))

which is unique up to contractible ambiguity.

7.4. Direct and inverse image functors. Let f : X — Y be a morphism of finite presentation between
derived stacks locally of finite presentation. We have the induced geometric morphism f, : I)C}\fs_ct — yﬁs_ct,
and an adjunction

f* : DDO(xII\iIs—eﬂA') <—_—2 Dw(yﬁs—et?A°) : f*

of the derived direct image and inverse image functors.
By [L02, 8.0.4. Proposition], if M € Do (XL ., As) is a left bounded A-object, then f.M is a A-object.

lis-et?
We can also check that AR-null objects are mapped to AR-null objects. Thus the following definition makes
sense.

Notation. The obtained functor
f* : D(oj,)c(xa A) — Dg,)c(y’A)
is called the derived direct image functor.

On the other hand, one can check by definition that f* sends A-objects to A-objects and AR-null objects
to AR-null objects. Thus we have

Notation. The obtained functor
f" i Doce(¥,A) — Doo c(X, A)
is called the derived inverse image functor.
One can check the following by the standard argument using adjunction.
Lemma 7.4.1. For M € D(();)C(H, A)and N € D((;)C(DC, A), we have an equivalence
fo Homp(f*M,N) =~ Fomp (M, fN)

which is unique up to contractible ambiguity.
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7.5. Shriek direct and inverse image functors. As in the finite coefficient case, we define shriek functors
using dualizing functors.

Let f: X — Y be a morphism of finite presentation between derived stacks locally of finite presentation.
Let Q« be the dualizing object of X, and

Dy = Homp(—,x) : Do (X, A)°? — Do (Y, A)
be the dualizing functor. Similarly we denote Dy := J#omp(—, Qy).
Notation. We define the functor f; by

fri=Dyof.oDx : DX, A) — DY, A),
and the functor f' by
f'=Dyof* oDy : Duogc(Y,A) — Duo (X, A).
By Lemma [ and Lemma =3, we immediately have
Lemma. For M € D((;,)C(DC, A)and N € ngfc(y, A), we have an equivalence
fr Homa (M, f'N) ~ stom (M, N)
which is unique up to contractible ambiguity.
We also have

Lemma ([LOZ, 9.1.2. Lemmal). If f is smooth of relative dimension d, then for any M € Dy, (X, A) we
have an equivalence

FM e fr(d)

which is unique up to contractible ambiguity.

Proof. We have Qyx ~ f*Qy(d) by definition of the dualizing object and Lemma 664 (1). Then by the
biduality D% =~ id we have the consequence. O

Finally we explain the smooth base change with adic coefficients. Let

P

d )

9/?9

be a cartesian square of derived stacks with f of finite type. Then we have a morphism
a: () fi— f0)
of functors ngﬁc(x, A) — D(i)c(y’, A). By Proposition E5H we have
Proposition 7.5.1. If p is smooth, then « is an equivalence.
We close this section by

Remark 7.5.2. (1) All the claims hold for the f-adic constructible derived oco-category Do (X, Q)
(Notation [C13).
(2) If we take X to be an algebraic stack of finite presentation, then we can recover the categories and
functors in [LO2).

8. PERVERSE SHEAVES ON DERIVED STACKS

In this section we introduce the perverse t-structure on the constructible derived oo-category on a derived
stack X, and discuss perverse sheaves, the decomposition theorem and weights. Our argument basically
follows [CO3], where the theory of perverse sheaves on an algebraic stack is developed.

Let k be a fixed field, and A be a complete discrete valuation ring whose residue characteristic is invertible
in k. We denote A, := A/m"*! for n € N. We fix a geometric derived stack X locally of finite presentation
over k.
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8.1. Gluing of ¢-structures. We recollect standard facts on gluing of t-structures in [BBD)], specializing
to the constructible derived oco-categories of derived stacks. See also [LO3, §2].
Assumption 8.1.1. Let D, Dy and Dp be stable co-categories, and
Dp D25 Dy

be a sequence of exact functors (Definition [ITH). Assume the following conditions hold.
i) 4, has a left adjoint 4* and a right adjoint .
ii) j* has a left adjoint ji and a right adjoint j..
(iii) 4'j. = 0.
(iv) For each K € D, there exist morphisms 4,i* K — jij* K[1] and j,5*K — i.i' K[1] in D such that the
induced triangles

Gi°K = K =i, i"K — jij*K[1], 'K — K — j,j*K — i, K[1]

in h D is distinguished.
(v) All the unit and counit transformations i*i, — id — i'i, and j*j, — id — j*ji are equivalences.

Fact 8.1.2. Under Assumption BT, we further suppose that Dr and Dy are equipped with ¢-structures
determined by (DI%O7 D%O) and (D%O, D%O) respectively. Define the full sub-co-categories D=, D=° ¢ D by

D<= {K eD|j*K e D5°,i*K e D3"}, D=":={K eD|j*K e D7°,i'K € DZ"}.
Then the pair (D=°, D=") determines a t-structure on D.

We consider two cases which satisfy Assumption BT

Let k, A and X be as in the beginning of this section. Let i : ¥ — X be a closed immersion of a derived
stack and ¢ : U — X be the open immersion of its complement (Notation PZ22H). Recall that we also have
constructed derived functors i : Dy — D and j' : D — Dy, By §68 we have i) = i, and j' ~ j*, so that they
are compatible with the notation in Assumption ET1. Then, by the argument in §58, we have

Lemma. Fix n € N. Then the stable co-categories
D = D% (Xiis-ets An), Dy 1= D% o(Friser, An),  Dac := D «(Uiiseet, An),
and the direct and inverse image functors
Dy 2 D 255 Dy
constructed in §B satisfy Assumption B
We can also consider the adic coefficient case.
Lemma. The stable co-categories
D =D’ .(Xiset;A), Dy :=DZ (Fiiset,A), D := DL (Wiiget, A),
and the functors
Ds D 25 Dy
constructed in §B satisfy Assumption B

8.2. Perverse t-structure.

8.2.1. The case of derived algebraic spaces. Here we will introduce the perverse t-structure for derived alge-
braic spaces. Let k and A = Lgln A, be as in the beginning of this section.

Consider a derived algebraic space U of finite presentation over k. Fix n € N for a while, and let
D’ = Df;(u, A,,) be the derived oco-category of bounded complexes of étale A,-sheaves with constructible
cohomology groups.

Following the case of algebraic spaces (Definition BTI2), let us introduce

Definition. A point of a derived algebraic space U is a monomorphism dSpec L — U of derived stacks
(Definition P2210) with L some field. It will be denoted typically as i, : u — U.
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The equivalence of two points on U is defined similarly as Definition BT7. The dimension of U at its
point u is also defined in the standard manner, and it will be denoted by dim(u).
We denote by
ppbs0 - pb
the full sub-oo-category of objects K such that H’(i% K) = 0 for each point u of U and every j > — dim(u).
Here i} K := (i£K), with iz : Uyea — U the closed immersion. Note that the symbol X .q makes sense here.
Similarly, we denote by
pph20 - pb
the sub-oo-category of those K such that H7 (i}, K) = 0 for each point v € U and every j < —dim(u). Then,
as in the case of schemes [BBD, 2.2.11], the pair

(p Db,SO7 P Db,ZO)

determines a t-structure on Db, which is called the (middle) perverse t-structure. We denote by
PH%: D" — D
the perverse cohomology functor.
In [CO3, §3], an extension is developed of the perverse t-structure on the bounded derived category

to the unbounded derived category. Let us explain it in the context of derived algebraic spaces. For
K €D =D.(U,Ay,) and o, 8 € Z with a < 3, we denote T[o g1 K := T>4T<pK. Then we have

Fact ([LO3, Lemma 3.3]). For any K € D”, there exist , § € Z such that o < § and PHO(K) ~ PH (7, s K).

For the completeness of presentation, let us explain the outline of the proof. It suffices to show that there
exist a, B € Z, o < B such that for any K € D<* or K € D># we have PHO(K) = 0. By the definition of the
perverse sheaf, one can take a to be an integer smaller then — dim X . Since the dualizing sheaf of a scheme
of finite type over k has finite quasi-injective dimension, there exists ¢ € N such that for any d € Z, any
point u of U and K € D¢ we have i, K € D”%*¢. Thus we can take 3 to be an integer greater than —c.

Using the integers a < § in the above Fact, we have a well-defined functor

PH:D— D", K+ PH(T0sK).
We now define P D=° (resp. P DZO) to be the full sub-oco-category of D spanned by those K € D with
Pri(K) :=PH(K[j]) =0 for any j € Z<q (resp. j € Z>¢). The pair
(PD=Y, pDZO)
determines a t-structure on D, which is called the perverse t-structure.
Similarly, for the derived co-category D° := D’g(u7 A) with adic coefficients, we have a pair
(P D®<0 p Db,ZO)
given by the same condition, and it determines a t-structure on D (see [LO3, Proposition 3.1] for the detail).

We also call the obtained t-structure the perverse t-structure.
The same reasoning works for D := D (X, A).

8.2.2. The case of derived stacks. Now we consider a geometric derived stack X. We have the stable oco-
categories Do (X, Ay,) and Do (X, A). We denote either of them by D(X).

We first assume that X is of finite presentation. Take a smooth presentation X, — X. We denote by
p: Xg — X the projection from the derived algebraic space Xy. Then we may assume that Xy is of finite
presentation.

Definition. For a derived stack X of finite presentation, we define
PDS0(X)  (resp. PD=2(X))

to be the full sub-co-category of D(X) spanned by those objects M such that p*M[d] € PD=°(Xy) (resp.
p*M|d] € PDZ%(Xy)), where d is the relative dimension of p : Xy — X.

Lemma. The oo-categories PD<?(X) and PDZ%(X) are independent of the choice of X4 — X up to equiva-
lence.

Proof. The proof of [LO3, Lemma 4.1] works. O

Lemma 8.2.1. For a geometric derived stack X of finite presentation, the pair (°PD<°(X),PD2%(X)) deter-
mines a t-structure on D(X).
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Proof. The non-trivial point is to check the condition (iii) of the ¢-structure (Definition D2). Using
noetherian induction and gluing of ¢-structures (Fact B12), we can construct for each M € D(X) a fiber
sequence M/ — M — M with M’ € D=°(X) and M” € D=°(X). See [LO3, Proposition 3.1] O

Next we assume that X is locally of finite presentation. In this case, we have

Proposition 8.2.2. For a geometric derived stack X locally of finite presentation, we define
PDS0(X)  (resp. PD=2(X))

to be the full sub-co-category of D(X) spanned by those objects M such that for each open immersion Y — X
with Y a derived stack of of finite presentation, the restriction M|, belongs to PD=°(Y) (resp. to PD=°(Y)).
Then the pair

(PD=%(X),PD=%(X))
determines a t-structure on D(X), which will be called the perverse t-structure.

Proof. We follow the proof of [LO3, Theorem 5.1]. The non-trivial point is the condition (iii) of the ¢-
structure. We can write X ~ hﬂze s X; with {X;}ier a filtered family of open derived substacks of finite
presentation. For each 7 € I, the restriction M|y sits in a fiber sequence M; — M|y — M} by Lemma
BEZ1. Denote by j; : X; — X the open immersion. Then we have a sequence

(i) MG = (Gigi WM — -

in D(X), so we can define M’ to be the colimit of this sequence. We then have a morphism M’ — M, and
also a fiber sequence M’ — M — M”. By [LO3, Lemma 5.2], the restriction of this fiber sequence to X; is
equivalent to Mj — M|y — M for each i € I. Thus we have M’ € PD=%(X) and M’ € PD=°(X). O

Definition 8.2.3. For a derived stack X locally of finite presentation, we define the perverse t-structure of
D(X) = Do o(X, Ay) or Do o(X, A) to be the t-structure given by Proposition B22. Its heart is denoted by
Perv(X) c D(X),

and its object is called a perverse sheaf on X.
We denote by
PHO : D(X) — Perv(X)
the perverse cohomology functor. The standard argument in [BBD] gives

Lemma. The homotopy category h Perv(X) is abelian which is artinian and noetherian.

In particular, we have the notion of simple objects in Perv(X). They are called simple perverse sheaves on
X.

Now let us introduce intermediate extensions. Recall that for an open immersion j of derived stacks we
have a morphism j; — j, of derived functors (Lemma B654).

Definition. Let i : ¥ — X be a closed substack with the complement j : U — X. For a perverse sheaf
P on U, we define 5.P € Perv(X) to be the image in the abelian category hPerv(X) of the morphism
Po(iP) = Po(j«P):

P = Im(Pro (71 P) = Pro(4.P)).

We call it the intermediate extension.

Note that as a perverse sheaf, or an object of Perv(X), ji.P is defined up to contractible ambiguity.
Hereafter we consider j, as the functor
Jix : Perv(U) — Perv(X).
Recall the dualizing functor Dy on D(X) (see §ICH, Remark C52). Here are standard properties of the
intermediate extension.
Lemma. (1) We have j*(ji.P) ~ P and Pmo(i*(51+P)) = 0, and these properties determine 5, P as an
object of Perv(X) uniquely up to contractible ambiguity.
(2) Let p: X¢ — X be a smooth presentation of relative dimension d, and let Fy L> Xo L5 Ug be the
pullbacks of F and U. Then p*[d]ji. ~ ji,p*[d]

Proof. The proofs of [LO3, Lemma 6.1, 6.2] works with the case of derived algebraic spaces, the derived
functors in § and the smooth base change (Proposition Z5). g
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For later use, let us introduce

Definition 8.2.4. (1) An object My = (M, )nen € Mody, (X) is smooth if all M,, are locally constant
(Definition BZ).
(2) An object M € D(X) is smooth if for each j € Z the homotopy group ;M is represented by a smooth
object of Do (X, As), and vanishes for almost all j.

8.3. Decomposition theorem. We now discuss the decomposition theorem of perverse sheaves on derived
stacks. We fix a base field k. Let X be a geometric derived stack of finite presentation over k. We have the
derived co-category Do o(X, Z¢) of constructible Zy-sheaves with ¢ invertible in k.

Let us consider the full sub-co-category DI;O,C(I)C, Zy) spanned by bounded objects, and set Dl;o,c(I)C, Q) :=
Dgo’c(f)C, Zy¢) @ Qp. By the argument in the previous subsection, we have the perverse t¢-structure on
DZ;QC(DC, Zyg). Tt induces a t-structure on DI;QC(DC, Q¢), which will also be called the perverse t-structure.

Definition. An object in the heart of this t-structure will be called a perverse Qq-sheaf.

For a derived stack V over the base field k, we have a derived stack over the algebraic closure k with the
reduced structure, which will be denote by (V®y, E)red. Let us give a local explanation on the reduced derived
stack: For a derived k-algebra A = ®,enA,, € sComy, we denote Aeq 1= DnenAred,n With Area,0 := (Ao)red
as a commutative k-algebra and Ayeq,n 1= Ay ® 4, Ared,0 for n > 0.

We can now describe simple perverse Qg-sheaves on X. Let us call a derived substack V < X irreducible
if V is truncated (Definition EZ227) and the truncation TrcV is an irreducible algebraic stack.

Proposition 8.3.1 (c.f. [LO3, Theorem 8.2]). Let j : V — X be the closed embedding of an irreducible
substack such that (V ®j k)yeq is smooth. Let £ € Modg,(V) be smooth (Definition BZ4) and a simple
object (in the abelian category h Modg,(V)). Then the intermediate extension ji.(L[dim(V)]) is a simple
perverse Qg-sheaf on X, and every simple perverse Qy-sheaf on X is obtained in this way.

The argument in [LO3, §8] works in our situation with obvious modifications, and we omit the detail of
the proof.

9. MODULI STACK OF PERFECT DG-MODULES

In this section we cite from [TVa] the theory of moduli stacks of modules over dg-categories via derived
stacks.

9.1. Dg-categories. In this subsection we collect basic notions on dg-categories. We fix a commutative
ring k, and denote by C(k) the category of complexes of k-modules with the standard monoidal structure
®p. For later use, we write the dependence on the universe explicitly. See §2 for our convention on the
universe.

Definition 9.1.1. A U-small dg-category D over k consists of the following data.
e A U-small set Ob(D), which is called the set of objects of D. We denote X € D to mean that
X € Ob(D).
e For every X,Y € D, a complex of k-modules

22 Homp (X, Y) ™! 2% Homp (X, Y)° % Homp (X, Y)t 2 ...

called the complex of morphisms from X to Y, which is denoted just by Homp (X, Y).
e For every X,Y, Z € D, a morphism of complexes

o : Homp(Y, Z) ®, Homp(X,Y) — Homp (X, Z)
called the composition map, which is to satisfy the unit and associativity conditions.

In other words, a dg-category over k is nothing but a C(k)-enriched category. Hereafter the word “a
dg-category” means a U-small dg-category over k.

Notation 9.1.2. We denote by kq, the dg-category over k with one object * and the complex of morphisms
* — x given by k.

We will always consider the projective model structure on C(k), where a fibration is defined to be an
epimorphism and a weak equivalence is defined to be a quasi-isomorphism (see [H, §2.3]).
Recall also the notion of dg-functors.

Definition. A dg-functor f:D — D’ between dg-categories D and D’ consists of
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e A map f:Ob(D) — Ob(D’) of sets.
e For every z,y € D, a morphism f; , : Homp(z,y) — Homp/ (f(x), f(y)) in C(k) satisfying the unit
and associativity conditions.

Notation 9.1.3. We denote by dgCaty; the category of U-small dg-categories and dg-functors between them.
Let us recall some standard notions on dg-functors. For that, we introduce
Notation 9.1.4. For a dg-category D, we denote by [D] the category with
Ob([D]) := Ob(D), Homp,(z,y) := H°(Homp(z,y)).
Here H? denotes the 0-th cohomology of a complex.

Definition 9.1.5 ([I2, Definition 2.1]). Let f: D — D’ be a dg-functor between dg-categories.
(1) fis quasi-fully faithful it f, , : Homp(z,y) = Homp/ (f(z), f(y)) is a quasi-isomorphism in C(k) for
any z,y € D.
(2) fis quasi-essentially surjective if the induced functor [f] : [D] — [D’] is essentially surjective.
(3) f is a quasi-equivalence if it is quasi-fully faithful and quasi-essentially surjective.

Finally we introduce

Notation. We denote by D°P the opposite of a dg-category D. It is a dg-category given by Ob(D°P) :=
Ob(D), Hompes (z, y) := Homp(y, ) and the composition map with an appropriate sign.

9.2. Perfect dg modules. In this subsection we recall the notion of perfect dg-modules. The main refer-
ences are [I7] and [I'Va, §2]. We fix a dg-category D over k.

Definition. A D-dg-module is a C(k)-enriched functor D — C(k). We denote the category of D-dg-modules
over by Modgg (D).

The category Modgs(D) has a model structure such that a morphism f : F — G is a weak equivalence
(resp. fibration) if for any z € D the morphism f, : F(z) — G(z) is a weak equivalence (resp. fibration) in
C(k). We always regard Modgs (D) as a model category by this structure. Then

Lemma 9.2.1. The model category Modge(D) is stable in the sense of [H, §7], so that the homotopy
category HoModgg(D) has a natural triangulated structure whose triangles are the image of of homotopy
fiber sequences.

The dg structure and the model structure make Modgs(D) a C(k)-model category in the sense of [H,
Definition 4.2.18]. So, let us give an interlude on C(k)-model categories.

Notation. For a C(k)-model category M, we denote by M°® C M the model subcategory of fibrant-cofibrant
objects (using the same symbol as §B8). We endow M® with the dg structure by restriction of that on M,
and consider M° as a C(k)-model category.

In [TV&], M° is denoted by Int(M). For a C(k)-model category M, we have an equivalence
(9.2.1) Ho(M) ~ [M°]

by [12, Proposition 3.5]. Here [M°] is the category arising from the dg structure (Notation @14), and Ho(M)
is the homotopy category arising from the model structure.
Let us return to the discussion on Modgg(D), We denote by

Modgg (D)° C Modgg(D)

the full sub-dg-category of fibrant-cofibrant objects (using the same symbol as in §BW). By the discussion
in [I'Va, §2.2 pp. 399-400], any object of Modgg(D) is fibrant, so that Modqg(D)® is actually equivalent to

the full sub-dg-category of cofibrant objects. Note that in [TVa] it is denoted by Dob.

Definition. A D-dg-module M € Modqg(D)® is called perfect if it is homotopically finitely presented in the
model category Modqg (D). We denote by

P(D) := Modgg(D);. € Modgg(D)°
the full sub-dg-category of perfect objects.
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In other words, for a perfect D-dg-module M, the natural morphism
h_n} Mapytod,, (D) (M, N;) — Mapytod,, (D) (M, hﬂ N;)
iel i€l
is an isomorphism in the topological category H of spaces (Definition I=32) for any filtered system {N; }icr
of D-dg-modules. Note that P(D°P) is denoted by Dy in [TVa].

Remark 9.2.2. By Lemma E21 and the equivalence (821), we can regard [Modg,(D)°] ~ Ho(Modge (D))
as a triangulated category. Then a perfect D-dg-module is nothing but a compact objects of this triangulated
category.

The C(k)-enriched version of the Yoneda lemma gives a quasi-fully faithful dg-functor
D — Modqg(D°?), x+— hy.
For any x € D, the D°P-dg-module h, is perfect. Thus the above dg-functor factors to
h:D — P(D).
Notation 9.2.3. We call the dg-functor h the dg Yoneda embedding.

We close this part by recalling the notion of pseudo-perfect dg-modules [T'Va, Definition 2.7]. We denote
by dgCaty the category of V-small dg-categories over k and dg-functors (Notation B13). By [I3], it has a
model structure in which weak equivalences are quasi-equivalences (Definition BT3). Recall that we have a
tensor product D ® D’ of dg-categories D and D’ with Ob(D ® D’) := Ob(D) x Ob(D’) and

Hompgp ((z,y), (',y")) := Homp(z, y) @, Homp (y,y).

See also [I2, §4]. This tensor product gives rise to a derived tensor product ®" in the homotopy category
Ho(dgCaty ). Here the symbol Ho denotes the homotopy category of a model category (§02).

Let D and D’ be two dg-categories. By applying to D ®" D’ the construction P(—) which is well-defined
on Ho(dgCaty), we obtain P(D ®* D’). For each object E of this C(k)-model category, we can define a
functor Fig : D — Modqg(D’)° by sending « € D to

Fg(z): D' — C(k), y+—— E(x,y).

Definition. An object E € P(D®"D’) is called pseudo-perfect relatively to D if the morphism Fg factorizes
through P(D’) in Ho(dgCaty).
If D’ = kqg (Notation B12), then such E is called a pseudo-perfect D-dg-module.

9.3. Moduli functor of perfect objects. We continue to use the symbols in the previous §82. The main
reference of this part is [I'Va, §3].

For a commutative simplicial k-algebra A € sComy, we denote by N(A) the normalized chain complex
with the structure of a commutative k-dg-algebra (see §E3 for the detail). We consider N(A) as a dg-
category with one object, and apply the argument in the previous §83 to the dg-category D = N(A). Then
we have the dg-category

Modgg(A) := Modgg (N (A))

of dg-modules over the dg-algebra N(A). We then have full sub-dg-category Modgg(A)° C Modgg(A)
spanned by (fibrant-)cofibrant objects, and denote by

P(A) :=P(N(A)) = Modqg(N(4))3

pe

the full sub-dg-category of perfect objects in Modqg(A4)°.

The correspondence A — Modgg(A) induces, after a strictification procedure, a functor from sComy, to
the category of C(k)-model categories and C(k)-enriched left Quillen functors (see [T'Va, §3.1, p.417-418] for
the detail). Applying the construction M — M° for C(k)-model-categories M levelwise, we obtain a functor
sComy — dgCaty, A — A. Here dgCaty denotes the model category of the V-small dg-categories. Taking
the sub-dg-category of perfect objects. we obtain a functor

sComy, — dgCaty, A+r— Epe, (A— B)— (N(B) ®n(a) —: Epe — Epe).

Next we turn to the definition of the moduli functor. Let D be a dg-category over k, and consider the
following functor.

Mp : sComy —> Seta, Mp(A) == Mapgyca, (D, P(A)).
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Here Seta denotes the category of simplicial sets (Definition ) and MapdgcaLtv denotes the mapping space
in the model category dgCaty, which is regarded as a simplicial set. For a morphism A — B in sComy, the
morphism Mp(A) — Mp(B) is given by composition with N(B) @y 4y — : P(A) — P(B).

By Fact T2, the value of the functor Mp is actually in the category of Kan complexes. Recall also that
in §272 we set dAff; = (sComy)°P. Thus we see that Mp determines a presheaf of spaces over dAffy in the
sense of Definition [CaTl. We will denote the obtained presheaf by the same symbol:

Mp € PSh(dAff;) = Fun((dAff)°P, 8).
Now let us cite

Fact ([Va, Lemma 3.1]). The presheaf Mp € PSh(dAff) is a derived stack over k.

Following [TVa, Definition 3.2], we call Mp the moduli stack of pseudo-perfect D°P-dg-modules.

As explained in loc. cit., the 0-th homotopy mo(Mp(k)) is bijective to the set of isomorphism classes of
pseudo-perfect D°P-dg-modules in Ho(Modgg(DP)). For each z € Ho(Modgg(D®P)), we have w1 (Mpor, x) =~
AUto(Modg, (Dov)) (7, 2) and m;(Mpes, ) =~ Ext%O(Moddg(Dop))(x,x) for i € Z>2, where Ho(Modge(D°P)) is
regarded as a triangulated category.

Let us cite another observation from [[I'Val].

Definition 9.3.1 ([TV4, Definition 2.4]). Let D be a dg-category over k.
(1) D is proper if the triangulated category [Modgs(D°P)] has a compact generator, and if Homp(z, y)
is a perfect complex of k-modules for any =,y € D.
2) D is smooth if the (D°P®")-dg-module D°P ®@“ D — C(k), (z,y) — Homp(z,y) is perfect.
) D is triangulated if the dg Yoneda embedding D — P(D°P) (Notation B23) is a quasi-equivalence.
) D is saturated if it is proper, smooth and triangulated.

(
(3
(4
Fact 9.3.2. If the dg-category D is saturated, then we have an equivalence

MD(k) = MapdgCat(kdgv D)
of simplicial sets. In particular, Mp(k) is a model for the classifying space of objects in D.

9.4. Geometricity of moduli stacks of perfect objects. Now we can explain the main result in [IT'Va].

Definition 9.4.1 ([T'Va, Definition 2.4. 7]). A dg-category D over k is of finite type if there exists a k-dg-
algebra B which is homotopically finitely presented in the model category dgAlg; of k-dg-algebras such that
P(D) = Modqg (D)3, is quasi-equivalent (Definition 813) to Modgg(B)° .

pe

Fact 9.4.2 ([TV&, Theorem 3.6]). If D is a dg-category over k of finite type, then the derived stack Mp is
locally geometric and locally of finite presentation.

Since this fact is crucial for our study, let us explain an outline of the proof. We start with the definition
of Tor amplitude of dg-modules.

Definition ([IV&, Definition 2.21]). Let A € sComy, and N(A) be the commutative k-dg-algebra in §873.
A dg-module P over N(A) is called of Tor amplitude contained in [a,b] if for any (non-dg) left module M
over mo(A) we have H'(P ®HN(A) M) =0 for any i ¢ [a,b]. Here ®]I1</(A) denotes the derived tensor product
arising from the tensor product ®y(4) of dg-modules over N(A).
9.4.1. Now let us explain an outline of the proof. We first consider the case D = kg, the trivial dg-category
kqg over k (Notation B1), which is of finite type.

The derived stack My,, can be regarded as the moduli stack of perfect k-modules. Let us define a

substack MZ’:] of My, in the following way: For each A € sComy,, define MEZ;:] (A) to be the full simplicial
subset of My,, (A) spanned by connected components corresponding to perfect dg-modules over N(A) of Tor

amplitude contained in [a,b]. Then ML(Z’:] is a derived stack and we have

b
My = Uncy M
In case of b = a, we have
Mﬁga] ~ Vect := |, enVectr,
where Vect, is the derived stack of rank r vector bundles (Definition 222232). By Fact E2233, the derived
stack Mg;:] is truncated, 1-geometric, smooth and of finite presentation.
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In [TV&, Proposition 3.7], it is shown that ML‘Z’:} is an n-geometric derived stack locally of finite presenta-
tion with n = b—a+ 1 by induction on n. The proof is done by constructing a smooth surjection U — J\/[Eil:]

with U n-geometric and locally of finite presentation, so that it gives an n-atlas of Mﬁ’b].

The derived stack U is given as follows. For a derived k-algebra A € sComy, consider the category
Modgg(A)! of morphisms in Modgg(A). Here I = A! means the 1-simplex. This category has a model
structure induced levelwise by the projective model structure on Modgg(A4). We denote by Mod g (A)f<f €
Moddg(A)I the full subcategory spanned by cofibrant objects, and define

E(A) C Modgg(A)!<°f

to be the full subcategory spanned by those objects @ — R in Modgg(A4)7¢°f such that Q € Mgcad’sfl] (A) and

Re M [b=1,6-1] (A). It has a levelwise model structure. Then let E(A)w C E(A) be the subcategory of weak
equ1valences. Now the derived stack U is given by

U : sCom 4 —)S, Ar— N(E(A)W)

We have a natural morphism U — ME;’S_H

geometric and locally of finite presentation. By [I'Va, Sub-lemma 3.9, 3.11], we can describe the fiber of
p explicitly, and find that p is (—1)-representable and locally of finite presentation. It implies that U is
(n — 1)-representable and locally of finite presentation

Next we construct a morphism U — M[ of derived stacks. For each A € sComy, consider the morphism
U(A) — Mp,, (A) sending a morphism Q *) R of N(A)-dg-modules to its homotopy fiber. The definition
of U yields that the homotopy fiber does belong to M[a *J(4). Thus we have a morphism U — M[a *l This

is obviously (n — 1)-representable and locally of finite presentatlon A simple argument shows that it is a
surjection. The proof of smoothness is non-trivial but it is done in [I'Va, Lemma 3.12].

x Vect, and by induction hypothesis the target is (n — 1)-

9.4.2. We turn to the case of an arbitrary dg-category D of finite type. Let us define the derived stack
M% bl by the following cartesian square in dSt.

M][g‘vb] S M[avb]

L

Mp —— My,

Since My, = Ua<s MLC::], we have Mp = J,<; M%’b]. In [TV&, Proposition 3.13] it is shown that the
morphism M][;’b] — MEZ{’:} is m-representable and locally of finite presentation for some n. Then one can

deduce that M[a’b] is a locally geometric derived stack locally of finite presentation. Here one needs to show

inductively that M[ bl g strongly quasi-compact in the sense of [TV, §2.3].

Let us close this subbectlon by the estimate on the geometricity n appearing in the last argument. Recall
from the beginning of this subsection that P(D) is quasi-equivalent to Modqg(B)° with some k-dg-algebra B
of homotopically finitely presentation. By [I'Va, Proposition 2.2], B is equivalent to a retract of a dg-algebra
B’ which sits in a sequence

k:B()—>Bl—>~'-—>Bm—>Bm+1:B/
such that for each ¢ = 0, ..., m, there exists a homotopy pushout square
C; k

|

By —— Bi+1

with C; the free dg-algebra over the complex k[p;] for some p; € Z. Then the argument in [[I'Va, Proposition
3.13] shows

Remark 9.4.3. We can take

n=b—a— min p;.
0<i<m
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9.5. Moduli stack of complexes of quiver representations. We cite an application of Fact 22 from
[TVa, §3.5]. Let @ be a quiver and B(Q) := kQ be the path algebra of @ over k. Considering B(Q) as a
dg-algebra over k, we have a dg-category with a unique object B(Q), which will be denoted by B(Q). Under
the notation in the previous §H2, the dg-category Modys(B(Q))° can be identified with the dg-category
of complexes of representations of @) over k. A pseudo-perfect object in Modqs(B(Q)) is a complex of
representations of () whose underlying complex of k-modules is perfect.

If @ is finite and has no loops, then B(Q) is a projective k-module of finite type, and is a perfect complex
of B(Q) ® B(Q)°P-modules. Moreover the dg-category B(Q) is smooth and proper. Now we can apply Fact
O to the dg-category B(Q).

Definition. Let @ be a finite quiver with no loops. We call the derived stack Mpq) the derived stack of
perfect complezes of representations of ) and denote it by

fPf(Q) = MB(Q)-

Fact 9.5.1 ([TVa, Corollary 3.34]). Let @ be a finite quiver with no loops. Then the derived stack Pf(Q)
is locally geometric and locally of finite presentation over k.

By [TVa, Example 2.5. 3], for any finite dimensional k-algebra B of finite global dimension, the dg-category
B is saturated (Definition BZX). In particular, B(Q) is saturated. Thus Fact B32 works for Pf(Q), and we
can regard mo(PL(Q)(k)) as the set of isomorphism classes of representations of @ over k.

Remark 9.5.2. If we consider the abelian category Mod(B(Q)) of representations of the quiver @ instead
of Modge(B(Q)), then the corresponding moduli stack is an algebraic stack locally of finite type by Remark
[

10. DERIVED HALL ALGEBRA AND ITS GEOMETRIC FORMULATION

10.1. Ringel-Hall algebra. In this section we give a brief account on the Ringel-Hall algebra.
We call a category A essentially small if the isomorphism classes of objects form a small set, which is
denoted by Iso(A). For an object M of A its isomorphism class is denoted by [M] € Iso(A).
Let k =T, be a finite field with |k| = g. Let A be a category satisfying the following conditions.
(i) A is essentially small, abelian and k-linear.
(ii) A is of finite global dimension, and Ext’ (—, —) has finite dimension over k for any i € N.
We denote by Q.(A) the linear space of Q-valued functions on Iso(A) with finite supports. We have a basis
{1ian | [M] € TIso(A)} of Q.(A), where 1[5 means the characteristic function of [M]. The correspondence
Liag —> [M] gives an identification Q.(A) = D 111c150(a) QIM], and we will always identify these two spaces.

For M,N, R € Ob(A), we set Exti (M,N)g:={0— N — R — M — 0 | exact in A} and
aps = |Aut(M)], eﬁyN = |Extk(M, N)R| , gfﬂN = a&la;,leﬂ]v.
Note that ays, efL N gﬁ’ n are well-defined by the condition (i) above and depend only on the isomorphism

classes [M], [N], [R] € Iso(A).
For [M],[N] € Iso(A) we define [M] * [N] € Q.(A) by
[M]«[N]:== ) ginIB],
[R]€Iso(A)
where we choose representatives M, N, R € Ob(A) for the fixed isomorphism classes [M], [IV], [R] € Iso(A).
Denote by [0] € Iso(A) the isomorphism class of the zero object 0 in A.

Fact 10.1.1 ([R]). The triple

Hall(A) := (Qc(A), *,[0])
is a unital associative Q-algebra which has a grading with respect to the Grothendieck group Ky(A) of A.
It is called the Ringel-Hall algebra of A.

Let us recall another definition of g} y. For M, N, R € Ob(A) we have
grvn =S|, Gin={N'CR|N ~N, R/N~M}.

One can prove this statement by considering a free action of Aut(M) x Aut(N) on Exth (M, N)g.
We have the following meaning of the multi-component product. For M, Ny, ..., N, € Ob(A), we set

9(M;N17...,NT) Z:{M.:(M:MlD"'DMT:)MT+1:0)|M¢/Mi+12N1' (Z:L,T)}
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Then we have

[N %% [N = ) > [M].

[M]€Iso(A) Me€F(M;Ny,...,N,)

10.2. Derived Hall algebra. In this subsection we recall the derived Hall algebra introduced by Toén [IT].
Let D be a small dg-category over F, which is locally finite in the sense of [T, Definition 3.1]. In
other words, for any objects =,y € D, the complex Homp(z, y) is cohomologically bounded and with finite-
dimensional cohomology groups.
As in §82, we denote by Modgg (D) the model category of D-dg-modules, and by

P(D) := Modgg(D);. C Modgg(D)

the full subcategory spanned by perfect (fibrant-)cofibrant objects. The category P(D) has an induced model
structure, and we can consider the homotopy category HoP (D). For z,y € P(D) and i € Z, we denote by

EXti(xv y) = HomHo P(D) (LE, y[l])

where [i] denotes the shift in the triangulated category HoP(D).

Let us consider the category Modgg(D)! := Fun(A!,Modgg(D)), where I = A' denotes the 1-simplex
(see §MM). This category has a model structure determined levelwise by that on Modgg (D). In particular, a
cofibrant object in Modgg(D)? is a morphism u : # — y in Modag(D) where x and y are cofibrant and u is a
cofibration.

For an object u : z — y in Modag(D)?, we set

s(u) =z, c(u):=y, tlu):= yHO.
These determine left Quillen functors
s,¢,t : Modag(D)! — Modgg (D).

Next we denote by w P(D)° C P(D) the subcategory of cofibrant objects and weak equivalences between
them. We define the subcategory w(P(D)7)f ¢ P(D)! in the same way, By restricting the functors s, c,t
to these subcategories, we obtain the following diagram.

(10.2.1) w(P(D)T)eof — < 5 4y P(D)eof

sxtl

wP(D)°f x wP(D)cof
Let us then define objects X (©(D) and X (D) of H (Definition I32) by
XO(D) := hNgg(wP(D)*f),  XD(D) := h Ngg(w(P(D)!)F).

Here Ngg(—) denotes the dg-nerve functor (Definition D=3), and h : Seta — 3 denotes the functor giving
the homotopy type of a simplicial set (Definition BZZ). Then, from the diagram (IIZ), we obtain the
following diagram in H.

XM(D) —~—— X9(D)

sxtl

XO(D) x XO)(D)
Now let us recall

Definition. An object X of H is called locally finite if for every x € X, each ; (X,x) is a finite group and
there exists an n € N such that 7;(X,z) = 0 for each i > n. We denote by H'f the subcategory of H spanned
by locally finite objects.

Fact 10.2.1 (|17, Lemma 3.2]). The homotopy types X (D) and X (1) (D) are locally finite. Moreover, for
every (homotopy) fiber F' of the morphism s X ¢, the set mo(F) is finite.

For X € HY, let us denote by Q.(X) the linear space of Q-valued functions on X with finite supports.
Definition. Let f : X — Y be a morphism in K.
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(1) We define a linear map f : Q.(X) — Q.(Y") by
_1)? _1)i+1
M= > a@- J[(ImEa) " )T (@€ Qo(X), y e )
zemo(X), f(@)=y i>0
(2) If f has a finite fiber, then we define a linear map f* : Q.(Y) = Q.(X) by
(@) (@) :=a(f(z)) (aecQc(Y), x € m(X)).
Now we can explain the definition of the derived Hall algebra.
Fact 10.2.2 ([IT, Definition 3.3, Theorem 4.1]). For a locally finite dg-category D over F,, we set
pim o (s x ) : QX O(D)) & Qu(XO (D)) — Qu(XO(D)).
Then the triple
Hall(D) := (Qc(X”/(D)), 1, 0)
is a unital associative Q-algebra. It is called the derived Hall algebra of D.
If we take D to be an abelian category A satisfying the conditions (i) and (ii) in §I0, then the derived

Hall algebra Hall(A) is nothing but the Ringel-Hall algebra in Fact MIT. The grading is recovered by the
Grothendieck group Ko(HoP (D)) of the triangulated category HoP(D) C HoModge(D) (Remark 8232).

10.3. Geometric formulation of derived Hall algebra. In this subsection we give the main content of
this article. We set k = IFy, the finite field of order ¢, and take it as the base ring for the following discussion.
Let D be a dg-category over k which is of finite type. We then have the moduli stack

Mp : A~ Map(D°P,P(A))

of pseudo-perfect D-modules locally geometric and locally of finite type. By the discussion in §842, we have
the stratification
b
Mp = UaSbM][; ]

with each M][SL bl geometric and locally of finite presentation. Note also that if we assume D to be saturated,
then we have a decomposition

a,b a,bl,«
M[D I = UaeKo(HoP(D))M][D ] J
where Ko(HoP(D)) denotes the Grothendieck group of the triangulated category HoP(D) C Ho Modge(D)°
(Remark B22).

Definition. We define the functor &p : sComy — 8§ by

SD(A) = MapdgCat (((Dop)l)ﬁb7 P(A)) .
Here (D°P)! denotes the C(k)-model category Fun(A!,D°P), and (—)fP denotes the full sub-dg-category of
fibrant objects. We call it the moduli stack of cofibrations in D.

Note that we used (—)"" on the opposite dg-category D°P to parametrize cofibrations in the original D.
Now the argument on Mp (see §84) works for €p, and we have

Lemma 10.3.1. The presheaf £ is a derived stack over k which is locally geometric and locally of finite
type.
Now we have a similar situation to §IIA. There exist morphisms
s,c,t: Ep — Mp
of derived stacks sending a cofibration u: N — M to s(u) = N, c(u) = M and t(u) = N [[™ 0 respectively.
In the following we assume D is saturated. Similarly to Mp, the derived stack Ep has a stratification
a,b
&p = Uagb 8%3 ]7
where 8}; bl parametrizes u : N — M such that M has Tor amplitude in [a, b]. Each 8][51 Y hasa decomposition

a,b a,bl,a,8
81[1) h= Ua,ﬂeKo(P(D)) 5[D ] )

where €l9P0*? parametrizes u : N — M with @ = N and 8 = #(u). Here we denoted by N the class of
N € P(D) in Ko(P(D)).
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Then the morphisms s, ¢, u respect the stratification and decomposition. The restrictions of s, ¢, t give a
diagram

E%ab]aaw@ c M][‘317b]7a+/3

d
Mg PP
of derived stacks with p := s x t. The following is now obvious.

Lemma 10.3.2. The morphisms s and ¢ are smooth, and the morphism c is proper.

Now let Q, be the algebraic closure of the field Q, of f-adic numbers where £ and ¢ are assumed to be
coprime. We can apply the construction in 8@ to the present situation, and have the derived oo-category
Do, Mp, Qy) of ¢-adic constructible sheaves. We denote it by

Doo,c(MD) = DOO,C(MDv @)

The stratification and decomposition of Mp gives Do o(Mp) = >, Pa Dw7c(Mg’b]’a). By Lemma M3,
we have the derived functors B

P" Doc e X M) — Do o(€57), @1+ Do o(€5") — Doo e (M),
Here we suppressed Tor amplitude [a, b] in the superscripts. We also have
Do, oM x Mp) = Dog o(M, Qe) % Do o(MD),
where the product in the right hand side denotes the product of simplicial sets. Now we can introduce
Definition 10.3.3. For «, 8 € K¢(P(D)), we define a functor p, g by
Hop * Doo o(MB) X Doo o(MP) — Do o(Mp*7), - M r— exp™ (M) [dim p]

They determine a functor
I Doo,c(MD) X Doo,c(MD) — Doo,c(MD)'

Proposition 10.3.4. p is associative. In other words, we have in each component an equivalence

fa,+~ © (id X 115,5) = patpy © (Ha,ps X id)
which is unique up to contractible ambiguity. Here we suppressed Tor amplitude again.
Proof. The following argument is standard, but let us write it down for completeness. We follow the “rough
part” of the proof of [S2, Proposition 1.9] both for the argument and the symbols.

The functor pa g4y © (id Xpg,,) in the left hand side corresponds to the rigid line part of the following
diagram.

8%(,3,7) Py > gaB+y P2 > Mat+B+y

/! ’
P1 J/pl
N

M x €77 ———= M x M+

P1 l
M x MP x MY
Here we suppressed the symbol D in the subscripts. We can complete it into a commutative diagram by
defining
g0 = (M@ x EP7) X pypareeotr €T,
which is the moduli stack of pairs of cofibrations (N — M, M — L) with N =, M = S+~ and L = a+3+7.
Using the smooth base change (Proposition Z531) in the completed diagram, we have
Ha g © (id X p15,5) = (p3)1(P1)" (p2)1(p1) " [dim py + dim )]

(103.1) e ) (o) i py 4 clim p!] = (P (pap) [im(pap!)]
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In the same way, the functor pq g1~ o (id X g ) in the right hand side corresponds to the rigid line part

of
eleB)y Py > gotBy P2 ~ MotB+y
pY J{p’l
\
8047,3 <MY MetB x MY
Pll
M x MP x MY

The completion is done with
elaB)y . (gaﬁ XMY) X prats x ga-&-ﬁ,v’

which is the moduli stack of pairs of cofibrations (R — L[ 0,M — L) with M = ~, R = 8 and
L = a+ B+ 7. In this case the smooth base change yields the same calculation as (ITZ3T).

Thus the conclusion holds if the derived stacks €**") and (%) are equivalent. But this is shown in
[T] on the k-rational point level. The equivalence as derived stacks follows from the moduli property. O

Summarizing the arguments so far, we have

Theorem 10.3.5. Let D be a dg-category over k = IF, which is of finite type and saturated. Assume that
the positive integer ¢ is prime to ¢. Then the derived oco-category Dm7C(MD,@) of f-adic constructible
sheaves on the moduli stack Mp of pseudo-perfect D°P-modules has a unital associative ring structure with
respect to the bifunctor p (Definition IMIZ33).

Hereafter we denote
M*N:= u(M,N).
We use the ordinary symbol for an iterated multiplication: My % -+ % M, := My % (Mg + (- - x M,,)).

10.4. Lusztig sheaves in the derived setting. In this subsection we focus on the case where D is given
by the path algebra of a quiver. More precisely speaking, we consider the situation in §E3. Here is a list of
the notations.

e () denotes a finite quiver without loops.
e B(Q) := (kQ)°P denotes the opposite of the path algebra of Q over k =F,.
e B(Q) denotes the dg-category with a unique object B(Q).

Denoting by Rep(Q) the category of representation of @), we know that Rep(Q) is a hereditary abelian
category, i.e., its global dimension is < 1. We also know that Ko(P(B(Q))) = Ko(Rep(Q)) = Z% with Qo
the set of vertices in Q. Its element is called a dimension vector.

Let us denote by

Tf(Q) = MB(Q)

the moduli stack of perfect complexes of representations of (). It has a stratification and decomposition

PHQ) = U,y PHQY, PHQ)T = [ ez00 PHQ)P.
Hereafter we denote

PEQ)™ = PE(Q)Im e
Recalling that B(Q) is of finite type and saturated, we can apply Theorem IIZ3H to D = B(Q). Then
we have an associative ring structure on D, (Pf(Q), Q;), which is a geometric version of the derived Hall
algebra for Q. o
The oo-category Doo o (PH(Q), Qp) is quite large, and we should consider only an “accessible” part of it.

Following the non-derived case established by Lusztig (see [Cus, Chap. 9] for example), we consider the
sub-oo-category generated by constant perverse sheaves. We also follow [S7, §1.4] for the argument and the
symbols.

For each a € N?0 and s € Z, let
Lo,s = (@)?f(@)w[dim PEHQ)™ + 5] € Dgo,c(?f(Q)a@)
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be the shifted constant Qg-sheaf on Pf(Q)*<. For a sequence (ai,...,q,) with a; € N9 and another
(s1,...,8m) with s; € Z, we define
LEE )i Ty oy %0 % Ly, € D o(PHQ), Q).
We call it a Lusztig sheaf.
We call o € Z?Q0 simple if o = &; with some i € Qo, i.e.,  has value 1 at i € Qg and 0 at other j € Q.
By Proposition BEZ3, the Lusztig sheaf L? is a simple perverse sheaf. For a fixed v € Z?°, we denote by P”
the collection of all simple perverse sheaves on Uagb PF(Q)[*)7 arising, up to shift, as a direct summand of

Lgill"";’s(;:z) with oy + -+ -+ oy, = v and «; simple for all i. We also denote by Q¥ C DZOVC((Pf(Q),@) the full

sub-oo-category spanned by those objects which are equivalent to a direct sum P; @ --- @ P, with P; € P7,
and set Q := U, ezeo Q7. We call it the derived Hall category.

Lemma. Q is preserved by the bifunctor p.

Proof. By the definition of Lusztig sheaves we have
(815---»51) (t15-stm) o 7 (8150581)5(E15eetm)
L(al,‘--’az) *L(ﬁl’mﬁm) - L(alwwaahﬁlvunﬁm).
O

Remark. If we restrict s;’s to be zero, then by Remark B52 the related moduli stacks are algebraic stacks,
so that we recover the Hall category in the sense of [SY, §1.4]. It has more properties such as the existence
of a coproduct and a Hopf pairing. We refer to loc. cit. and [Lud] for the detail.

APPENDIX A. ALGEBRAIC STACKS

In this appendix we recollect some basics on algebraic stacks in the sense of [LM, 0Z].

A.1. Algebraic spaces. We begin with the recollection of algebraic spaces. Our main reference is [0Z,
85.1] and [KI]. We will use the notion of Grothendieck topologies and sites freely. For a scheme S, we denote
by Schg the category of S-schemes. Let us fix the notation of the big étale topology since it will be used
repeatedly.

Definition A.1.1. Let S be a scheme. The big étale site ET(S) over S is defined to be the site ET(S) :=
(Schg, ET) consisting of

e The category Schg of S-schemes.

e The big étale topology ET.
The Grothendieck topology ET is determined as follows: the set Covgr(U) of coverings of U € Schg consists
of a family {U; — U };¢; of morphisms in Schg for which each U; — U is étale and ]_[iel U; — U is surjective.

Recall that given a site S = (C,7) we have the notion of a sheaf (of sets) on S (see [02, Chap. 2] for
example). It is a functor C°P — Set satisfying the sheaf condition with respect to the Grothendieck topology
7. Recall also that a morphism of sheaves on S is defined to be a morphism of functors.

Given a scheme S and an S-scheme T' € Schg, the functor hp(—) := Homgen,(—,T') defines a sheaf of
sets on the big étale site ET(S). Hereafter we identify T € Schg and the sheaf hy on ET(S).

Definition. Let S be a scheme. An algebraic space over S is a functor X : (Schg)®® — Set satisfying the
following three conditions.

e X is a sheaf on the big étale site ET(S).

e The diagonal map X — Y := X xg X is represented by schemes, i.e., the fiber product X xy T is
a scheme for any T € Schg and any morphism 7' — Y of sheaves on ET(S).

e There exists U € Schg and a morphism U — X of sheaves on ET(S) such that the morphism
pr : U xx T — T of schemes is surjective and étale for any T' € Schg and any morphism T — X of
sheaves.

In this case we call either the scheme U or the morphism U — X an étale covering of X.
A morphism of algebraic spaces over S is a morphism of functors. The category of algebraic spaces over
S is denoted by ASg.

Note that a scheme U € Schg can be naturally regarded as an algebraic space over S.
Next we recall the description of an algebraic space as a quotient.

Fact. Let X be an algebraic space over a scheme S and U — X be an étale covering.
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(1) The fiber product R := U xx U in the category of sheaves is representable by an S-scheme. The
corresponding scheme is denoted by the same symbol R.
(2) The natural projections p1,ps : R — U makes R into an étale equivalence relation [0, Definition
5.2.1].
(3) The natural morphism U/R — X from the quotient sheaf U/R is an isomorphism.
We denote this situation as R = U — X.

Using this quotient description we have a concrete way to give a morphism of algebraic spaces.

Fact. Let X; and Xs be algebraic spaces over a scheme S. Take étale coverings U; — X; and denote
Ri = Ul X X; Ul (Z = 172).
(1) Assume that we have a diagram

P1,1
Ri—=U ——X,

P1,2
I b
D21
Ro—= Uy ——= X
P22
of sheaves on ET(S) with hopy; = p2;0g (i = 1,2). Then there is a unique morphism f : X7 — X,
making the resulting diagram commutative.

(2) Conversely, every morphism X; — X, of algebraic spaces arises in this way for some choice of
Ula UQ, g, h.

Using properties of schemes and their morphisms, we can define properties of algebraic spaces and their
morphisms. We refer [(02, Definition 5.1.3] for the definition of stability and locality on domain of a property
of morphisms in a site S.

Definition A.1.2. Let S be a scheme, f : X — Y be a morphism of algebraic spaces over S, and P be a
property of morphisms in the big étale site ET(S).
(1) Assume P is stable. Then we say X has property P if it has an étale covering U whose structure
morphism U — S has property P.
(2) Assume P is stable and local on domain. We say f has P if there exist étale coverings u : U — X
and v : V — Y such that the morphism py : U X fou,y,0 V — V in Schg has property P.

By [02, Proposition 5.1.4] and [Kl, Chap. 2], the following properties P; of morphisms are stable for the
big étale site ET(S).
P, := separated, universally closed, quasi-compact.

By loc. cit., the following properties P5 are stable and local on domain.

P, :=surjective, étale, locally of finite type, smooth, universally open,

locally of finite presentation, locally quasi-finite.

Note that for an étale covering f : U — X of an algebraic scheme X the morphism f is étale and surjective
in the sense of Definition AT

In the main text we need the properness of a morphism of algebraic spaces. In order to define it, we need
to introduce some classes of morphisms between algebraic spaces which are not given in Definition B—T2.
Our main reference is [K, Chap. 2]. Let us omit to mention the base scheme S in the remaining part.

Definition A.1.3 ([K, Chap. 2, Definition 1.6]). A morphism f : X — Y of algebraic spaces is quasi-
compact if for any étale morphism U — Y (Definition BT (2)) with U a quasi-compact scheme the fiber
product X xy U is a quasi-compact algebraic space (Definition BT (1)).

Definition A.1.4 ([K|, Definition 3.3]). A morphism f of algebraic spaces is of finite type (resp. of finite
presentation) if it is locally of finite type (resp. locally of finite presentation) in the sense of Definition B—T3
(2) and quasi-compact (Definition BT73).

Definition A.1.5 ([K, Chap. 2, Extension 3.8, Definition 3.9]). Let f : X — Y be a morphism of algebraic
spaces over a scheme S.
(1) fis a closed immersion if for any U € Schg and any U — Y the fiber product X xy U is a scheme
and X xy U — U is a closed immersion in Schg. In this case, X is called a closed subspace of Y.
(2) f is separated if the induced morphism X — X xy X is a closed immersion in the sense of (1).
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Although it is not directly related to proper morphisms, let us introduce now the notion of quasi-separated
morphisms.

Definition A.1.6 ([O2, Propoistion 5.4.7]). A morphism f: X — Y of algebraic spaces over a scheme S is
quasi-separated if the diagonal morphism Ax/y : X — X Xy s X is quasi-compact (Definition BT3). An
algebraic space X over S is quasi-separated if the structure morphism X — S is quasi-separated.

Going back to proper morphisms, we introduce

Definition A.1.7 ([K, Chap. 2, Definition 6.1, 6.9]). Let X be an algebraic space.
(1) A point of X is a morphism ¢ : Speck — X of algebraic spaces where k is a field and i is a categorical
monomorphism. Two points i; : p; = X (j = 1,2) are equivalent if there exists an isomorphism
e : p1 — ps such that i5 0 e = iy.
(2) The underlying topological space | X| of X is defined to be the set of points of X modulo equivalence
together with the topology where a subset C' C | X]| is closed if C is of the form |Y| for some closed
subspace Y C X (Definition B3 (1))

Note that a morphism X — Y of algebraic spaces naturally induces a continuous map |X| — |Y| of the
underlying topological spaces.

Definition A.1.8 ([Kl, Chap. 2, Definition 6.9]). A morphism f: X — Y of algebraic spaces is universally
closed if for any morphism Z — Y of algebraic spaces the induced continuous map |X xy Z| — |Z| is closed.

Let us also recall the notion of relaitive dimension.

Definition A.1.9. Let f: X — Y be a morphism of algebraic spaces over a scheme S, and let d € NU{oo}.
(1) For z € | X|, f has relative dimension d at the point x if for any commutative diagram

U——V U—=v
I
X—f>Y Ty

in Schg with a and b étale, the dimension of the local ring Oy, ,, of the fiber U, at u is d.
(2) f has relative dimension d if it has relative dimension d at any x € |X]|.

Finally we have

Definition A.1.10 ([K|, Chap. 2, Definition 7.1]). A morphism f : X — Y of algebraic spaces is proper if it
is separated (Definition B3 (2)), of finite type (Definition AT4) and universally closed (Definition ATH).

A.2. Algebraic stacks. Next we recall the definition of algebraic stacks. We assume some basics on cate-
gories fibered in groupoids [0, Chap. 3].

Let S be a site. In order to make terminology clear, let us call a stack in the ordinary sense ([CM, Chap.
2], [O2, Chap. 4]) an ordinary stack. In other words, we have

Definition. Let S be a site. An ordinary stack over S is a category F fibered in groupoids over S such
that for any object U € S and any covering {U; — U};e; of U the functor F(U) — F({U; — U}ier) is an
equivalence of categories.

Ordinary stacks over S form a 2-category.

Definition A.2.1. An ordinary stack X over a scheme S means an ordinary stack X over ET(S), where
ET(S) is the big étale site on S (Definition BETT).

A scheme and an algebraic space over S can be naturally considered as an ordinary stack over S. We
further introduce

Definition A.2.2. Let S be a scheme and f : X — Y be a 1-morphism of ordinary stacks over S.
(1) f is called representable if the fiber product X x 7y, U is an algebraic space over S for any U € Schg
and any l-morphism g: U — Y.
(2) f is called quasi-compact (resp. separated) if it is representable and for any U € Schg and any 1-
morphism g : U — Y the algebraic space X xyy 4 U is quasi-compact (resp. separated) in the sense
of Definition BA—T2.

Here is the definition of an algebraic stack.



GEOMETRIC DERIVED HALL ALGEBRA 81

Definition A.2.3. An algebraic stack over a scheme S is defined to be an ordinary stack X over S satisfying
the following two conditions.
e The diagonal 1-morphism A : X — X xg X is representable, quasi-compact and separated in the
sense of Definition B—Z2.
e There exists an algebraic space U over S and a smooth surjection U — X, i.e., for any T € Schg
and any 1-morphism 7' — X the morphism pp : U x x T — T of algebraic spaces (see Remark B—24
(1) below) is a smooth surjection in the sense of Definition B—T3.
In this case the algebraic space U is called a smooth covering of X.

Remark A.2.4. (1) The fiber product U x x T in the second condition is an algebraic space. In order
to see this, note first that any l-morphism ¢ : 7" — X from a scheme is representable. Indeed, for
any l-morphism u : U — X from a scheme, the fiber product U x, x,; T is isomorphic to the fiber

product Y of the diagram X e xXg X Lxst X g T. This fiber product Y is an algebraic space
since A is representable by the first condition.

(2) One can replace the algebraic space U by a scheme which is an étale covering of U. The definition
in [O2, Definition 8.1.4] is given under this replacement.

Let us recall a criterion of an algebraic stack being an algebraic space.

Fact A.2.5 ([CM, Chap. 2, Proposition (4.4)]). An algebraic stack X over a scheme S is an algebraic space
if and only if the following two conditions are satisfied.
(i) X is a Deligne-Mumford stack, i.e., there is an étale surjective 1-morphism U — X from a scheme
U.
(ii) The diagonal 1-morphism X — X x ¢ X is a monomorphism.

We can introduce properties of algebraic stacks as the case of algebraic spaces. We use stability and
locality on domain [02, Definition 5.1.3] of a property of morphisms in the smooth site.

Definition ([02, Definition 2.1.16]). Let S be a scheme. The smooth site Sm(S) over S is defined to be the
site Sm(S) := (Sch3", sm) consisting of the following data.

e The full subcategory Sch3" C Schg spanned by smooth schemes U over S.

e The smooth topology sm.
The Grothendieck topology sm is determined as follows: the set Covgy,(U) of coverings of U € Sch"
consists of a family {U; — U};c; of morphisms in Sch3” for which each U; — U is smooth and the morphism
[;c; Us — U is surjective.

Definition A.2.6 ([02, Definition 8.2.1]). Let S be a scheme, and Qg be a property of S-schemes which
is stable in Sm(S). An algebraic stack X over S has property Qo if there exists a smooth covering U — X
from a scheme U having property Q.

Let us remark that the scheme U in this definition can be replaced by an algebraic space U [0Z, Lemma
8.2.4]. We can apply this definition to

Qo := locally noetherian, locally of finite type over S, locally of finite presentation over S.
Let us also introduce some classes of morphisms between algebraic stacks.

Definition A.2.7 ([O02, Definition 8.2.6]). Let S be a scheme, and Q; be a property of morphisms of
schemes which is stable and local on domain with respect to Sm(S). A 1-morphism f: X — Y of algebraic
stacks has property Qq if there exists a commutative diagram

Ut X xy V-2Lsv
\i lp
q
7

of 1-morphisms between ordinary stacks where U and V are schemes, the square is cartesian, and g and p
give smooth coverings such that the morphism f' o g: U — V of schemes has property Q.

This definition is independent of the choice of smooth coverings U — X and V — Y [02, Proposition
8.2.8]. We can apply this definition to

Q; = smooth, locally of finite type, locally of finite presentation, surjective.
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Definition A.2.8 ([02, Definition 8.2.9]). Let S be a scheme, and Q2 be a property of morphisms of
algebraic spaces over S which is stable with respect to the smooth topology on ASg. A representable 1-
morphism f : X — Y of algebraic stacks over S has property Qs if for every 1-morphism V' — Y from some
Y € ASg, the morphism X Xy V' — V in ASg has property Qs.

In particular, we can apply this definition to
Q. =étale, smooth of relative dimension d, quasi-compact,
quasi-separate, proper, being a closed immersion.

Since the diagonal 1-morphism Ax/y : X — X Xy ;Y is representable for any 1-morphism f: X — Y
of algebraic stacks over S, we can apply Definition B=22 to introduce

Definition A.2.9 ([0O2, Definition 8.2.12]). Let f: X — Y be a l-morphism of algebraic stacks.
(1) fis separated if Ax,y is proper in the sense of Definition B2,
(2) fis quasi-separated if Ax/y is quasi-compact and quasi-separated in the sense of Definition B2,

We finally introduce

Definition A.2.10. A 1-morphism f of algebraic stacks is of finite type (resp. of finite presentation) if it is
quasi-compact (Definition BA2R) and locally of finite type (resp. locally of finite presentation) in the sense
of Definition B—29.

A.3. Lisse-étale site on algebraic stacks. We cite from [CM, Chap. 12] the definition of the lisse-étale
site on algebraic stacks.

Definition A.3.1. The lisse-étale site on an algebraic stack X over a scheme S is given by
e An object of the underlying category is a pair (U, u) of an algebraic space U over S and a 1-morphisms
u: U — X of ordinary stacks over S. A morphism from (U,u : U — X) to (Vo :V — X) is a
pair (p, ) of a smooth 1-morphism ¢ : U — V of algebraic spaces over S and a 2-isomorphism
a:u = vop.
e As for the Grothendieck topology, the set Cov(u) of covering sieves consists of families {(¢;, a;) :
(Ui, ui) — (U, i) }ier such that the 1-morphism [[,c; ;i : [1,c; Ui — U of algebraic spaces over S is
étale and surjective.
The associated topos is denoted by Xiis_et-

As shown in [LM|, Lemme (12.1.2)], one can replace “an algebraic space U over S” in the above definition
by “an affine scheme U over S”, and replace “families {(¢;, ;) }ier” by “finite families {(¢;, ;) }ier”. The
resulting topos is equivalent to Xjis_et-

APPENDIX B. 00-CATEGORIES
In this appendix we give some complementary accounts of selected topics on oco-categories.

B.1. Kan model structure. Let us explain the model structure on the category Seta of simplicial sets
which is called the Kan model structure in [, §A.2.7]. We begin with

Definition B.1.1. A simplicial map f: X — Y is called a Kan fibration if f has the right lifting property
with respect to all horn inclusions A} — A", i.e., if given any diagram

A} — X

L

A" ——=Y
with arbitrary n € N and any i = 0,1,...,n, there exists a simplicial map A™ — X making the diagram
commutative.

Next, recall the classical theory telling that there exists an adjoint pair
(B.1.1) |—| : Seta == CG : Sing

of functors where €3 denotes the category of compactly generated Hausdorff topological spaces. The functor
|—| is called the geometric realization.
Now we introduce

Fact B.1.2 ([GJ, Chap. 1 §11]). The following data gives Seta a model structure.
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e A simplicial map f : X — Y is a cofibration if it is a monomorphism, i.e., the map X,, — Y, is
injective for each n € N.
e A simplicial map is a fibration if it is a Kan fibration.
e A simplicial map f : X — Y is a weak equivalence if the induced map |X| — |Y| of geometric
realizations is a homotopy equivalence of topological spaces.
The obtained model structure is called the Kan model structure on Seta.

B.2. Homotopy category of an oco-category. In Definition I3, we denoted by C§G the category of
compactly generated weakly Hausdorff topological spaces. The classical theory tells us that for each X € €§
there exists a CW complex X’ € @W, giving rise to a well-defined functor

0:C5 —H, Xr—[X]:=X"
We call [X] € H the homotopy type of X. Now we can define the homotopy category of a topological

category.

Definition ([Lurl, pp. 16-17]). For a topological category C, we denote by h € the category enriched over
H defined as follows, and call it the homotopy category of C.
e The objects of h € are defined to be the objects of C.
e For X,Y € €, we set Map, «(X,Y) := [Mape(X,Y)] € H.
e Composition of morphisms in h € is given by the application of € to composition of morphisms in C.
Next we explain the homotopy category of a simplicial category. Recall the adjunction
|—| : Seta = €G : Sing
in (B). Composing |—| : Seta — €G with 6 : €5 — H, we have a functor
[]:Seta — H, S+ [S]:=0(95)).
Definition B.2.1. For a simplicial set S € Seta, we call [S] the homotopy type of S.
Recall the category Cata of simplicial categories (Definition IZ373). Applying this functor [] : Seta — H
to the simplicial sets of morphisms, we obtain another functor
h: Cata — (categories enriched over H), C+— hC.

Definition B.2.2 ([Curl, p. 19]). For a simplicial category € € Cata, we call h @ in the above construction
the homotopy category of €.

Now we explain the homotopy category of an co-category. Recall that we denote by Cata the category
of simplicial categories (Definition I=33). Then we can define a functor

¢[—] : Seta — Cata

as follows [Curdl, §1.1.5]: For a finite non-empty linearly ordered set J, we construct a simplicial category
¢[A7] as follows: The objects of €[A”’] are the elements of J. For i,j € J with i < j, the simplicial set
Mapg(as)(i,7) is given by the nerve of the poset {I C J | i,j € I, Vk € I i <k < j}. Fori > j we set
Mapg(a (i, 7) = (). The resulting functor € : A — Cata extends uniquely to a functor €[—] : Setpa — Cata,
and we denote by €[S] the image of S € Seta.

Definition B.2.3 ([Curl, Definition 1.1.5.14]). Let S be a simplicial set. The homotopy category hS of S
is defined to be
hS :=he[s],
the homotopy category of the simplicial category €[S].
The homotopy category of an oco-category C is defined to be the homotopy category h C of C as a simplicial
set.

Noting that the homotopy category h.S is enriched over H, we denote by Homy s(—, —) € H its Hom
space. Then we can introduce

Definition B.2.4 ([Curl, Definition 1.2.2.1]). For a simplicial set S and its vertices z,y € S, we define
Mapg(x,y) := Homy g(z,y) € H
and call it the mapping space from x to y in S.

For use in the main text, we recall the construction of Kan complexes which represent mapping spaces.
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Definition B.2.5. For a simplicial set S and vertices x,y € S, we defined a simplicial set Homg(x, y) by
HomSetA (Ana Homg(xa y)) =

{z: A""! — S | simplicial maps, z|x(ns1y =¥, 2|af0.....n} iS & constant complex at the vertex x}.

The face and degeneracy maps are induced by those on S, 1.

If C is an oo-category, then Hom{ (z, y) is a Kan complex by [Lizl, Proposition 1.2.2.3].
By [Curll, Proposition 2.2.4.1], we have an adjunction
| =g : Seta 7= Seta : Singge.
which gives a Quillen autoequivalence on the category Seta equipped with the Kan model structure. Now

we have

Fact ([Curl, Proposition 2.2.4.1]). For an co-category C and objects x,y € C, there is a natural equivalence
of simplicial sets
[Hom¢ (z, y)

o — Mapgs)(z,y).
Here € : Seta — Cata is the functor explained at (IZ3).

B.3. Over-co-categories and under-co-categories. This subsection is based on [Curll, §1.2.9].
For simplicial sets S and S’, their join [Lurl, Definition 1.2.8.1] is denoted by S % S’. The join of
oo-categories is an oo-category [Curll, Proposition 1.2.8.3].

Definition B.3.1 ([Curl, §1.2.9]). Let p : K — C be a simplicial map from a simplicial set K to an
oo-category C.
(1) Consider the simplicial set C;, defined by
(C/p)n = Hom ,(A™ x K, C).
The subscript /p in the right hand side means that we only consider those morphisms f : Sx K — C
such that f|, = p. Then C/, is an co-category, and called the over-oo-category of objects over p
(2) For X € C, we denote by C/x the over-oo-category C;, where p : AY — C has X as its image.
(3) Dually, the under-oo-category C,, is the oo-category defined by (C,,), := Hom,,,(K x A", C), where
the subscript p/ means that we only consider those morphisms f : K xS — C such that f|, =p
(4) For X € C, we denote by Cx, the under-oo-category C,, where p : A® — C has X as its image.

The over-oo-category C,, is characterized by the universal property
Homsges, (S, C/p) = Hom, (S x K, C)

for any simplicial set S. We can characterize an under-co-category by a similar universal property.
Note that for an injective simplicial map j : L — K we have a natural functor C;, = C/po;-
By this universality one can deduce the following consequences. We omit the proof.

Corollary B.3.2. Let C be an oco-category.
(1) For any X € C there exists a functor

of oo-categories. It will be called the canonical functor of C/x.

(2) For a morphism f : X — Y in C, we have a functor C;x — C;y of oo-categories induced by
composition with f. We also have functors C;; — C/x and C;y — C/y, where C;; is defined to be
C/p with p : A' — C representing f. These functors form a commutative triangle

/\

Cx ————C
in the oo-category Cat., of co-categories (Definition IEE:[I)

Remark. In [Curd] and [I] the canonical functor is called the projection, but we avoid this terminology (see
Definition B3 for the reason).

Definition B=3T works for any simplicial set S instead for an oco-category S. The statement that C,, for
an oo-category C is indeed an co-category is shown in [[Curll, Proposition 2.1.2.2].



GEOMETRIC DERIVED HALL ALGEBRA 85

B.4. Limits and colimits in co-categories. The limits and colimits in co-categories are defined in terms
of final and initial objects.

Definition ([Curl, Definition 1.2.13.4]). Let C be an oo-category, K be a simplicial set and p : K — C be
a simplicial map.

(1) A colimit of p is an initial object of the under-oo-category C,,, and denoted by @p.

(2) A limit of p is a final object of the over-oo-category C/,,, and denoted by yinp.

Remark B.4.1. A (co)limit of p is not unique if it exists, but by [Curl, Proposition 1.2.12.9] the full
sub-oco-category of (co)limits is either empty or is a contractible Kan complex.

We have the following restatement of (co)limit.

Fact ([Curl, Remark 1.2.13.5]). A colimit of p : K — C can be identified with a simplicial map p: K* — C
extending p. Similarly, a limit of p is identified with a simplicial map p : K9 — C extending p.

Here we used

Definition B.4.2 ([Litl, Notation 1.2.8.4]). For a simplicial set K, we denote by K” := K x A® the right
cone K, where x denotes the join of simplicial sets. We also denote by K< := A? x K the left cone of K.

Remark B.4.3. As explained in [Curdl, §4.2.4], colimits in the co-category are compatible with homotopy
colimits in simplicial categories, and limits are compatible with the homotopy limits.

Let us explain a few examples of limits and colimits in oo-categories, following [LCairl, §4.4].

e We regard a set A as a category by Homu(i,7) =  for ¢ € A and Homu(i,5) = 0 for i # 5. We
further consider A as the simplicial set which is the nerve of this category.

Definition B.4.4 ([Curl, §4.4.1]). Let A be a set, C an oco-category and p : A — C be a map. Thus
p is identified with the family {X, | a € A} of objects in C. Then a colimit ligp is called a coproduct
of {X, | a € A}, and denoted by [],. 4 Xs. Dually, a limit @p is called a product of {X, | a € A},
and denoted by [],c 4 Xa-

a€cA

Under Remark B3, the corresponding object in a simplicial category is the homotopy coproduct.
e Let C be an oo-category. A simplicial map A x Al — Cis called a square in C. It will be typically
depicted as

(B.4.1) x Lo Xx

0]

Vi =Y
Since there are isomorphisms (A2)” ~ Al x Al ~ (A2)? of simplicial sets, we can introduce

Definition B.4.5 ([Cuxl, §4.4.2]). Let o : Al x Al — C be a square in an co-category C.
(1) If o is a limit of 0’|A% viewing Al x Al ~ (A2)<, then it is called a pullback square or a cartesian

square. If the square (BZZ) is a pull-back square, then we write X' = X x,y,, Y’ or simply
X' =X xy Y’ and call X’ a pullback or a base change or a fiber product.
(2) If o is a colimit of ol,, viewing Al x Al ~ (A2)", then it is called a pushout square or a

cocartesian square, and we write Y = X ]_[X/ Y’ and call Y a pushout.
Under Remark B3, the corresponding objects in a simplicial category are the homotopy pullback

and the homotopy pushout.
e Finally let D be the category depicted by the diagram

F
X—=Y
G

Definition B.4.6. Let p : N(D) — C be a simplicial map from the nerve of D (Definition I2) to
an oo-category C. Set f := p(F) and g := p(G). A colimit of p is called a coequalizer of f and g.
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B.5. Adjunctions. We now introduce the notion of adjoint functors of co-categories, for which we prepare
several definitions on simplicial maps.

Definition. Let f: X — S be a simplicial map.
(1) f is called a trivial fibration if f has the right lifting property with respect to all inclusions OA™ <
A",
(2) f is called a trivial Kan fibration if it is a Kan fibration (Definition B-T) and a trivial fibration.
(3) f is called an inner fibration if f has the right lifting property with respect to horn inclusions
A = A" with 0 < < n.

Definition ([Curll, Definition 2.4.1.1]). Let p : X — S be an inner fibration of simplicial sets. Let f : 2 — y
be an edge in X. f is called p-cartesian if the induced map X,y — X, X, = S/p(s) 18 a trivial Kan fibration.

Definition B.5.1 ([Curl, Definition 2.4.2.1]). Let p : X — S be a simplicial map.
(1) pis called a cartesian fibration if the following conditions are satisfied.
e The map p is an inner fibration.
e For every edge f : & — y of S and every vertex § of X with p(y) = y, there exists a p-cartesian

edge f: T — y with p(f) = f.
(2) pis called a cocartesian fibration if the opposite map p°P : X°P — S°P is a cartesian fibration.

Now we explain the main definition in this subsection.

Definition B.5.2 ([Curll, Definition 5.2.2.1]). Let B and C be oo-categories. An adjunction between B and
C is a simplicial map p : M — A! which is both a cartesian fibration and a cocartesian fibration together
with equivalences f : B — p~1{0} and g : C — p~'{1}. In this case we say that f is left adjoint to g and
that g is right adjoint to f, and denote

fiB=C:g.

As in the ordinary category theory, an adjunction can be restated by a unit (and by a counit).

Definition B.5.3 ([Curl, Definition 5.2.2.7]). Let us given a pair of functors (f : B — C,¢g : C — B) of
oo-categories. A unit transformation for (f,g) is a morphism v : idg — g o f in Fun(B, B) such that for any
B € B and C € C the composition
Mapc(f(B),C) — Mapg(g(f(B)), 9(C)) "+ Mapg (B, ¢(C))
is an isomorphism in the homotopy category JH of spaces.
Dually we have the notion of a counit transformation ¢ : f o g — idg.

Fact B.5.4 ([Curll, Proposition 5.2.2.8]). Let (f : B — C,g: C — B) be a pair of functors of co-categories.
Then the following conditions are equivalent.

e The functor f is a left adjoint to g.

e There exists a unit transformation u : idg — go f.
We have a dual statement for right adjoint and counit transformation.

For an existence criterion of an adjoint functor via exactness, see Fact BT 3.
In the main text we will use following statement repeatedly.

Fact ([Curl, Proposition 5.2.2.6]). Let f; : C; — Ci41 (i = 1,2) be functors of co-categories. Suppose that
/i has a right adjoint g; (i = 1,2). Then g5 o g1 is right adjoint to f2 o f.

B.6. The underlying co-category of a simplicial model category. In the main text we often translate
the model-categorical arguments in [I'Vel, 'Ve?] into the oo-categorical arguments. Such a translation is
possible by the notion of the underlying co-category, which is explained here.

Let us recall the monoidal model category structure [Curll, Definition A.3.1.2] on the category Seta of
simplicial sets given by the cartesian product and the Kan model structure (Fact B-T2). Here the cartesian
product of S, T € Seta is given by (S x T),, := S, x Ty, where the latter x means the cartesian product in
the category Set.

Definition B.6.1 ([Curl, Definition A.3.1.5], [H, Definition 4.2.18)). A simplicial model category U is a
simplicial category equipped with a model structure satisfying the following conditions.
e The category 2 is tensored and cotensored over the monoidal model category Seta in the sense of
[Card, Remark A.1.4.4].
e The action map ® : A x Seta — A arising from the tensored structure is a left Quillen bifunctor.
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One can construct an oo-category from a simplicial model category 2(. Let us denote by A° C 2 the full
subcategory of fibrant-cofibrant objects, which is a fibrant simplicial category. Taking the simplicial nerve
(Definition ), we obtain an oo-category Ngpi(20°) by Fact T2

Definition B.6.2 ([Curl, §A.2]). We call the co-category Ngp1(A°) the underlying co-category of the sim-
plicial model category 2.

Let us cite a result on adjunctions.

Fact B.6.3 ([Curll, Proposition 5.2.4.6]). Given a Quillen adjunction 2 == 2’ of simplicial model categories,
there is a natural adjunction Ngp1 (2°) 7= Ngp1 (') of the underlying co-categories.

B.7. oo-localization. We cite from [[Cur?, §1.3.4] terminologies on localization of co-categories.

Definition B.7.1 ([Lur2, Definition 1.3.4.1]). Let C be an co-category and W be a collection of morphisms
in C. We say that a functor f : C — D ezhibits D as the oco-category obtained from C by inverting the
set of morphisms W if, for every oo-category B, composition with f induces a fully faithful embedding
Fun(D,B) — Fun(C, B), whose image is the collection of functors F' : C — B mapping each morphism in W
to an equivalence in B. In this case we denote C[W 1] := D.

Note that C[W 1] is determined uniquely up to equivalence by C and W, Note also that C[W ~!] exists
for any C and W. See [CurZ, Remark 1.3.4.2] for an account.
Now let us recall

Definition B.7.2 ([Curl, Definition 5.2.7.2]). A functor L : C — D of co-categories is called a localization
(functor) if L has a fully faithful right adjoint.

Then by [Curll, Proposition 5.2.7.12] we have
Fact B.7.3 ([LurZ, Example 1.3.4.3]). Let C be an co-category and L : C — Cg be a localization. We denote
by i : Co — C the fully faithful right adjoint of L. Define W to be the collection of those morphisms «
in C such that L(«) is an equivalence in Cy. Then the composite Cg KNYGRE=N C[W~1] is an equivalence of

oo-categories.

B.8. Presentable oo-categories. Most of the co-categories appearing in the main text are presentable in
the sense of [Curl, §5.5], and enjoy a good property with respect to taking limits. The notion of a presentable
oo-category is an oo-theoretic analogue of the notion of a locally presentable category.

First we want to introduce the notion of a filtered oo-category, which is an co-theoretic analogue of filtered
categories. Recall the notation K of the right cone of a simplicial set K (Definition BZ2).

Definition B.8.1. Let x be a regular cardinal. An oo-category C is called r-filtered if for any x-small
simplicial set K and any simplicial map f : K — C there exists a simplicial map f : K* — C extending f.

Next we turn to the definition of ind-objects in an oco-category.

Definition ([Curll, Definition 5.3.1.7]). For an co-category C and a regular cardinal x, we denote by Ind, (C)
the full sub-oo-category of PSh(C) spanned by the functors f : C°P — § classifying right fibrations C — C,
where the oco-category C is k-filtered. An object of Ind,(C) is called an ind-object of C.

Here we used

Definition ([Curl, Definition 2.0.0.3]). A simplicial map f : X — S is called a right fibration if f has the
right lifting property with respect to all the horn inclusions A" < A™ for any 0 < i < n.

Finally we introduce

Definition ([Curll, Definition 5.4.2.1]). Let C be an co-category.
(1) Let x be a regular cardinal. We call C k-accessible if there exists a small oo-category C° and an
equivalence Ind, (C%) — C.
(2) Cis called accessible if it is r-accessible for some regular cardinal .

Accessible co-categories have a nice property in terms of compact objects. In order to state its precise
definition, for an oco-category C and an object C' € C let us denote by jo : C' — § the composition

PSh(C) = Fun(C°,8) —s Fun({s},8) =+ §

and call it the functor corepresented by C. Here S denotes the oo-category of (not necessarily small) spaces
(recall that 8 denotes the oo-category of small spaces).
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Definition B.8.2 ([Lurl, Definition 5.3.4.5]). Let s be a regular cardinal, and C be an co-category admitting
small x-filtered colimits.

(1) A functor f: C — D of co-categories is called k-continuous if it preserves s-filtered colimits.

(2) Assume C admits x-filtered colimits. Then an object C' € C is called k-compact if the functor

jo : C — § corepresented by C'is k-continuous.

Definition B.8.3 ([Curl, Definition 5.5.0.1]). An oo-category C is called presentable if it is accessible and
admits arbitrary small colimits.

Let us cite an equivalent definition of presentable co-categories. For that we need

Definition. Let C be an oco-category.
(1) Cis essentially small if it is k-compact as an object of Cate, for some small regular cardinal k.
(2) Cis locally small if for any objects X,Y € C the mapping space Map¢(X,Y) is essentially small as
an oo-category.

See [Curl, Proposition 5.4.1.2] for equivalent definitions of essential smallness.

Fact B.8.4 ([Lurl, Theorem 5.5.1.1]). For an co-category C, the following conditions are equivalent.
(1) C is presentable.
(2) Cis locally small and admits small colimits, and there exists a regular cardinal £ and a small set S
of k-compact objects of C such that every object of C is a colimit of a small diagram taking values
in the full sub-oco-category of C spanned by S.

Presentable categories enjoy much nice properties as explained in [Curll, §5.5].

Fact B.8.5. Let C be a presentable co-category.
(1) C admits arbitrary small limits [Curl, Corollary 5.5.2.4].
(2) The product of presentable categories is presentable [Lurll, Proposition 5.5.3.5].
(3) The functor co-category of presentable categories is presentable [Curll, Proposition 5.5.3.6].
(4) The over-oo-category C,,, and under-oo-category C,,, with respect to a simplicial morphism p of small
oo-categories are presentable [Lurl, Proposition 5.5.3.10, Proposition 5.5.3.11].

B.9. Truncation functor. We close this subsection by explaining the truncation functor for an co-category.
We begin with the truncation of objects.

Definition B.9.1 ([Curd, Definition 5.5.6.1]). Let C be an co-category.
(1) Let k € Z>_1. An object C € C is called k-truncated if for any D € C the space Mapc(D,C) is
k-truncated, i.e., m; Mapc(D, C) = « for i € Z>p41.
(2) A discrete object is defined to be a O-truncated object.
(3) An object C' is called (—2)-truncated if it is a final object of C (Definition [-377).
(4) For k € Z>_5, we denote by 7<;C the full sub-oco-category of C spanned by k-truncated objects.

The truncation of morphisms is given by

Definition B.9.2 ([Curl, Definition 5.5.6.8]). (1) Let k € Z>_5. A simplicial map f: X — Y of Kan

complexes is k-truncated if the homotopy fibers of f taken over any base point of Y are k-truncated.

(2) A morphism f : C — D in an oo-category C is k-truncated if for any E € C the simplicial map
Mapc(E,C) — Mapc(E, D) given by the composition with f is k-truncated in the sense of (1).

Now we have

Fact ([Lurll, Proposition 5.5.6.18]). For a presentable co-category C and k € Z>_, the inclusion 7<;C — C
has an accessible left adjoint.

In the last line we used

Definition B.9.3 ([Curl, Definition 5.4.2.5]). Let C be an accessible co-category. A functor F: C — C' is

e

called accessible if it is K-continuous (Definition BX3) for some regular cardinal .
Now we may introduce

Definition B.9.4. For a presentable co-category C and k € Z>_», a left adjoint to the inclusion 7<;C — C
is denoted by

T<ip : C— 1< C
and called the truncation functor.
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Here we used “the” since it is unique up to contractible ambiguity [Curl, Remark 5.5.6.20]. It is obviously
a localization functor (Definition B774).
Another usage of truncation is

Definition B.9.5. A morphism in an co-category is a monomorphism if it is (—1)-truncated (Definition

Let us cite a redefinition of monomorphisms.

Fact B.9.6. A morphism f : X — Y in an oo-category C is a monomorphism if and only if the functor
C s — Gy is fully faithful (Definition [=34).

For the use in the main text, let us also cite

Fact B.9.7 ([Curl, Lemma 5.5.6.15]). Let C be an co-category which admits finite limits. Then a morphism
f:X =Y in Cis a monomorphism if and only if the diagonal X — X xyy ; X is an isomorphism.

Strictly speaking, this statement is a special case k = —1 in loc. cit.

B.10. Exact functors of co-categories. We close this section by recalling left and right exact functors of
oo-categories.

Definition B.10.1 ([Lurl, Definition 2.0.0.3, Definition 5.3.2.1]). (1) A simplicial map f: X — Sisa

left fibration (resp. right fibration) if f has the right lifting property (resp. left lifting property) with
respect to all the horn inclusions A} — A" for any 0 <17 < n.

(2) Let F : B — C be a functor of co-categories and k be a regular cardinal s, F' is k-left exact (resp.
k-right exact) if for any left fibration (resp. right fibration) C" — C where C’ is s-filtered (Definition
B=X), the oo-category B’ = B x¢ C’ is also k-filtered.

(3) A functor of co-categories is left exact (resp. right exact) if it is w-left exact (resp. w-right exact),
where w denotes the lowest transfinite ordinal number.

(4) A functor of co-category is ezxact if it is both left exact and right exact.

We will repeatedly use the following criterion of exactness in the main text.

Fact B.10.2 ([Curll, Proposition 5.3.2.9]). Let F': B — C be a functor of co-categories and k be a regular
cardinal.

(1) If f is w-left exact, then F preserves all x-small colimits which exists in B.

(2) If B admits x-small limits and F preserves k-small colimits, then F' is x-right exact.
Dual statements hold for right-exactness.

Recall the notion of adjoint functors (Definition B34). Now we have the following criterion on existence
of adjunctions.

Fact B.10.3 ([Curll, Corollary 5.5.2.9]). Let F': B — C be a functor of presentable co-categories.
(1) F has a right adjoint if and only if it is right exact.
(2) F has a left adjoint if and only if it is left exact.
APPENDIX C. 00-TOPOI

In this section we give some complementary accounts on co-topoi.

C.1. Sheaves on oo-sites. Let C be an oo-category. Recall the Yoneda embedding j : C — PSh(C) in
Definition I532. By [[Lurd, Proposition 6.2.2.5], for each X € C we have a bijection

(C.1.1) ox : Sub(j(X)) — Sieve(X), (i:U <= j(X))— Cx(U)

between the set Sub(j(X)) of monomorphisms U < j(X) (Definition BTIH) and the set Sieve(X) of all
sieves on X. Here C,x(U) denotes the full sub-oo-category of C spanned by those objects f : Y — X of C/x
such that there exists a commutative triangle

J(f)

JY) —————j(X)
N

Now we recall
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Definition C.1.1 ([Curll, Definition 5.5.4.2]). For an oco-category B and a set S of morphisms in B, we
call Z € C to be S-local if for any (s : X — Y) € S the composition with s induces an isomorphism
Map¢ (Y, Z) = Map¢(X, Z) in the homotopy category h 8 of spaces.

Then we can introduce

Definition C.1.2. Let (C,7) be an oo-site.
(1) Define the set S, by
S, = U ox!(Cov, (X)),

XeC

the set of all monomorphisms U — j(X) corresponding to covering sieves C;gz of 7 under the bijection
ox (CI). A presheaf F € PSh(C) is called a 7-sheaf if it is S -local.
(2) We denote by
Sh(C,7) € PSh(C)

the full sub-co-category spanned by 7-sheaves.
As explained in Fact 274 the oo-category Sh(C, 1) is always an oo-topos.

C.2. Yoneda embedding of co-topoi. Let (C,7) be an oo-site and L : PSh(C) — Sh(C,7) be a left
adjoint of the inclusion Sh(C, 7) < PSh(C) of the co-topos Sh(C, 7). Also let j : C < PSh(C) be the Yoneda
embedding (Definition I52) We first recall

Fact ([Card, Lemma 6.2.2.16]). Let (C,7), L and j as above, and let i : U — j(X) be a monomorphism in
PSh(C) corresponding to a sieve C/(g() on X € C under the bijection (CIl). Then L o4 is an equivalence if
and only if C/(g() is a covering sieve.

This fact implies that given an oo-site (C,7) one can recover 7 from Sh(C,7) C PSh(C). Applying this
fact to the identity j(X) — j(X) and recalling that C;x C C/x is a covering sieve (Definition I"Z2 (1) (a)),

we find that the composition
(C.2.1) C L5 PSh(C) % Sh(C, 7)

is a fully faithful functor of co-categories. Thus, we may say that 7 is sub-canonical for the co-topos 8(C, 7).
(using the terminology in the ordinary Grothendieck topology).

Definition C.2.1. The composition (CZZT) will also be called the Yoneda embedding, and will be denoted
by the same symbol j : C — Sh(C, 7).

C.3. Hypercomplete oco-topoi. The oco-topoi of 7-sheaves discussed in the previous part has a distin-
guished property among general co-topoi.

Definition C.3.1 ([Corl, Definition 6.5.1.10, §6.5.2]). Let T be an oo-topos.

(1) Let n € NU{oo}. A morphism f: X — Y in an co-topos T is called n-connective if it is an effective
epimorphism (Definition TXTM) and 7 (f) is trivial for each k =0,1,...,n.

(2) An object X € T is called hypercomplete if it is local (Definition ICIl) with respect to the class
of oo-connective morphisms. We denote by T” the sub-oco-category of T spanned by hypercomplete
objects.

(3) T is called hypercomplete if T =T.

Next we introduce the notion of hypercoverings following [Farll, §6.5.3]. See also [IT'Vell, §3.2] for a
model-theoretic explanation.

Let us recall the category A of combinatorial simplices (§CT) and the nerve N(C) of an ordinary category
C (Definition [21).
Definition ([Lurl, Definition 6.1.2.2]). A simplicial object in an oo-category C is a simplicial map U, :

N(A)°P — C. The oo-category of simplicial objects in C is denoted by Ca.

Following [Lnrl, Notation 6.5.3.1], for each n € N, we denote by AS™ the full subcategory of A spanned
by {[0],...,[n]}. If Cis a presentable co-category, then the restriction functor sk, : Ca — Fun(N(AS™)°P ()
has a right adjoint:

(C.3.1) sk, : Ca 7= Fun(N(AS™)P) : -,
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In fact, 7 is given by the right Kan extension [Lnrl, §4.3.2] along the inclusion functor N(AS™)°P < N(A)°P.
We set
cosk,, :=rosk, : CA — Ca
and call it the n-coskeleton functor.
Recalling that an co-topos is presentable (Fact I833), we have the following definition.

Definition C.3.2 ([Curl, Definition 6.5.3.2]). Let T be an oo-topos. A simplicial object U, € Ta is called
a hypercovering of T if for each n € N the unit map U,, — (cosk,_1 U, ), coming from the adjoint (C=3) is
an effective epimorphism (Definition [CXT1).

As noted in [Eurd, Remark 6.5.3.3], a hypercovering U, of T is a simplicial object such that the morphisms
Up — 17, Uy = Uy x Uy, Uy — Uy x Uy x U, ... are effective epimorphisms. Here 11 denotes a final object
of T.

Next we give the definition of a geometric realization of a simplicial object. We denote by A the category
of possibly empty finite linearly ordered sets. We can regard A C A as a full subcategory.

Definition ([Curl, Notation 6.1.2.12]). Let C be an oo-category and U, € Ca. Regarding U, as a diagram
in C indexed by N(A)°P, we denote by

|Ue| : N(AL)? — C
a colimit for U, if it exists, and call it a geometric realization of Us,.

Remark. (1) As noted in [Curl, Remark 6.1.2.13], |U,| is determined up to contractible ambiguity.
(2) For a hypercovering U, of an co-topos T, a geometric realization of U, always exists since T admits
arbitrary colimits (Corollary IX4), so that the notation |U,| makes sense. By the item (1), we call
it the geometric realization of U,.

Definition. A hypercovering U, of an oco-topos T is called effective if |U,| is a final object of T.
Let us cite a criterion for an oco-topos to be hypercomplete.

Fact C.3.3 ([Curl, Theorem 6.3.5.12]). For an co-topos T, the following two conditions are equivalent.
(1) T is hypercomplete.
(2) For each X € T, every hypercovering U, of T,x is effective.

Now we have the following result. See also [T'Vell, Theorem 3.4.1] for a discussion in a model-theoretical
context.

Fact C.3.4 ([Curll, Corollary 6.5.3.13]). Let T be an oco-topos. Define .S to be the collection of morphisms
|Ue| — X where U, is a hypercovering of T,x for an object X € T. Then an object of T is hypercomplete
if and only if it is S-local (Definition CT).

This fact implies
Corollary C.3.5. For an oo-site (C, ), the oo-topos Sh(C, 7) of sheaves is hypercomplete.
Combining with the Yoneda embedding j : C — Sh(C,7) (Definition =), we also have

Corollary C.3.6. For an oco-site (C,7), each object of Sh(C,7) is equivalent to a colimit of objects in the
sub-oo-category j(C) C Sh(C, 7).

Proof. Given a sheaf F' € Sh(C,7), we can take a hypercovering U, in PSh(C),p such that |Us| — F is
equivalence by Corollary CZ3H and Fact C33. Each U,, € PSh(C) is equivalent to a colimit of objects in
j(C) by Fact T53. Thus F is equivalent to a colimit of objects in j(C). O

C.4. Proper base change in an co-topos. In this subsection we recall the proper base change theorem
in an co-topos [Cuxll, §7.3.1].

Recall the oo-category Cat, of small co-category. It admits small limits and small colimits. Now the
following definition makes sense.

Definition C.4.1 ([Curd, Definition 7.3.1.1, 7.3.1.2]). A diagram
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of oo-categories is left adjointable if the corresponding diagram

hB —Zsh(

hBT>hC

of the homotopy categories commutes up to a specified isomorphism 7 : p.q, — ¢.pl, the functors q., ¢, of
categories admit left adjoints ¢*, ¢* and the morphism

a:q'pe 5 'pedld” 5 ¢t apld” S vl

is an isomorphism of functors. Here u is the unit and c is the counit associated to each adjunction. We call
« the base change morphism.

Definition ([Cnrll, Definition 7.3.1.4]). A geometric morphism p : U — T of co-topoi corresponding to the
adjoint pair p* : U &2 T : p, is proper if for any cartesian rectangle

T—T ——T
V' ——U ——=Uu
of co-topoi, the left square is left adjointable.

Thus a proper geometric morphism is defined to be one for which the base change theorem holds.
We collect some formal properties of proper geometric morphisms.

Fact ([Curll, Proposition 7.3.1.6]). (1) Any equivalence of co-topoi is a proper geometric morphism.
(2) The class of proper geometric morphisms is closed under equivalence, pullback by any morphism
and composition.

In [Curd, Theorem 7.3.16] it is shown that for a proper map p : X — Y of topological spaces with X
completely regular (i.e., homeomorphic to a subspace of a compact Hausdorff space), the associated geometric
morphism p, : Sh(X) — Sh(Y") is proper.

APPENDIX D. STABLE 0co-CATEGORIES

D.1. Definition of stable oo-categories. In this subsection we cite from [Lur2, Chap. 1] the necessary
notion and statements on stable co-category.

Definition ([Cur2, Definition 1.1.1.1]). A zero object of an oo-category C is an object which is both initial
and final in the sense of Definition [Z374.

Definition D.1.1 ([Cur?, Definition 1.1.1.4, 1.1.1.6]). Let C be an co-category with a zero object 0.
(1) A triangle in C is a square of the form

X ——Y
0——7

We sometimes denote such a triangle simply by X — Y — Z.

(2) A triangle is called a fiber sequence (resp. cofiber sequence) if it is a pullback square (resp. pushout
square) in the sense of Definition B=3.

(3) Let f: X — Y be a morphism in C. A fiber of f is a fiber sequence of the form

W——X

b

0——Y
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A cofiber of f is a cofiber sequence of the form

X ——

|

The word triangle in the above definition will be used only in this subsection (in fact, up to Definition
[DT7). Note that in the main text we use the word triangle in C to mean a simplicial map A? — C.

Definition D.1.2 ([CurZ, Definition 1.1.1.9]). An oco-category C is called stable if it satisfies the following
three conditions.

e C has a zero object 0 € C.
e Every morphism in C has a fiber and a cofiber.
e A triangle in C is a fiber sequence if and only if it is a cofiber sequence.

For a stable co-category C one can define the suspension functor ¥ : C — C and the loop functor 2 : C — C
as follows [Lar?, §1.1.2].

Let us assume for a while only that C has a zero object. Consider the full sub-oco-category M* of
Fun(A! x Al,C) spanned by the pushout squares of the form

X——0

L

0 ——=Y

with 0 and 0’ zero objects of C. As explained in [Cur?, p.23], if morphisms in C have cofibers, then the
evaluation at X induces a trivial fibration i : M*¥ — C. Let s : C — M¥ be a section of i. Let also
f : M*¥ — C be the functor given by evaluation at Y.

Definition D.1.3. Let C be an oo-category which has a zero object and where every morphism has a
cofiber. The suspension functor ¥ = X¢ : C = C of C is defined to be the composition ¥ := fos of f and s
constructed above.

Dually, denote by M the full sub-co-category of Fun(A! x A', C) spanned by the pullback squares of the
above form. If morphisms in C have fibers, then the evaluation at the vertex Y induces a trivial fibration
f':M® = C. Let s’ : C = M be a section of f’. Let also i’ : M® — C be the functor given by the evaluation
at X.

Definition. Let C be an oo-category which has a zero object and where every morphism has a fiber. The
loop functor @ = Qc : C — C of C is defined to be the composition  := ' o s’ of ¢/ and s’ constructed above.

Fact. If C is stable, then M® = M®, so that ¥ and § are mutually inverse equivalences on C.

Definition D.1.4. Let C be a stable co-category. For n € N, we denote by X — X|[n] the n-th power of the
suspension functor ¥, and by X — X[—n| the n-th power of the loop functor Q2. We call them translations
or shifts on C.

We also have the equivalence on the homotopy category h C induced by [n] : C — C, which will be denoted
by the same symbol [n] and called translations on h C.
We cite from [Curd] a construction of new stable co-category from old one.

Fact ([Lur?, Propsition 1.1.3.1, Lemma 1.1.3.3]). Let C be a stable co-category.
(1) For a simplicial set K, the oo-category Fun(K, C) of functors is stable.
(2) Let C' C C be a full sub-oo-category which is stable under cofibers and translations. Then C’ is a
stable subcategory of C.

We now recall the structure of a triangulated category on the homotopy category hC. A diagram in h C
of the form

xtloy_ ¢

X[]



94 SHINTAROU YANAGIDA

is called a distinguished triangle if there exists a diagram A' x A2 — C of the form

x—Jtov_— oo
V7 W
h

satisfying the following four conditions:
e 0,0’ € C are zero objects.
e Both squares are pushout square in C.
e The maps fand g in C represent f and g in h C respectively.
e h is the composition of the homotopy class of h with the equivalence W ~ X[1] determined by the
outer rectangle.

Fact D.1.5 ([Lur2, Theorem 1.1.2.14]). Let C be a stable co-category. Then the translations on h C and
the distinguished triangles give h C the structure of a triangulated category.

By this fact, we know in particular that h C has the structure of an additive category. For objects X,Y
of a stable co-category C and an integer n, we denote by Ext¢(X,Y) the abelian group Homy, ¢(X[—n],Y).
Finally we recall the notion of exact functors of stable oo-categories. See [Lur2, §1.1.4] for the detail.

Definition D.1.6. A functor ' : C — C’ of stable co-categories is called exact if the following two conditions
are satisfied.

e [ carries zero objects in C to zero objects in C'.

e [ carries fiber sequences to fiber sequences.

This notion of exactness is compatible with Definition BTO by the following fact.

Fact ([Cnr?, Proposition 1.1.4.1]). For a functor F' : C — C’ of stable co-categories, the following three
conditions are equivalent.
(i) F commutes with finite limits.
(ii) F commutes with finite colimits.
(iii) F is exact in the sense of Definition DTA.

D.2. t-structure. We collect the basics of t-structure on a stable co-category citing from [Cur2, §1.2].
Recall the notion of ¢-structure on a triangulated category in the sense of [BBD:

Definition D.2.1. A t-structure on a triangulated category D is a pair (D<o,D>g) of full subcategories
satisfying the following three conditions.
(i) For any X € D>g and Y € D<g, we have Homp (X, Y[-1]) = 0.
(if) We have D>¢[1] C D> and D<o[—1] C D<o.
(iii) For any X € D, there exists a fiber sequence X’ — X — X’ in the nerve N(D) (see Definition [OT),
where X' € DZO and X" € Dgo[—l].

Definition D.2.2 ([Curd, Definition 1.2.1.4]). (1) Let C be an occo-category. A t-structure on C is a
t-structure on the homotopy category h C.
(2) Let n € Z. Given a t-structure on C, we denote by Cs,, and C<,, the full sub-co-categories spanned
by those objects belonging to (hC)>,, and (hC)<,, respectively.

By [Lur2, Proposition 1.2.1.5], for a stable co-category C equipped with a t-structure, the full sub-oo-
categories C>,, is a localization of C. Thus, following [Lur2, Notation 1.2.1.7], it makes sense to define the
functor

TSnZC—>CSn

to be a left adjoint to the inclusion C<,, — C. We also denote by 7>, : C = C5, a right adjoint to the
inclusion Cs,, — C.

Remark ([Lur?, Remark 1.2.1.3]). A t-structure on a stable co-category C is determined by either of the
corresponding localizations C<q, C>9 C C. We call it the t-structure determined by (C<o, C>o).

As in the case of non-oco-categorical case, we have the bounded sub-oo-categories.
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Definition D.2.3. Let C be an oo-category equipped with a t-structure. We define the sub-oco-categories
Ct,C—,C% of C by

Ct:=U,Csp, C :=U,C5_,, C:=CNC.
We call C to be left bounded if C = Ct, right bounded if C = C~, and bounded if C = C?,

Note that these sub-oo-categories C* (x € {£,b}) are stable.
By [Cur2, Proposition 1.2.1.10] we have an equivalence 7<, 0Ty, — Ty 0 T<pm, 0f functors C — C<,,, NCs,,
as in the non-derived case [BBD, §1].

Definition D.2.4 ([Cur?, Notation 1.2.1.7]). (1) We define the heart of C to be
CY:=CsrNCsCC.
(2) We define mp :=7<go07>0: C — (ot
(3) For n € Z we define 7,, : C — C¥ to be the composition of 7y with the shift functor X + X[—n].
For later use, we introduce

Definition ([Lur?, §1.2.1, p.44]). Let C be a stable co-category equipped with a t¢-structure. The left

o~

completion C of C is a limit of the tower of co-categories

C<2

T<2 T<1 T<0 T<-1

Ccp — Ceo —

As explained in loc. cit., we have the following description of C. Let N(Z) denote the nerve of (the category
associated to) the linearly ordered set Z. Then C is the full sub-co-category of Fun(N(Z), C) spanned by
F : N(Z) — C such that F(n) € C<_,, for each n € Z and the morphism 7<_, F(m) — F(n) induced by
F(m) — F(n) is an equivalence for each pair m < n.

Fact ([Lur2, Proposition 1.2.1.17]). Let C be a stable co-category equipped with a ¢-structure.

(1) The left completion C is stable.

(2) C has a t-structure determined by (€§0,620), where Ego and 620 are full sub-co-categories of C
spanned by functors factoring through C<g and C>( respectively.

(3) There is a canonical functor C — C, which is exact and induces an equivalence Cso— 620.

Definition D.2.5. A stable co-category C equipped with a ¢-structure is called left complete if the canonical
functor C — C is an equivalence. The right completion and the right completeness are defined dually.

We also give some properties of a t-structure.

Definition D.2.6. Let C be a stable co-category equipped with a ¢-structure determined by (C<g, C>o).
(1) The t-structure is accessible if Cs is a presentable co-category.
(2) The t-structure is compatible with filtered colimits if the oo-category C<q is stable under filtered
colimits.
(3) Assume that Cis a symmetric monoidal co-category. The t-structure is compatible with the symmetric
monoidal structure if C>( contains the unit object of C and is stable under tensor product.

D.3. Derived oco-category. Following [Lur2, §1.3] we recall a construction of stable co-category from an
abelian category. We will use the cohomological notation of complexes, opposed to the homological notation
in loc. cit. Thus a complex M = (M*,d) is a sequence of morphisms

d—z _ d—l d(l dl
Mt MO Mt S

such that d"*1 o d" = 0 for any n € Z.

D.3.1. Construction. Let D be a dg-category over a commutative ring k (Definition B11). For X,Y € D,
we denote the complex of morphisms from X to Y by Homp(X,Y) = (Homp (X, Y)*, d).

Definition D.3.1 ([Cur2, Construction 1.3.16]). For a dg-category D, we define a simplicial set Ngg(D) as
follows. For n € N, we define Ngg (D), to be the set consisting of ({X; | 0 <i < n},{fr}) where
e X, is an object of D.
e For each subset I = {i_ < i, <--- <1 <iy} C[n] with m € N, f; is an element of the k-module
Homp (X;_, X;, )™ satisfying dfr = 321 <<, (=1 (fr\(i;3 — fij<-<in<iy} © flio <ip<o<isy)-
We omit the description of face and degeneracy maps. Ngg (D) is called the differential graded nerve, or the
dg-nerve, of D.
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As explained in [Lur2, Example 1.3.1.8], lower simplices of Nqg(D) are given by
e A 0-simplex of Ngg(D) is an object of D.
e A 1-simplex is a morphism f : Xo — X; of D, i.e., an element f € Homp (X, X1)" with df = 0.
e A 2-simplex consists of Xo, X1, X2 € D, f;; € Homp(X;, X;)" for (i,5) = (0,1),(1,2),(0,2) with
dfij = 0, and g € HOHID(X(), Xg)il with dg = f01 o f12 — fog.

Fact ([Cur2, Proposition 1.3.1.10]). For any dg-category D, the simplicial set Ngg (D) is an oco-category.

Notation. Let A be an additive category.
(1) C(A) is the category of complexes in A. It has a natural structure of a dg-category over Z, and
hereafter we consider C(A) as a dg-category.
(2) CT(A) C C(A) is the full subcategory spanned by complexes bounded below, i.e., spanned by those
M such that M™ = 0 for n < 0.
(3) C7(A) C C(A) is the full subcategory spanned by complexes M bounded above, i.e., M™ = 0 for
n > 0.

For the dg-category C(A) we can construct the dg-nerve Ngg(C(A)). We can now introduce the derived
oo-category for abelian category with enough projective or injective objects.

Definition D.3.2 ([Lanr?, Definition 1.3.2.7, Variant 1.3.2.8]). Let A be an abelian category.
(1) Assume A has enough injective objects, and let Aj,; C A be the full subcategory spanned by injective
objects. We define the oco-category D (A) to be

DL (A) = Nag (CT (Awj))

and call it the lower bounded derived co-category of A.
(2) Assume A has enough projective objects, and let Ap..; C A be the full subcategory spanned by
projective objects. We define the oo-category D_(A) to be

Do (A) = ng(c_(AprOJ))

o0

and call it the upper bounded derived co-category of A.

As noted in [Eur?, Variant 1.3.2.8], we have an equivalence DX (A)°P ~ D__(A°P). We will mainly discuss
on DI (A) with A enough injectives hereafter.

For any additive category A, the co-category Ngg(C(A)) is stable by [Lur2, Proposition 1.3.2.10]. Then
one can deduce

Fact ([Lurd, Corollary 1.3.2.18]). For an abelian category A with enough injective objects, the co-category
DX (A) is stable.

We also have a description of DX (A) by localization (Definition BZZT), which is similar to the definition
of the ordinary derived category.

Fact ([Lur2, Theorem 1.3.4.4, Proposition 1.3.4.5]). Let A be an abelian category with enough injective
objects. We denote by T be the collection of those morphisms in C*(A) (regarded as an ordinary category)
which are quasi-isomorphisms of complexes, and by Wy, quasi-isomorphisms in Ngg(C*(A)). Then we have
canonical equivalences

N(C™(A)[W 1] = Nag(C*(A))[Wg,'] = DL(A).

A dual description exists for an abelian category with enough projective objects.

D.3.2. Grothendieck abelian category. Following the terminology of [Curll, Lur?], we say a category C is
presentable if it satisfies the following two conditions.
e C admits arbitrary small limits and small colimits.
e C is generated under small colimits by a set of k-compact objects (Definition B=83) for some regular
cardinal number k.
See Fact BXX4 for the related claim on presentable co-categories.
Now let us recall

Definition D.3.3 ([Curd, Definition 1.3.5.1]). An abelian category A is called Grothendieck if it satisfies
the following conditions.

e A is presentable as an ordinary category.

e The collection of monomorphisms in A is closed under small filtered colimits.

Let us also recall a model structure of the dg-category C(A) of complexes in A.
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Fact D.3.4 ([Cur?, Propsoition 1.3.5.3]). Let A be a Grothendieck abelian category. Then the category
C(A) has the following model structure.
e A morphism f : M — N in C(A) is a cofibration if for any k € Z the map f : My — Ny is a
monomorphism in A.
e A morphism f: M — N in C(A) is a weak equivalence if it is a quasi-isomorphism.
We call it the injective model structure of C(A).

We have the following characterization of fibrant objects in this model category.

Fact. Let A be a Grothendieck abelian category and M € C(A). If M is fibrant, then each M, is an injective
object of A. Conversely, if each M, is injective and M,, ~ 0 for n > 0, then M is fibrant.

As a corollary, one can reprove that a Grothendieck abelian category has enough injective objects [Cur?2,
Corollary 1.3.5.7].

As in Definition BT84, we denote by A° the subcategory of fibrant-cofibrant objects in C(A) with the
injective model structure.

Definition D.3.5 ([Lur?, Definition 1.3.5.8]). Let A be a Grothendieck abelian category. We define an
oo-category Do (A) to be

Doo(A) := Nag(C(A)°%)
and call it the unbounded derived co-category of A.

Here is a list of properties of the unbounded derived co-category Do (A).

Fact D.3.6. Let A be a Grothendieck abelian category.
(1) Doo(A) is stable [Cnr?, Proposition 1.3.5.9].
(2) The natural inclusion D (A) < Ngg(C(A)) has a left adjoint L which is a localization functor
(Definition B772) [Cur?, Proposition 1.3.5.13].
(3) Doo(A) is equivalent to the underlying co-category Ngpi(C(A)°) of C(A) regarded as a discrete sim-
plicial model category [Curd, Proposition 1.3.5.13].
(4) Doo(A) is presentable as an co-category [Lurd, Proposition 1.3.5.21 (1)].

D.3.3. t-structure. Let us cite from [Cur2, §1.3] the natural ¢t-structures on the derived oo-categories.

Fact ([Lur?, Proposition 1.3.2.19]). Let A be an abelian category with enough injective objects. We define
DX (A)>o C DI (A) to be the full sub-co-category spanned by those objects M such that the homology
H, (M) € A vanishes for n < 0. We define DI (A)<( similarly. Then the pair

(DL (A)<0, DL (A)>0)
determines a t-structure on D (A), and there is a canonical equivalence D (A)Y ~ N(A).

Fact D.3.7 ([Cur?, Proposition 1.3.5.21 (2), (3)]). Let A be a Grothendieck abelian category. We denote by
Doo(A)>0 C Doo(A) the full sub-co-category spanned by those objects M such that H, (M) ~ 0 for n < 0.
Do (A)<g is defined similarly. Then the pair

(Doo(A) <0, Doo(A)>0)

determines a t-structure on Do (A), which is accessible, right complete and compatible with filtered colimits
(Definition 2, D2[).

Let us also cite the following useful result.

Fact D.3.8 ([CurZ, Theorem 1.3.3.2]). Let A be an abelian category with enough injective (resp. projective)
objects, C be a stable co-category equipped with a left complete ¢-structure, and E C Fun(DZ (A), C) (resp.
E C Fun(D_(A),C)) be the full sub-co-category spanned by those left (resp. right) t-exact functors which
carry injective (resp. projective) objects of A into C¥. Then the construction

Fr—71<00 (Flpt (a))

(resp. F'— T<o o (Fp_ (a)v)) determines an equivalence from E to the nerve of the category of left (resp.
right) exact functors A — C%.

Corollary. Let A be an abelian category with enough injective (resp. projective) objects, and C be a stable
oo-category equipped with a right (resp. left) complete t-structure (Definition D2H). Then any left (resp.
right) exact functor A — C¥ of abelian categories can be extended to a t-exact functor DI (A) — C (resp.

D (A) — C) uniquely up to a canonical equivalence.
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Definition D.3.9 ([Cur?, Definition 1.3.3.1]). Let f : C — C’ be a functor of stable co-categories equipped
with ¢-structures.

(1) fis left t-exact if it is exact (Definition BIO) and carries C<q into CL,.

(2) f is right t-ezact if it is exact and carries C( into CL, -

(3) fis t-exact if it is both left and right t-exact. -

Then we have another corollary of Fact D=38 which is standard in the ordinary derived category.

Corollary ([Curd, Example 1.3.3.4]). Let f: A — B be a functor between abelian categories.
(1) If A and B have enough injective objects and f is right exact, then f extends to a left t-exact functor

Rf:DL(A) — DL(B)

which is unique up to contractible ambiguity. We call it the right derived functor of f.
(2) Dually, if A and B have enough projective objects and f is right exact, then f extends to a right
t-exact functor

Lf:D(A) — D_(B)
which is unique up to contractible ambiguity. We call it the left derived functor of f.

APPENDIX E. SPECTRA AND STABLE MODULES

Here we explain spectra, ring spectra and stable modules following [Curd]. Let us remark that the contents
in §E™ will not be used in the main text except Fact EZ23.

E.1. Spectra. Let us give an important example of a stable co-category, the co-category Sp of spectra. We
need some preliminary definitions.

Definition ([Curll, Definition 7.2.2.1]). A pointed object of an oo-category C is a morphism X, : 1 — C
where 1 is a final object of C (Definition I=37). We denote by C. the full sub-co-category of Fun(Al, C)
spanned by pointed objects of C.

Recall that 8 denotes the oco-category of spaces (Definition IZ=3). Thus 8, denotes the oo-category of
pointed objects in §. Noting that § has a final object, we choose and denote it by * € 8.

Definition ([Lix?, Definition 1.4.2.5]). We denote by 8 C § the smallest full sub-co-category which
contains a final object * € § and is stable under taking finite colimits. We also denote by 8i* := (8fin), the
oo-category of pointed objects of 8.

We need another definition.

Definition ([Cur?, Definition 1.4.2.1]). Let F': C — B be a functor of co-categories

(1) Assume C admits pushouts. F is called ezxcisive if F' carries pushout squares in C to pullback squares
in B.
(2) Assume C has a final object *. F is called reduced if F(x) is a final object of B.

Now we can introduce

Definition E.1.1 ([Cur2, Definition 1.4.2.8, Definition 1.4.3.1]). (1) Let C be an co-category admitting
finite limits. A spectrum object of C is defined to be a reduced excisive functor F : 8f* — C. We
denote by Sp(C) the full sub-co-category of Fun(8f® C) spanned by spectrum objects, and call it the
oo-category of spectra in C.

(2) A spectrum is a spectrum object of the co-category 8 of spaces. We denote by Sp := Sp(8.) the
oco-category of spectra.

Fact E.1.2 ([Curd, Corollary 1.4.2.17]). If C is an oo-category admitting finite limits, then the oo-category
Sp(C) is stable.
In particular we have the shift functor [n] with n € Z on Sp(C) (Definition [IT4). Then we can introduce

Definition E.1.3 ([Cur2, Notation 1.4.2.20]). Let C be an co-category admitting finite limits.
(1) Let S° be the O-sphere regarded as an object of 8f". We denote the evaluation functor at S° € 8fin
by
Q% :Sp(C) — C.
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(2) For n € Z we denote by
Q%7 :Sp(C) — C
the composition 2 o [n], where [n] denotes the shift functor on Sp(C).

For n € N, the functor Q°°~" can be regarded as the evaluation functor at the pointed n-sphere S™ € 8fin.

The following fact means that a spectrum object can be regarded as a series of pointed objects together
with loop functors as the classical homotopy theory claims.
Fact E.1.4 ([Cur2, Proposition 1.4.2.24, Remark 1.4.2.25]). For an oco-category C admitting finite limits,
Sp(C) is equivalent to the limit of the tower --- — C, L2, Ci 2, C. of oo-categories.

Using 2°° we can endow a t-structure on Sp(C).

Fact E.1.5 ([Curd, Proposition 1.4.3.4]). Let C be a presentable co-category, and Sp(C)<_1 C Sp(C) be the
full sub-oco-category spanned by those objects X such that Q°°(X) is a final object of C. Then Sp(C)<_4
determines a ¢-structure on Sp(C).

Let us also recall the sphere spectrum. By [Lur2, Proposition 1.4.4.4], if C is a presentable co-category,
then the functor 2°° : Sp(C) — C admits a left adjoint

¥ C — Sp(Q).
Definition E.1.6. For n € N, we denote the composition with the shift functor [rn] on Sp(C) by
¥t .= [n]o ¥ : C — Sp(C).
We also denote the image of a final object 1c € C under the functor X" by
Sg = ¥°*"(1c) € Sp(C).

Obviously X% is a left adjoint of Q°~".
In the case C = 8 we have

Fact E.1.7. The stable co-category Sp of spectra has the following properties.

(1) Sp is freely generated by the sphere spectrum S9 under (small) colimits [[ur?, Corollary 1.4.4.6].

(2) Sp is equipped with the symmetric monoidal structure induced by smash products [Cur2, §4.8.2].

(3) The heart Sp¥ of the t-structure (Fact EZIH) is equivalent to the nerve of the ordinary category of
abelian groups [[Lur?, Proposition 1.4.3.6].

E.2. Ring spectra. For n € N, we denote by E® the co-operad of little n-cubes in the sense of [Lir?,
Definition 5.1.0.2]. We have a natural sequence

EY «—— EP «—— EY — ...

of co-operads. By [Lur2, Corollary 5.1.1.5], the colimit of this sequence is equivalent to the commutative
oc-operad [Cur?, Example 2.1.1.18], which we denote by EZ..

Let k be an E,-ring. We denote by Mody (Sp) the oo-category of k-module spectra (see [Cur?, Notation
7.1.1.1]), which has a symmetric monoidal structure.

Definition E.2.1 ([Cur?, Notation 0.3]). Let k be an Eo-ring. We denote by
CAlg,, = CAlg;,(Mod(Sp))

the co-category of commutative ring objects in the symmetric monoidal co-category Modg(Sp), and call an
object of CAlg,. a commutative k-algebra spectrum. If k is connective, then we denote by CAlgy" C CAlg, the
full sub-oco-category spanned by connective commutative k-algebra spectra.

An ordinary commutative ring k can be regarded as an E..-ring. Let us explain a relationship between
the co-category CAlg;" and the oo-category arising from simplicial commutative k-algebras.

Let us denote by sComy the category of simplicial commutative k-algebras. In other words, an object of
sComy, is a simplicial object in the category of commutative k-algebras (see §I1). We have

Fact E.2.2. The category sComy has a simplicial model structure (Definition BTG1) determined by the
following data.
e A morphism A, — B, in sComy, is a weak equivalence if and only if the underlying simplicial map
is a weak homotopy equivalence.
e A morphism in sComy, is a fibration if and only if the underlying simplicial map is a Kan fibration.
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We denote by sCom; C sComy, the full subcategory spanned by fibrant-cofibrant objects. By Definition
BTG4, we have the underlying oo-category Ngpi(sComy,).
Fact E.2.3 ([Cur?, Proposition 7.1.4.20, Warning 7.1.4.21], [Card, Proposition 4.1.11]). There is a functor
Ngpi(sComy) — CAlgi”

of oco-categories which preserves small limits and colimits and which admits left and right adjoints. If
moreover the base ring k& contains Q, then this functor is an equivalence.

E.3. Stable modules. Following [TVe2, §1.2.11, §2.2.1], we introduce some terminology on stable modules
of derived rings. We will use some terminology and facts on derived oo-categories (see §-3).

Let k be a commutative ring. For a derived k-algebra A, we denote by sMod 4 the co-category of A-modules
in the co-category sMody, of simplicial k-modules (§2=271). The co-category sMod 4 admits finite limits. Thus
we have the oo-category Sp(sMod 4) of spectrum objects in sMod 4 (Definition ETT). Tt is a stable oo-category
in the sense of Definition [ITTA. We also have the suspension functor 3 : sMod 4 — Sp(sMod 4) in the sense
of Definition ETH.

Definition E.3.1. For a derived k-algebra A, we denote
Sp(A) := Sp(sMod 4)

and call it the co-category of stable A-modules. For n € Z, the n-th shift functor (Definition IIT4) on Sp(A)
is denoted by [n]. We also denote the suspension functor £°° : sMod4 — Sp(A4) by

Y% :sModyg — Sp(A).

Let us explain another description of Sp(A4). We start with the recollection of the normalized chain
complez (see [GJ, Chap. III, §2] for the detail). For a derived k-algebra A € sComy, we define the chain
complex N(A) as follows: The graded component is defined to be

N(A), =N~y Kerd;,
where d; : A, — A, _1 denote the face maps (§0). The map defined by
(-1)"d, : N(A)y, — N(A)p_1,

gives the differential on N(A) due to the simplicial identity d,_1d, = dnd,—1. The commutative ring
structure on A induces a structure of a commutative k-dg-algebra on the complex N(A).

Definition. The obtained commutative k-dg-algebra N(A) is called the normalized chain complex of A.

We denote by C(N(A)) the dg-category of N(A)-dg-modules. Considering it as the model category with
the injective model structure (Fact D=34), we have the subcategory C(IN(A))° of fibrant-cofibrant objects.
Then by taking the dg-nerve (Definition [D-3l), we have an oco-category Ngg(C(N(A))°). We will mainly use
the next description of Sp(A) in the following presentation.

Lemma. We have an equivalence of co-categories
Nag (C(N(A))") = Sp(A).
Let A be a commutative k-algebra. Then we can identify C(N(A)) = C(A), so that we have
Fact E.3.2. There is an equivalence
SP(A) = Doo(A) := Nag(C(A)°).

We call Dy (A) the derived co-category of A-modules. See Definition D=3 for the detail, where the derived
oo-category is denoted by Do, (Mody ). Taking the homotopy groups in the above equivalence, we have

Corollary.
hSp(A) ~ D(A) ~ HoC(A),
where D(A) denotes the derived category of unbounded complexes of A-modules (in the ordinary sense) and

Ho C(A) denotes the homotopy category of the dg-category C(A) equipped with the model structure in Fact
0o=x4a.

We have the theory of t-structures for stable co-categories. See §I04 for an account. Applying Fact D=3
to the present situation, we obtain the following t-structure of Sp(A).
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Lemma E.3.3. Let A be a commutative k-algebra. Then Sp(A) ~ Doo(A) = Ngg(C(A)°) is a stable
oo-category with a t-structure determined by

(Sp(A)<o, Sp(A)>0)-
Here we set
Sp(A)>0 := Nag(C(A))>0 N Deo(A),  Sp(A)<o := Nag(C(A)) <o N Do (),

where Ngg(C(A))>r (resp. Nag(C(A))<y) denotes the full sub-co-category of Ngg(C(A)) spanned by A-dg-
modules M such that Hy(M) ~ 0 for k < n (resp. k > n).
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